The Design of Bug Fixes

Emerson Murphy-Hill
Department of Computer Science
North Carolina State University
Raleigh, North Carolina, USA
emerson@csc.ncsu.edu

Thomas Zimmermann, Christian Bird, and
Nachiappan Nagappan
Microsoft Research
Redmond, Washington, USA
{tzimmer,cbird,nachin}@microsoft.com

Abstract—When software engineers fix bugs, they may have several options as to how to fix those bugs. Which fix they choose has many implications, both for practitioners and researchers: What is the risk of introducing other bugs during the fix? Is the bug fix in the same code that caused the bug? Is the change fixing the cause or just covering a symptom? In this paper, we investigate alternative fixes to bugs and present an empirical study of how engineers make design choices about how to fix bugs. Based on qualitative interviews with 40 engineers working on a variety of products, data from 6 bug triage meetings, and a survey filled out by 326 engineers, we found a number of factors, many of them non-technical, that influence how bugs are fixed, such as how close to release the software is. We also discuss several implications for research and practice, including ways to make bug prediction and localization more accurate.

Keywords-component: bugs, faults, empirical study, design

I. INTRODUCTION

As the software systems we create and maintain grow in capability and complexity, software engineers must ensure that these systems work as intended. When systems do not, software engineers fix the “bugs” that cause this unintended behavior.

Traditionally, researchers and practitioners have assumed that where in the software an engineer fixes a bug is where an error was made [1]. For example, Endes [2] makes such an assumption in a study, but cautions the reader that,

There is, of course, the initial question of how we can determine what the error really was. To dispose of this question immediately, we will say right away that, in the material described here, normally the actual error was equated to the correction made. This is not always quite accurate, because sometimes the real error lies too deep, thus the expenditure in time is too great, and the risk of introducing new errors is too high to attempt to solve the real error. In these cases the correction made has probably only remedied a consequence of the error or circumvented the problem. To obtain greater accuracy in the analysis, we really should, instead of considering the corrections made, make a comparison between the originally intended implementation and the implementation actually carried out. For this, however, we usually have neither the means nor the base material.

Figure 1: Characterizing the design of bug fixes

Although the software engineering community has suspected that this assumption is sometimes false, there exists little evidence to help us understand under what circumstances it is false. The consequences of this lack of understanding are manifold. Let us provide several examples. For researchers studying bug prediction [3] and bug localization [4], models of how developers have fixed bugs in the past may not capture the true cause of failures, but may instead only capture workarounds. For practitioners, when a software engineer is evaluated based on how many bugs they fix, the evaluation may not accurately reflect that engineer’s effect on software quality. For educators, without teaching future engineers the contextual factors that go into deciding which fix to apply, as engineers, the future engineers may choose inappropriate fixes.

However, to our knowledge, there has been no empirical research into how bug fixes are designed. In this paper, we seek to understand the design of bug fixes. We define the design of bug fixes as the human process of envisioning several ways to fix the same bug and then judging which of those fixes to apply. As with any software change, an engineer must deal with a number of competing forces when choosing what change to make. The task is not always straightforward. To fill this gap, we seek to answer two research questions:

RQ1: What are the different ways that bugs can be fixed?
RQ2: What factors influence which fix an engineer chooses?
This paper’s primary contribution: The first systematic characterization of the design of bug fixes. It analyzes the design space of bug fixes and describes how developers navigate that design space, to understand the decisions that go into choosing a bug fix (see Figure 1).

II. RELATED WORK

Several researchers have investigated bug fixes. Perhaps the most relevant research is that of Leszak, Perry, and Stoll’s study of the causes of defects, where the authors classified bug reports by ‘real defect location’:

‘Real’ location characterizes the fact that... some defects are not fixed by correcting the ‘real’ error-causing component, but rather by a... ‘work-around’ somewhere else.

While the authors collected real defect locations, the data was not analyzed or reported. Our work explains why one fix would be selected over another; or in other words, why an engineer might choose a workaround instead of a fix at a “real location.”

Ko and Chilana studied 100 contentious open-source bug reports, focusing on argumentation in open source bug fixing, such as the rationale for fixes and the need for moderation when end users were involved in the debate. In contrast, we focus on the design of the bug fix itself, rather than process by which the decision was made. Our study also complements this study by improving our understanding of the decision making process when fixing bugs, specifically for commercial software and for decisions made outside of the bug report itself.

