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Abstract— Tool-based code review is growing in popularity and 

has become a standard part of the development process at Mi-

crosoft.  Adoption of these tools makes it possible to mine data 

from code reviews and provide access to it.  In this paper, we pre-

sent an experience report for CodeFlow Analytics, a system that 

collects code review data, generates metrics from this data, and 

provides a number of ways for development teams to access the 

metrics and data. We discuss the design, design decisions and chal-

lenges that we encountered when building CodeFlow Analytics. 

We contacted teams that used CodeFlow Analytics over the past 

two years and discuss what prompted them to use CodeFlow Ana-

lytics, how they have used it, and what the impact has been. Fur-

ther, we survey research that has been enabled by using the Code-

Flow Analytics platform.  We provide a series of lessons learned 

from this experience to help others embarking on a task of building 

an analytics platform in an enterprise setting. 

I. INTRODUCTION 

Code Review is an important practice at Microsoft and in 

other companies and open source projects [1] [2], as it has been 

shown to improve software quality, increase awareness, and dis-

seminate knowledge [3] [4].  While there has been active re-

search leveraging the data that results from development tasks 

such as developing and checking in source code changes [5], ex-

ecuting builds [6], and fixing defects [7], until the past few years 

[3] [8] [9] [10] code review remained a software engineering 

task that was largely unexplored from a mining perspective. 

Similar to these other software development tasks, tool-based 

code review leaves behind traces of activity. As the MSR com-

munity has demonstrated, activity traces provide an opportunity 

for data to be mined and analyzed, enabling teams to measure 

themselves and derive insight [11].  

Microsoft has developed an in-house code review tool, 

CodeFlow, which has grown in popularity to become the pre-

dominant code review tool in all product groups. While Code-

Flow provides a mechanism to examine data about an individual 

review, there is no convenient way to mine and analyze data 

from code reviews. As development teams at Microsoft have 

sought to become more data driven, there have been repeated 

requests for the ability to easily aggregate, analyze, and monitor 

data about their code review process. Two years ago, in an effort 

to address this need, we developed and deployed a real-time 

code review data gathering and metric computing platform 

named CodeFlow Analytics (CFA). In the time since then, teams 

across Microsoft have discovered, used, and begun to rely on 

CFA as a source of information and insight. In this paper, we 

describe our experiences with building, deploying, and support-

ing CodeFlow Analytics.  Some aspects of the success of CFA 

have come as a result of intentional design decisions early on, 

while others were more the result of luck. At the same time, we 

also made mistakes along the way and encountered unantici-

pated challenges. We have continually adapted CFA as review-

ing tools have evolved, as resources at Microsoft have changed, 

and as teams have requested additional functionality. 

We make the following contributions in this paper: 

1. We describe the design of CodeFlow Analytics, includ-

ing the types of data that it collects, the metrics it com-

putes, and the ways by which users can access it. 

2. We report insights such as adoption patterns, frequent 

usage scenarios, and challenges during adoption from 

interviews with nine development teams across Mi-

crosoft that have used CodeFlow Analytics. 

3. We discuss the ways that CodeFlow Analytics has sup-

ported research in the code review space. 

Our hope is that others can learn from our experience as they 

attempt to build, deploy, and support software development data 

platforms in their own organizations. To that end, herein we have 

highlighted lessons learned from CFA that we believe are useful 

outside of our own specific context. We have also shared the 

reasons and ways that development teams have used CFA, as we 

maintain that they are reflective of how teams think about using 

data from their development processes.  We stress that this is a 

practice paper, not a research paper. As such, we will not be pre-

senting novel algorithms.  Nor will we provide low level con-

crete details about our system, many of which are specific to Mi-

crosoft and would doubtless be of little use to most readers.  

More details regarding data collection and storage of software 

engineering data at Microsoft can be found in the work of Czer-

wonka et al. [12]. 

II. DESCRIPTION OF CODEFLOW ANALYTICS 

Most teams at Microsoft have adopted code review as a 

standard practice to manage software quality and aid team 

awareness. The primary tool that teams use to conduct reviews 

is CodeFlow, an in-house developed collaborative code review 

tool that allows users to directly annotate source code and inter-

act with review participants in a live chat model [13]. The func-

tionality of CodeFlow is similar to other review tools such as 

Google’s Mondrian [14], Facebook’s Phabricator [15] or open-

source Gerrit [16]. Developers who want their code to be re-

viewed create a package with the source code changes, select 



 

 

reviewers, provide a description of the change to be reviewed, 

and submit the review to the CodeFlow service.  CodeFlow then 

notifies the selected reviewers about the incoming task via email. 

The developer that creates the code change and submits it for 

review is the review Author, and those who receive the review, 

provide feedback on the change, and can sign off, are termed the 

Reviewers. 

To understand the data that CFA collects, it is first important 

to understand how CodeFlow is used. Once reviewers open a 

CodeFlow review, they interact with it via a single desktop win-

dow (Figure 1). On the top left (A), they see the list of files 

changed in the code change submitted for review, plus a “de-

scription.txt” file, which contains a textual explanation of the 

change, written by the author. On bottom left, CodeFlow shows 

the list of reviewers and their status (B). In this example we see 

that Christian is the review author and Trevor, Ricky, Rock, and 

Birendra are the reviewers (“CodeFlow Analytics Developers” 

is a mailing list that the review is sent to, as well). Trevor and 

Birendra have signed off on the changes while Ricky and Rock 

have yet to do so. CodeFlow’s main view (C) shows the differ-

ences in the currently selected file. Both the reviewers and the 

author can highlight portions of the code and add comments in-

line (F). These comments can start threads of discussion and are 

the interaction points for the people involved in the review. Each 

user viewing the same review in CodeFlow sees events as they 

happen. Thus, if an author and reviewer are working on the re-

view at the same time, the communication is synchronous and 

comment threads act similar to instant messaging. The com-

ments are persisted so that if they work at different times, the 

communication becomes asynchronous. The bottom right pane 

(D) shows the summary of all the comments in the review along 

with their status (discussions begin in an “active” state and can 

be set to “resolved,” “won’t fix,” “pending,” or “closed,” similar 

to bug reports).  The author can make changes based on review-

ers’ feedback and submit an updated change, called an iteration 

in CodeFlow parlance.  In the example above, there are five it-

erations of the change which can be viewed by clicking on the 

tabs labelled “1” through “5” (E).  Once the reviewers are con-

fident in the change and sign off, the author marks the review as 

completed and typically checks his or her change into the pro-

ject’s source code repository. 

CodeFlow’s simplicity, low barrier for feedback, and flexi-

ble support for all of Microsoft’s disparate engineering systems 

(it currently supports Git, Team Foundation Server, Perforce, 

and an internal source code management system) has driven its 

adoption since its inception five years ago. In aggregate, Code-

Flow is used by engineers in every division to perform 100k to 

150k code reviews every month, and 4.9 million code reviews to 

date spanning every shipping product at Microsoft, as well as a 

host of internal projects.   

While CodeFlow has achieved widespread use, convenient 

access to the raw data to drive deep understanding and aggregate 

data to compute and track team, project, and organizational met-

rics around the code review process was missing. The data was 

stored in xml files, one per review, on disk behind the middle-

tier services. The only access pattern was to retrieve a single 

code review at a time. 