Breu and colleagues observed in a study of 600 bug reports that 25.3% of discussions in bug reports are spent on the fix itself, discussions involving suggestions, feedback requests, and understanding files. Our study complements this work by exploring the design space of bug fixes.

Several other researchers have investigated bug fixing. In a manual inspection of bug fixes, Lucia and colleagues found that some fixes are spread over many lines of code. Bird and colleagues found that bug fixes reported in bug databases are different from fixes not reported in databases. Gu and colleagues investigated the belief that bug fixes themselves are the source of errors and found that bad fixes comprise approximately 9% of bugs. Yin and colleagues investigated why bugs are fixed incorrectly, that is, require a later bug fix to the source code changed by the original fix. Aranda and Venolia investigated 10 closed bugs and surveyed 110 engineers about bug coordination patterns at Microsoft. Spinelis and colleagues attempted to correlate code metrics, such as number of bugs fixed, to evaluate the quality of open source software. Storey and colleagues investigated the interaction of bugs and code annotations. Anvik and colleagues investigated which engineers get assigned to fix bugs. In contrast to these papers, our paper seeks to understand in what way bug fixes differ, and why one fix is chosen over another.
viewer asked about the software that the bug appeared in, the symptoms, the causes, and whether they considered more than one way to fix the bug. If an interviewee did consider multiple fixes, we asked their to briefly explain each one, and justify their final choice. The full interview guide can be found in our companion technical report [17].

Participants. To sample a wide variety of engineers, we recruited interviewees using a stratified sampling technique, sampling across several dimensions of the products that engineers create. We first postulated what factors might influence how engineers design fixes; we list those factors in Table I.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Desktop, web application, enterprise/backend, embedded</td>
</tr>
<tr>
<td>Product Type</td>
<td>Boxed, service</td>
</tr>
<tr>
<td>Bug fix types</td>
<td>Pre-release, post-release</td>
</tr>
<tr>
<td>Number of versions shipped</td>
<td>0 to continuous release</td>
</tr>
<tr>
<td>Phase</td>
<td>Planning and milestone quality, main development, stabilization, and maintenance</td>
</tr>
</tbody>
</table>

Table I. Factors for selecting product groups.

Using these factors, we selected a cross section of Microsoft products that spanned those factors. We chose four products from which to recruit engineers, because we estimated that four products would balance two competing requirements: that we sample enough engineers from each product team to get a good feeling for what bug fixing is like within that team, and that we sample enough product teams that we could have reasonable generalizability. The four product teams that we selected spanned each of the values in Table I. For example, one team we talked to worked on desktop software, one on web applications, another on enterprise/backend, and the last on embedded systems.

Within each product team, we aimed to talk to a total of 8 software engineers: six were what Microsoft calls “Software Development Engineers” (developers for short) and two were “Software Development Engineers in Test” (testers for short). We interviewed more developers, as developers spend more time fixing bugs than testers. Once we reached our quota of engineers in a team, we moved on to the next product team. In total, we completed 32 opportunistic interviews with engineers.

Data Analysis. We prepared the interviews for analysis by transcribing them. We then coded the transcripts [18] using the ATLAS.ti1 software. Before beginning coding, we defined several base codes, including codes to identify symptoms, the fix that was applied, alternative fixes, and reasons for discriminating between fixes. The first author did the coding. Additionally, our research group, consisting of 7 full time researchers and 7 interns, analyzed the coded transcripts again, to determine if any other notable themes emerged. Each person in the group analyzed 2 to 4 transcripts over ½ hour. We regard the first author’s coding as methodical and thorough, while the team’s analysis was brief and serendipitous. We derived most of the results described in this paper from the first author’s coding. We use the codes about fixes to describe the design space (Section IV.A) and codes about discriminating between fixes to describe how engineers navigate that space (Section IV.B). Our technical report contains a list of codes and examples [17].

Data Characterization. Overall, we found software engineers very willing to be interviewed. To obtain 32 interviews, we visited 152 engineers’ offices. Most offices were empty or the engineers appeared busy. In only a few cases, engineers explicitly declined to be interviewed, largely because the engineer was too busy. Interviews lasted between 4 and 30 minutes. In this paper, we refer to participants as P1 through P32.

Most participants reported multiple possible fixes for the bug that they discussed. In a few cases, participants were unable to think of alternative solutions; however, the interviewer, despite being unfamiliar with the bug, was able to suggest an alternative fix. In these cases, the engineer agreed that the fix was possible, but never consciously considered the alternative fix, due to external project constraints.