CodeFlow Analytics addresses this problem by continually 

monitoring activity on reviews, storing data about each review 

when it becomes available, processing this data into metrics and 

dimensions (described later), and making it easily available to 

teams. The architecture for CodeFlow Analytics is a Kimball-

styled data warehouse [17] using business intelligence tools 

from Microsoft SQL Server running on Microsoft Azure (Mi-

crosoft’s cloud computing platform [18]).  For data acquisition, 

CFA uses a Windows service to poll the central CodeFlow 

server on a regular basis. We have found that activity on a review 

occurs in bursts (as reviewers open a review and provide feed-

back throughout the change under review) and thus the service 

polls for a list of the ID’s of added or modified reviews every ten 

minutes, but waits to gather the data for a review until it has re-

mained dormant for at least ten minutes. This design decision 

cuts down the number of requests for CodeFlow data from the 

server and the number of updates to our database by over 40%, 

a large performance boost.  This raw review data is stored di-

rectly into a simple relational database.  Every two hours, it is 

processed into a dimensional model, or star schema [17], via a 

T-SQL based “Extract, Transform, and Load” (ETL) process 

[17], and then processed into an Analysis Services tabular cube 

[19], an in-memory database that supports both traditional rela-

tional data storage (where raw review data is stored) as well as a 

dimensional model.  A dimensional model consists of facts 

(computed metrics) and dimensions, which provide the ability to 

slice or filter the facts.  As a concrete example, one might be 

interested in the average number of files in a review for reviews 

conducted in 2014 in Windows.  In this case, 2014 is a filter in 

the time dimension and “Windows” is a filter in the product di-

mension, while average number of files is a computed fact based 

on those dimensions.  Using such a tabular model allows CFA 

to be as responsive as we need, as an on-disk relational model 

would be prohibitively expensive in terms of time (CFA not only 

houses a large amount of data, but must be able to serve requests 

from many teams across the company concurrently). 

Entities in the raw database along with their attributes in-

clude: aspects of the code review (e.g., project, author, descrip-

tion), reviewers (e.g., their current status, when they were as-

Fig. 1 Screenshot of CodeFlow Review Tool 



 

 

signed), the files in the review (e.g. file path, repository loca-

tion), feedback threads and comments (e.g., content of the com-

ments, who made them and when, where in each file the com-

ment is located), and related work items (references to check-

ins, tasks, and defect database entries).  We also track when and 

how each entity changes.  For instance, the database may show 

that a particular review currently has the status “completed,” but 

it also contains data regarding prior states, so that one can deter-

mine that its previous status was “active” and find the specific 

time that the status changed. 

In the relational data warehouse, the data in the raw database 

is merged with data from the Microsoft employee database, al-

lowing analysis by organizational hierarchy, role, or even geog-

raphy. 

The output of processing is a set of fact tables containing 

metrics and dimension tables, which in turn contain attributes 

useful for filtering and slicing the metrics.  Examples of the met-

rics include: time to first response, time to sign-off, time to com-

pletion, number of threads by final state, number of comments, 

number of iterations, number of files, number of reviewers, num-

ber of sign-offs, as well as variants of these that have been re-

quested by teams. Examples of dimensions are projects, months, 

and countries. Users can select the facts that they are interested 

in, filter and slice by chosen dimensions, and then aggregate in 

various ways. For example, a user may want to see the average 

number of sign-offs in his or her project per month.  In this case, 

specifying the project dimension will filter reviews to the project 

of interest, while slicing along the month dimension yields a 

time series.  The aggregation used is “average” on the fact “sign-

offs.”  As another example, a developer might look at the 75th 

percentile number of reviewers in his team.  In total, CFA pro-

vides over 200 facts and dimensions. We provide the median, 

average, and percentiles of the metrics to characterize distribu-

tions and identify outliers. 

Data consumption scenarios are a point of emphasis for 

CFA. One goal is to optimize the “time to insight,” or the time 

between having a curious question about code reviews and get-

ting an empirical answer from the data. Another goal was to 

broadly enable many ways to experience the data.  We intention-

ally did not create our own user interface for CFA, instead 

providing many ways to access the data so that customers could 

use the data how they see fit and leverage it in their existing tools 

For the casual user with no material data experience who 

wants quick insights into his or her team’s code review process, 

CFA provides Excel templates that query the cube and expose 

standard metrics.  Figure 2 shows such a template that displays 

various metrics, including review outcome by project (top left), 

average hours to first and last activity and signoff by week (top 

right), participation (middle right), and feedback activity (bot-

tom right).   

CFA also allows casual users who are curious and want to 

ask ad-hoc questions to use Power Q&A [20]. Power Q&A ena-

bles users to ask natural language queries about data and presents 

the results in intuitive visualizations. As a simple example, en-

tering the query “show the code review count by country by role 

in 2014 in Bing” results in the map visualization shown in Figure 

3. The experience is interactive and allows users to quickly ex-

plore the dataset and answer questions. As another example Fig-

ure 4 shows how easy it is to inquire about the size of the review 

(in terms of files and iterations), the feedback received, and 

whether those metrics are dependent on role.   