Interestingly, this opportunistic methodology allowed us to interview three engineers who were in the middle of considering multiple fixes for a bug.

B. Firehouse Interviews

Using the firehouse research method [19], we interviewed engineers immediately after they fixed a bug. Firehouse research is so called because of the unpredictable nature of the events under study; if one wants to study social dynamics of victims during and immediately after a fire, one has to literally live in the firehouse, waiting for fires to occur. Alternatively, one can purposefully set fires, although this research methodology is generally discouraged. In our case, we do not know exactly when an engineer is considering a fix, but we can observe a just-completed fix in a bug tracker and “rush to the scene” so that the event is fresh in the engineer’s mind.

Goal. Our goal was to obtain qualitative answers to our research questions in a way that maximized the probability that engineers could accurately recall their bug fix design decisions.

Protocol. We first picked one product group at Microsoft, went into the building where most development for that product takes place, and monitored that group’s bug tracker, watching for bugs an engineer marked as “fixed” within the last ten minutes. If the engineer was not located in the building, we moved on to the next most recently closed bug. Otherwise, the interviewer went immediately to the engineer’s office.

When approaching engineers for this study, we were slightly more aggressive than in the opportunistic interviews; if the engineer’s door was closed, we knocked on the door. If the engineer was not in her office by the time we arrived, we waited a few minutes. These interviews were the same as the opportunistic interviews, except that the interviewer insisted that the discussion focus on the bug that they had just closed.
Participants. Our options for choosing a product group to study was fairly limited, because we needed a personal contact within that team that was willing to give us live, read-only access to their bug tracker. We chose one product, which will remain anonymous; the product group was different from any of those chosen in the opportunistic interviews.

We aimed to talk to 8 software engineers in total for these interviews. While we interviewed fewer people than with the opportunistic interviews, these firehouse interviews tended to take much longer to orchestrate, mostly because we wanted to talk to specific people. In retrospect, we did not notice any qualitative differences in engineers’ responses to the two interview types, so for the remainder of the paper, we do not distinguish between these two groups of participants. Nonetheless, you may do so if you wish; participants in the firehouse interviews are labeled P33 through P40.

Data Analysis. We analyzed data in the same way as with the opportunistic interviews.

Data Characteristics. Again, we found engineers to be receptive to being interviewed, although they were usually surprised we asked about a bug they had just fixed. We reassured them that we are from Microsoft Research, and were there to help.

In total, we went to 16 offices, and were able to interview 10 engineers. Two of these we interviewed in error, one because his officemate actually closed the bug, and one because the interviewer misread the bug report. We compensated these engineers for their time with gift cards, but we exclude them from analysis.

C. Triage Meetings

We hypothesized that not only do individual engineers make decisions about the design of bug fixes, but perhaps that bug fix design happens during bug triage meetings as well.

Goal. Our goal was to obtain qualitative answers to our research questions with respect to how engineers work together to find good bug fix designs.

Protocol and Participants. We attended six bug triage meetings across four product groups. Three of these groups were the same groups that we did interviews with. To ensure engineers were comfortable, we did not record these meetings; rather, we took notes and observed in silence.

Data Analysis and Data Characteristics. It became clear that there was very little data we could gather in these triage meetings, for two reasons. The first is that participants rarely discussed how to fix a bug beyond whether to fix it and when to do so. Second, when participants did discuss how to fix bugs, the team was so tightly knit that very little explanation was needed; this terseness made bug fix decisions basically impossible for us to understand without the context that the team members had. As a result, we were able to glean few insights from the meetings. For the few observations that we could make, we label these meetings as T1 through T6. Because there was little usable data from these meetings, we did not perform any data analysis beyond reading through our notes.

D. Survey

Goal. Our goal was to quantify our observations made during the interviews and triage meetings.

Protocol. After we performed the interviews and triage meetings, we sent a survey to software engineers at Microsoft. As in the interviews, the survey started by giving examples of bugs that could be fixed using different techniques, where the examples were drawn from real bugs described by interviewees. As suggested by Kitchenham and Pfleeger [20], we constructed the survey to use formal notations and limit responses to multiple-choice, Likert scales, and short, free-form answers.

At the beginning of the survey, we suggested that the respondent browse bugs that they had recently closed to ground their answers. In Section IV, we discuss these questions and engineers’ responses. After piloting the survey, we estimate that it took respondents about 15-20 minutes to fill out the survey. The full text of this survey can be found in our technical report [17].

Participants. We sent the survey to 2000 randomly selected recipients from a pool of all employees of Microsoft who had “development” in their job title, and were not interns or contractors. This followed Kitchenham and Pfleeger’s advice to understand whether respondents had enough knowledge to answer the questions appropriately [20]. We incentivized participation by giving $50 Amazon.com gift certificates to two respondents at random.

Data Analysis. We analyzed our data with descriptive statistics (for example, the median), where appropriate. We did not perform inferential statistics (for example, the t-test) because our research questions do not necessitate them. When reporting survey data, we omit “Not Applicable” question responses, so percentages may not add up to 100%.

Data Characteristics. 324 engineers completed the survey. The response rate of about 16% is within the range of other software engineering surveys [21]. Respondents were from all eight divisions of Microsoft. Respondents reported between 0.08 and 39 years of experience in the software industry (median=9.5), with a median of 5 years of experience at Microsoft. 65% reported being developers, while 34% reported being testers. One respondent reported being a product manager.

IV. RESULTS

We next characterize the design options that engineers have when selecting a bug fix (Section IV.A), and then describe how engineers choose which fix to implement (Section IV.B).

A. Description of the Design Space

In our interviews, we asked participants to estimate what percentage of their bugs had multiple possible solutions. The median was 52%, with a wide range of variance, with individual responses ranging from 0% to 100%. Although this number should be interpreted as a rough estimate, it suggests that many bugs can be fixed in multiple ways.

With respect to the dimensions of the design space, we obtained answers to this research question by asking interviewees...
to explain the different fixes that they considered when fixing a single bug. In bold below, we present several dimensions on which bugs may be fixed, a description of each dimension, and an example from our interviews. Note that a single fix can be considered a point in this design space; for example, a fix may have low error surfacing and high refactoring, and simultaneously be placed in the other dimensions. These dimensions are not intended to be exhaustive, yet we believe that the number of interviews we performed suggests that this list represents a solid foundation on which to build a theory of bug fix design.

Data Propagation Across Components. This dimension describes how far information is allowed to propagate across a piece of software, where the engineer has the option of fixing the bug by intercepting the data in any of the components. At one end of the dimension, data is corrected at its source.

As an example, P25 worked on software with a layered architecture, with at least four layers, the top-most being the user interface. The bug was that the user interface was reporting disk space sizes far too large, and the engineer found that the problem could be traced back to the lowest-layer level, which was reporting values in kilobytes when the user interface was expecting values in megabytes. The interviewee could have fixed the bug by correcting the calculation in the lowest layer, or by transforming the data (multiplying by a thousand) as it is passed through any of the intermediate layers.

Error Surfacing. This dimension describes how much error information is revealed to users, whether that information is for end users or other engineers. At one end of the dimension, the user is made aware of detailed error information; at the other, the existence of an error is not revealed.

P28 described a bug where the software he was developing crashed when the user deleted a file. When fixing the bug, the engineer decided to catch the exception to prevent the crash, but also considered whether or not the user should be notified that an exceptional situation had occurred.

As another example, P6 described a bug where she was calling an API that returned an empty collection, where she expected a non-empty collection. The problem was that she passed an incorrect argument to the API, and the empty collection signified an error. However, an empty collection could also signify “no results.” While fixing the bug, the engineer considered changing the API so that it threw an error when an unexpected argument was passed to the API. She anticipated that this would have helped future engineers avoid similar bugs.

Behavioral Alternatives. This dimension describes whether a fix is perceptible to the user. At one end of the dimension, the fix does not require the user to do anything differently; at the other end, she must significantly modify her behavior.

One example is P11, who described a bug where the back button in a mobile application was occasionally not working. As part of the fix, he made the back button work, but had to simultaneously disable another feature when the application first loads. P11 stated that having both the back button and the other feature working at the same time was simply not possible; he had to choose which one should be enabled initially.

Functionality Removal. This dimension describes how much of a feature is removed during a bug fix. At one end of the dimension, the whole software product is eliminated; at the other, no code is removed at all.

As an example, P18 described a bug in which a crash occurred. Rather than fixing the bug, P18 considered removing the feature that the bug was in altogether. We were initially quite surprised when we heard this story, because the notion that an engineer would remove a feature just to fix a bug seems quite extreme. However, removal of features was mentioned repeatedly as a fix for bugs during our interviews.

To quantify functionality removal, we asked survey respondents to estimate how often they remove or disable features, rather than alleviating a symptom of a bug. About 75% of respondents said they had removed features from their software to fix bugs in the past.