The natural language capabilities did require additional work 

to provide natural language synonyms for raw data, metrics, and 

dimensions to help the query processor, but this was a one-time 

cost for us that has been beneficial to users. 

More advanced consumption experiences are available to the 

analyst users who want to dive deeper in the data to derive new 

insights and metrics. 

The two primary data sources made available are the Analy-

sis Services Tabular cube (facts and dimensions) and the SQL 

Server relational data warehouse (raw review data).  Making cu-

rated data available in these two formats gives the analyst users 

a full spectrum of query and analysis tools that analysts are likely 

 

Fig. 2 Excel Power View Charts generated from CFA 

 

 

 

Fig. 3 Power Q&A showing reviews completed by country and role.  

Area of pie chart proportional to review count, green portion is by 

developers, orange is by testers. 



 

 

to already be comfortable with, such as Excel, Power BI, Tab-

leau, SQL Server Management Studio, and R, as well as the abil-

ity to write custom code in any language that has SQL drivers 

available (e.g. C#, Java, or Python).    

Another query interface developed for developers is a REST 

web API over the Analysis Services Tabular Model. The REST 

API makes it simple to include code review data into virtually 

any application with a simple JavaScript or web call.  This has 

enabled developers to build web sites with dashboards, incorpo-

rate data in issue trackers, and incorporate review data into tools 

such as Visual Studio. 

The lingua franca for data is SQL for data hounds and web 

APIs for app developers. Those less experienced with data 

analysis or wanting to easily explore data should have easy 

entry points. These should all be available from the begin-

ning. 

A. Challenges 

There are a number of challenges that CFA has had that we 

have had to overcome.  Here are some, along with our solutions. 

Branch agnostic data collection and analysis. 

Several version control systems are used within Microsoft. 

Most of them, with the exception of Git, are not branch agnostic. 

This means that the branch path is reported as a part of the file 

path, similar to the way branches are part of the directory struc-

ture in subversion. For example, consider a file foo.c in direc-

tory bar. Then the path of this file would be /bar/foo.c. Now, 

let us assume this file is part of the code base currently available 

in two branches, main and release.  Since CodeFlow records 

the full path of each file submitted in a review, a review with 

changes to /bar/foo.c on either of these branches would con-

tain either /main/bar/foo.c or /release/bar/foo.c. 

Even though these are in fact separate files, logically we might 

want to recognize them as one “entity” that is edited in two dif-

ferent branches. This example is trivial, but in practice, the por-

tion of the path that is part of the branch can be arbitrarily deep.  

For example, the creation of a branch rc_1 from the release 

branch would result in the creation of the file /re-
lease/rc_1/bar/foo.c.  Branching systems of such large-

scale software systems as Microsoft Windows or Microsoft Of-

fice tend to be extremely complex (sometimes up to seven levels 

deep) to allow parallel development by thousands of engineers. 

In theory, is it possible to obtain the list of all branches for all 

projects that use CodeFlow, which would make solving this 

problem fairly straightforward by simply comparing each path 

to all branches and looking for the longest common prefix.   

In practice, the number of projects and permissions issues 

make such a solution impractical.  Therefore, we had to imple-

ment heuristics that can take care of extracting the branch path 

from the file path. As we know that the complete path (i.e., 

branch path and file path) always starts with the branch path, we 

designed a heuristic to identify the branch portion of the path. If 

we do not extract enough of the path into the branch portion (e.g., 

if we split the aforementioned path into /release for branch 

path and /rc_1/bar/foo.c for the file path), we run into the 

problem that the same file in different branches will be seen as 

several distinct files. On the other hand, if we remove too many 

segments from the complete path (e.g., if we split the above path 

into /release/rc_1/bar for the branch portion and /foo.c 

as the file path) then two files that should be treated separately 

could be conflated. We did a thorough analysis of the false pos-

itive and false negatives rates for several segment length heuris-

tics and settled for an approach that increases the file path with 

the length of the complete path. This is necessary because the 

chance of having distinct files with the same file path parts in-

creases the deeper the directory structure is. We try to ensure a 

minimal length of two segments for the file path and a minimal 

branch path of one segment, given that the complete path is long 

enough. This simple approach outperformed many more com-

plex approaches, such as finding common prefixes of branch 

paths. Our validation against multiple product codebases 

showed that we correctly split over 97% of the paths. 