Refactoring. This dimension describes the degree to which code is restructured in the process of fixing a bug, while preserving its behavior. A bug may be fixed with a simple one-line change, or it may entail significant code restructuring.

In our survey, we asked respondents to report on refactoring frequency when fixing bugs, as shown in Table II. In the table, “Should be refactored” indicates how often participants “notice code that should be refactored when fixing bugs.” For example, 29% of respondents indicated that they usually notice code that should be refactored. The “Is refactored” row indicates how often participants “refactor this code that should be refactored”. For example, 26% reported rarely refactoring code that should be refactored. These results suggest that, although engineers appear to regularly encounter code that should be refactored, much of this code remains unchanged.

Internal vs External. This dimension describes how much internal code is changed versus external code is changed as part of a fix. On one end of this dimension, the engineer makes all of her changes to internal code, that is code for which the engineer has a strong sense of ownership. On the other end, the bug is fixed by changing only code that is external, that is, code for which the engineer has no ownership.

One example is P33, who maintained a testing framework for devices used by several other teams. The bug was that

<table>
<thead>
<tr>
<th>Should be refactored</th>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Usually</th>
<th>Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>7%</td>
<td>56%</td>
<td>29%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Is refactored</td>
<td>4%</td>
<td>26%</td>
<td>44%</td>
<td>21%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Table II. Survey respondents’ refactoring behavior
many devices were not reporting data in a preferred manner, causing undesirable behavior in P33’s framework. Part of the fix was immediate and internal (changing the testing framework), but part of it was deferred and external (changing each of the other teams’ device code).

Accuracy. This dimension captures the degree to which a fix utilizes accurate information. On one end of this dimension, the engineer uses highly accurate information, and on the other, he uses heuristics or guesses.

An example is P29, who was working on a bug where web browser printing was not working well. An accurate fix would be one where his print driver retrieves the available fonts from the printer, then modifies the browser’s output based on the available fonts. A less accurate fix was to use a heuristic that produces better, but not optimal, print output.

Hardcoding. This dimension captures to what degree a fix hardcodes data. On one end of this dimension, data is specified explicitly, and on the other, data is generated dynamically.

One example of fixes on this dimension is P24, who was working on a bug where his print driver retrieves the available fonts from the printer, then modifies the browser’s output based on the available fonts. A less accurate fix was to use a heuristic that produces better, but not optimal, print output.

A more dynamic solution he considered was to modify the generator itself to either filter out malformed queries, or not to generate them at all.

B. Navigating the Design Space

While the previous section described the design space of bug fixes, it said nothing about why engineers implement particular fixes within that design space. For instance, when would an engineer refactor while fixing a bug, and when would she avoid refactoring? In an ideal world, we would like to think that engineers make decisions based completely on technical factors, but realistically, a variety of external factors come into play as engineers navigate this bug fixing design space. In this section, we describe those external factors.

Risk Management by Development Phase. A common way that interviewees said that they choose how to design a bug fix is by considering the development phase of the project. Specifically, participants noted that as software approaches release, their changes become more conservative. Conversely, participants reported taking more risks in earlier phases, so that if a risk materializes, they would have a longer period to compensate. Two commonly mentioned risks were the risk that new bugs would be introduced and the risk that spending significant time fixing one bug comes at the expense of fixing other bugs.

P12 provided an example of taking a more conservative approach, when he had to fix a bug by either fixing an existing implementation of the double checked locking pattern, or replace the pattern with a simpler synchronization mechanism. He eventually chose to correct the pattern, even though he thought the use of the pattern was questionable, because it was the “least disruptive” way to fix the bug. He noted that if he had fixed the bug at the beginning of the development cycle, he would have removed the pattern altogether.

In our survey, we asked engineers several questions relating to risk and development phase, as shown in Table IIIA. Here we asked engineers “How often do the following factors influence which fix you choose?”, where each factor is listed at left. The table lists the percentage of respondents who choose that frequency level. Note that the factors are not necessarily linked; for instance, an engineer could choose to change very few lines of code for a reason other than the product is late in development. However, our qualitative interviews suggested that these factors are typically linked together, and thus we feel justified in presenting these four factors as a whole. These re-
sults suggest that, for most respondents, risk mitigation usually plays an important role in choosing how to fix a bug.

One of the findings that emerged from our interviews is that if engineers are frequently making conservative changes, then they may be incurring technical debt. As P15 put it,

I wish to do it better, but I'm doing it this way because blah, blah, blah. But then I don't know if we ever go back and kind of “Oh, okay, we had to do this, now we can change it.” And I feel that code never goes away, right?

We verified this statement by asking survey respondents how often they think bugs that are initially fixed “suboptimally” should be reconsidered for a more optimal fix in the future. We asked how many of these bugs actually are fixed optimally after the initial fix. Table IV displays the results. These results suggest that engineers often feel that optimal fixes should be reconsidered in the future, but that those bugs rarely get fixed optimally. As one respondent noted, “although we talk about reconsidered in the future, but that those bugs rarely get fixed optimally.”

Interface Breakage. Another factor that participants said influenced their bug fixes is the degree to which a fix breaks existing interfaces. If a fix breaks an interface that is used by external clients, then an engineer may be less inclined to implement that fix because it entails changes in those external clients.

One example comes from P16, who was working on a bug related to playing music and voice over Bluetooth devices. He said that a better fix for the problem would be to change the Bluetooth standard, but too many clients already depend on it.

We also asked survey respondents how often the following factor influences which fix they choose: “Doesn’t change external interfaces or breaks backwards compatibility.” 89% reported that “usually” or “always,” suggesting that changing external interfaces is a significant determinant in choosing which fix to implement (Table IIIB).

Consistency. This factor describes to what degree a fix will be consistent with the existing software or existing practices. A fix that is not consistent with the existing code may compromise the design integrity of that code, leading to code rot.

One example is P10, who fixed a performance bug in his build system. P10 fixed the bug by using the build system in a way consistent with how it was being used by other teams. However, he felt that a change that was inconsistent with the way the build system currently worked would have produced better build performance, at least for his product. Table IIIC lists survey respondents’ attitudes towards the importance of maintaining design consistency when fixing bugs.

User Behavior. This factor describes the effect of how users of the software behave on the fix. If users have strong opinions about the software, or use a certain part of the software heavily, engineers may choose a fix that suits the user better.

One example is from T1, where the team discussed bugs in a code analysis tool. The team wondered how often users used a certain code pattern in practice. They acknowledged that their analysis did not work when the pattern was used, but how they fixed the bug depended on how often users actually wrote code in that pattern. They judged, apparently based either on intuition or experience, that several of these bugs were so unlikely to arise in practice that the effort to implement a comprehensive fix for the problem was not justified.

After hearing about T1 and some interviewees talk about frequency of user behavior, we became interested in how engineers know what users actually do. Thus, we asked two questions in the survey. In the first we asked how often fixes depended on usage frequency (Table IIID). These results suggest that how frequently a situation occurs in practice sometimes influences how engineers design fixes. The second question was a multiple-choice question about how engineers most often determine frequency (Table V). In this table, SQM refers to a usage data collector used in a variety of Microsoft products. The most common follow up to answering “None of the Above” was to ask the product manager. In Table V, we were somewhat surprised to find that so many engineers write queries over usage data. However, it still appears that many engineers use ad-hoc methods for estimating user behavior, including convenience sampling, estimation, and guessing.

Cause Understanding. This factor describes how thoroughly an engineer understands why a particular bug occurs. In interviews, we were surprised how often engineers fixed bugs without understanding why those bugs occurred. Without thoroughly understanding a bug, the bug may re-appear at some point in the future. On the other hand, gaining a complete understanding of why a bug is occurring can be an extremely time-intensive task.

P3 provided an example of fixing a bug without a full understanding of the problem. The symptom of his bug was that occasionally an error message appeared to the user whenever his software submitted a particular job. Rather than understanding why the error was occurring, he fixed the job by simply resubmitting the job, which usually completed without error. Rather than understanding the problem, as he explained it, “my time is better spent fixing the other ten bugs that I had.”

<table>
<thead>
<tr>
<th></th>
<th>Guess</th>
<th>4%</th>
<th>Estimate based on my past experience as a user of the software I develop</th>
<th>17%</th>
<th>Estimate based on my past experience interacting with users</th>
<th>16%</th>
<th>Collect data by taking a quick convenience sample (e.g., ask devs on my team)</th>
<th>19%</th>
<th>Collect data by external polling (e.g., ask readers of my blog)</th>
<th>2%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
<td>12%</td>
<td>Write a query over existing usage data (e.g. SQM)</td>
<td>18%</td>
<td>Estimate based on existing usage data that I remember seeing in the past (e.g. SQM)</td>
<td>11%</td>
<td>None of the Above</td>
<td>12%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table V. The most frequent mechanisms used by engineers to determine usage frequencies
usually or always decides. In some cases, bug fixes might be implemented in meetings, with others about bug design. Respondents indicated that they most often communicate by email (44%), in unplanned meetings (38%), planned meetings (7%), and in the bug report itself (6%). A few respondents also indicated that they discussed design during online code review and with instant messaging. However, in a study run in parallel with this one, we inspected 200 online code review threads at Microsoft, but found no substantial discussions of bug fix design [22]. We postulate that, by the time a fix is reviewed, engineers have already discussed and agreed upon the basic design of that fix.