Linking multiple data sources. 

Even though CFA provides a rich set of data to explore code 

review behavior, we quickly found that users wanted to link code 

review data with other artefacts created during software devel-

opment. In particular, users wanted to “link” code reviews to the 

actual checkins of the code change in the software repository. 

Such linkages allow users to track, for example, how long it took 

from submitting a code change for review to the final checkin in 

the code base; a metric frequently asked for by development 

teams using code review.    

As reviews and checkins happen in completely different sys-

tems, there is no easy way to find this relationship.  We devel-

oped a machine learning model using logistic regression that 

uses features such as the proportion of file paths that a review 

and checkin have in common, the identities of the review author 

 

Fig. 4 Power Q&A showing average number of resolved threads of 

discussion (y-axis), average number of iterations (x-axis), average 

number of files per review (area of circle) by author role (color and 

label of circle) in Bing in 2015. 



 

 

and checkin author, the difference in time between code review 

signoff date and checkin date, and the textual similarity between 

review description and the commit message. Our model achieves 

precision and recall values above 95%, levels high enough that 

we have confidence making the review-check in linkage data 

available to developers.   

III. USE OF CODEFLOW ANALYTICS BY PRODUCT TEAMS 

As CFA has been available for two years, a number of teams 

have begun to use it.  In an effort to understand why and how 

they use it, what the impact has been, and how we can improve 

CFA, we contacted teams to ask them about their experiences. 

A. Methodology for interviews 

When CFA was initially created, we created two mailing 

lists, “CodeFlow Analytics Discussion” and “CodeFlow Analyt-

ics Support” where people interested in using and asking ques-

tions about CFA could send messages.  Traffic on these mailing 

lists give an indication of who is using CFA, what they are doing 

with it, and the difficulties they are running into. We solicited 

fifteen people who had previously participated in these mailing 

lists for a short fifteen minute interview and were able conduct 

nine interviews with a total of eleven people. 

The interviews were conducted online and were recorded so 

that we could refer to them later. Interviews lasted between fif-

teen and thirty minutes. We chose a semi-structured interview 

style as that allowed us to obtain information about our general 

areas of interest while still allowing flexibility to pursue inter-

esting avenues of discussion as the interviewee brought them up 

[21]. We asked about the following topics during our interviews: 

 The background and current role of the interviewee. 

 How the interviewee found CFA. 

 What the intended purpose of using CFA was. 

 How the interviewee used CFA. 

 What the impact of their work using CFA was. 

 What went well and what challenges they encountered 

using CFA. 

For analysis, we took notes during the interview and also lis-

tened to each interview again and took additional notes relative 

to each area of questioning.  We then met together to discuss our 

notes and common themes that emerged from the interviews.  

The following subsections contain a discussion of what we 

learned regarding the topics that we asked about. In cases where 

we provide quotes, we have removed disfluencies (e.g. “um” and 

“ah”). We stress that our goal was to understand how teams are 

using CFA, what they are accomplishing, what went well, and 

what their pain points are. This investigation was purely qualita-

tive and does not attempt to achieve statistical significance. 

B. Background and Role 

All of those interviewed were either managers of develop-

ment teams or individual developers, though one interviewee 

was a tester when he originally began using CFA. We observe 

that nearly all activity on the CFA mailing lists come from de-

velopment managers and developers, indicating that they are the 

most interested in using data regarding code reviews.  Very little 

discussion comes from program managers or upper manage-

ment. One interview was with a vendor (a contractor working 

for Microsoft), while the others were all full time Microsoft em-

ployees.  The projects that the interviewees currently work on 

are were intentionally diverse so as to give a broad perspective 

[22], and included Visio, Bing, OneNote, Xbox, Excel, Office 

Internationalization, Visual Studio Online, Microsoft Dynamics, 

and an internal IT ticketing system. This diverse set of teams 

gives us confidence that if broad consensus for certain topics in 

our interviews emerged, they are likely representative of CFA 

users. Geographically, most interviewees are in Redmond, WA, 

with four others coming from Brazil, North Carolina, and India 

(2). 