We asked survey respondents how many people, including themselves, were typically involved in the bug fixing process. Table VII shows the results. These results suggest that while finding the cause of a bug and implementing a solution are generally 1- or 2-person activities, choosing a solution tends more often to be a collaborative activity.

We also asked survey respondents why they do not always make an optimal fix for a bug; 18% indicated that they have not had “time to figure out why the bug occurred.” This suggests that lack of cause understanding is sometimes a problem.

Social Factors. A variety of social factors appear to play a role in how bugs are fixed, including mandates from supervisors, ability to find knowledgeable people, and code ownership.

One example of this was P22, who was fixing a bug in a database system where records were not sorting in memory, causing reduced performance. The engineer proposed a fix based on “one week of discussions and bringing new ideas, [and] discussing [it with my] manager.” Other interviewees discussed their bugs with mentors (P28), peer engineers (P28), testers (P39), and development leads (P34).

In the survey we asked how communication with people helps inform the bug fix design (Table VI). The results suggest that peer software development engineers (SDEs) and the people who originally wrote the code related to where the fix might be applied usually play important roles in deciding how a bugs gets fixed. We also asked survey participants about who decides on which bug fix design to implement. Most participants said they themselves usually decide, while others said it was sometimes a group decision. Only 6% said their manager usually or always decides.

Table VI. Who is helpful to communicate with when choosing an optimal fix

<table>
<thead>
<tr>
<th></th>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Usually</th>
<th>Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer SDEs</td>
<td>1%</td>
<td>4%</td>
<td>27%</td>
<td>47%</td>
<td>17%</td>
</tr>
<tr>
<td>Peer SDETs</td>
<td>4%</td>
<td>15%</td>
<td>37%</td>
<td>30%</td>
<td>8%</td>
</tr>
<tr>
<td>My manager</td>
<td>9%</td>
<td>25%</td>
<td>40%</td>
<td>20%</td>
<td>3%</td>
</tr>
<tr>
<td>My product manager</td>
<td>22%</td>
<td>30%</td>
<td>29%</td>
<td>9%</td>
<td>1%</td>
</tr>
<tr>
<td>The people who wrote the code</td>
<td>2%</td>
<td>10%</td>
<td>36%</td>
<td>40%</td>
<td>9%</td>
</tr>
<tr>
<td>Other experts (e.g., architects)</td>
<td>9%</td>
<td>30%</td>
<td>32%</td>
<td>10%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Table VI. Who is helpful to communicate with when choosing an optimal fix

Table VII. How many people are involved in bug fixing activities

<table>
<thead>
<tr>
<th>Finding the cause of a bug</th>
<th>1</th>
<th>2</th>
<th>3 to 5</th>
<th>6 to 10</th>
<th>11+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage</td>
<td>49%</td>
<td>38%</td>
<td>11%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Choosing a solution</th>
<th>24%</th>
<th>43%</th>
<th>31%</th>
<th>1%</th>
<th>0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementing the solution</td>
<td>77%</td>
<td>16%</td>
<td>5%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Table VII. How many people are involved in bug fixing activities

Although our study provides a unique look at how engineers fix bugs, several limitations of our study must be considered when interpreting our results.

An important limitation is that of generalizability beyond the population we studied (external validity). While our results may represent the practices and attitudes at Microsoft, it seems unlikely that they are completely representative of software development practices and attitudes in general. However, because Microsoft makes a wide variety of software products, uses many development methods, and employs an international workforce, we believe that our random and stratified sampling techniques improved generalizability significantly.
Giving interviewees’ and survey respondents’ example bugs and multiple-fix examples may have biased participants towards providing answers that aligned with those examples, a form of expectancy bias (internal validity). However, we judged the threat of participants unable to recall implicit or explicit design decisions outweighed this threat. Future researchers may be able to confirm or refute our results by using a research method that is more robust to expectancy bias.

Still, some interviewees struggled with remembering the design decisions they made, and were generally unable to articulate implicit decisions. This type of memory bias is inherent in most retrospective research methods. However, we attempted to control memory bias by asking opportunistic interviewees to recall their most recently fixed bugs, asking firehouse interviewees to discuss a bug they just fixed, and asking survey respondents to look at bugs they had recently fixed.

To meet our goal of not significantly interrupting participants’ workdays, we kept our interview and survey short, which means we were unable to collect contextual information that may have helped us better explain the results. For example, in the interviews, we did not ask questions about gender or team structure, which may have some effect on bug fix designs.

Similarly, a consequence of keeping the survey short is that participants may have misunderstood our questions. For example, in our survey, we asked engineers whether they ever avoided filing a bug report; this question could be interpreted conservatively to mean, “when do you not report software failures?”, when our intent was for “bug reports” to be interpreted broadly to include enhancements. While we tried to minimize this threat by piloting our survey, as with all surveys [15], we may still have miscommunicated with our respondents.

VI. Implications

The findings we present in this paper have several implications, a handful of which we discuss in this section.

Additional Factors in Bug Prediction and Localization.

Previous research has investigated several approaches to predicting future bugs based on previous bugs [23] [24], including our own [3]. The intuition behind these approaches appears reasonable: how engineers have fixed bugs in the past is a good predictor of how they should fix bugs in the future. However, the empirical results we present in this paper suggest a host of factors can cause a bug to be fixed in one way at one point in time, but in a completely different way at another. For example, a bug fixed just before release is likely to be fixed differently than a bug fixed during the planning phase. As a result, future research in prediction and localization may find it useful to incorporate, when possible, these factors into their models.

Limits of Bug Prediction and Localization.

Although incorporating some factors, such as development phase, into historical bug prediction may improve the accuracy of these models, some factors appear practically outside the reach of what automated predictors can consider. For example, when analyzing past bugs, it seems unlikely that an automated predictor can know whether or not a past fix was made with an engineer’s full knowledge of why the bug occurred.

Refactoring while Fixing Bugs.

The results of our study suggest that engineers frequently see code that should be refactored, yet still avoid refactoring. One way that this problem could be alleviated is through wider use of refactoring tools, which should help engineers refactor without spending excessive time doing so and at minimal risk of introducing new bugs. At the same time, such tools remain buggy [25] and difficult to use [26], so more research in that area is necessary.

Usage Analytics.

In our study, it appeared that engineers often made decisions about how to fix bugs without a data-driven understanding of how real users use their software. While a better understanding would clearly be beneficial, gathering and querying that data appears to be time consuming. Microsoft, like many companies, has been gathering software usage data for some time, but querying that data requires engineers to be able to find and combine the right data sources, and write complex SQL queries. We envision a future where engineers, while deciding the design of a bug fix, can quickly query existing usage data with an easy-to-use tool. To build such a tool, research is first needed to discover what kinds of questions engineers ask about their usage data, beyond existing “questions engineers ask” studies [27].

Fix Reconsideration.

Engineers in our study reported needing to reconsider bug fixes in the future, but sometimes
used ad-hoc mechanisms for doing so, such as writing TODOs in code. Some of these mechanisms may be difficult to keep track of; for example, which TODOs should be considered sooner rather than later. Engineers need a better mechanism to reconsider fixes in the future, as well the time to do so.

VII. CONCLUSION

In this paper, we have described a study that combined opportunistic interviews, firehouse interviews, meeting observation, and a survey. Our results describe a multi-dimensional design space for bug fixes, a space that engineers navigate by, for example, selecting the fix that is least disruptive when a release looms near. While our study has not investigated a new practice, we have taken the critical first step towards understanding a practice that engineers have always engaged in, an understanding that will enable researchers, practitioners, and educators to better understand and improve bug fixes.

ACKNOWLEDGMENT

Emerson Murphy-Hill was a Visiting Researcher at Microsoft when this work was carried out. Thanks to all participants in our study, as well as Alberto Bacchelli, Michael Barnett, Andy Begel, Nicolas Bettenburg, Rob DeLine, Xi Ge, Jeff Huang, Brittany Johnson, Ekrem Kocaguneli, Tamara Lopez, Patrick Morrison, Shawn Phillips, Juliana Saraiva, Jim Shepherd, Nuo Shi, Jonathan Sillito, Gustavo Soares, and Yoonki Song.

VIII. BIBLIOGRAPHY