C. How is CodeFlow Analytics discovered? 

In a company as large and diverse as Microsoft, we have ob-

served that it is not always easy to find something, even if you 

know that it exists. Conversely, it is hard to publicize a new pro-

ject or tool to the right people across the entire company.  None-

theless, CFA has achieved a fairly broad adoption.  In an effort 

to understand how people came to know of CFA, we asked them 

how they found out about it. The answers we were given were 

diverse and there was no clear consensus that emerged. Some 

interviewees were told about CFA from friends or coworkers 

who had used or heard about it.  When we first made CFA avail-

able, we publicized it by making informal presentations to engi-

neering teams and making announcements on the “CodeFlow 

Users” mailing list. Some of the interviewees saw the announce-

ment at that time and “decided to try it out.”   

One finding that we had was that those people with a con-

crete purpose and a good idea of what they wanted to do were 

more deliberate in trying to find code review data when they dis-

covered CFA. They either asked on the CodeFlow users’ mailing 

list (we are on this list and respond to such requests), or they 

searched for code review data on CodeBox, an internal Source-

Forge-like site for hosting community side-projects at Mi-

crosoft, and found CFA. 

Just because you build it, doesn’t mean they will come. 

Matching the right producers to the right consumers is a 

problem of large organizations. People’s habits when looking 

for systems like CFA are diverse, therefore creators should 

pursue several avenues including informal talks, announce-

ments on mailing lists and forums, and web locations (internet 

and/or intranet) to promote their service.  

D. How is starting with CodeFlow Analytics experienced? 

Most people started with either the Excel template or with 

direct access to the database. We observed that most exploratory 

people used Excel, whereby people with a clear goal used either 

the database or Excel. Interestingly, those that used the direct 

database access tended to not use Excel.   

Two people said they started by looking at very simple things 

such as how many reviews and how many comments their team 

had recently completed so that they could get accustomed to the 

data. One aspect of this was developing trust in the system and 

the data. We observed a common pattern of starting simple, then 

moving on to more sophisticated queries, and finally pursing the 

actual goal. Several engineers mentioned that the CFA web page 

was very helpful in getting started.  



 

 

People felt that it was easy to get started. Several interview-

ees reported that they were up and running quickly, whether they 

used Excel or the database entry point. One interviewee told us 

"The vendor on my team just grabbed the thing and he got it 

working in, I think, the matter of an hour." We believe this has 

to do with the fact that CFA data can be accessed via multiple 

interfaces, allowing people to use whatever means is most com-

fortable and familiar to them. Many engineers, and especially the 

ones that used direct database access on the raw data, explained 

that the data schema was intuitive and easy to work with. As one 

person expressed it: “The way of organizing the data is very nat-

ural and self-explanatory. I don't need to read a lot of documents 

and I can understand most of them." We believe that this was the 

case because the raw collected data maps clearly to the concrete 

entities and activity in the CodeFlow tool, such as comments, 

files, and reviewers. 

A few engineers that used Excel as a basis for their investi-

gations and used the dimensional model which included the facts 

(computed metrics) and various dimensions as filters, mentioned 

that some of the names of facts were not self-explanatory, and 

that they would like a more explicit definition for the indicators 

they see. 

Provide a clear set of definitions for both the data and the 

metrics. For some users it will be essential, others can use it 

to gain confidence in their intuitive understanding.    

On the other hand, as people progressed with their analysis 

and moved on to answer specific questions or reach a specific 

goal, analysis was experienced as more difficult as questions 

about the data began to pop up and they were less confident. 

Several engineers expressed that translating their original ques-

tions into something that could be measured was hard. We de-

scribe these challenges in a dedicated challenges section (Sec-

tion III-H), as these were most often experienced after the first 

steps and analysis with CFA. In general, the support through di-

rect contact and mailing lists has been crucial to helping people 

handle challenges and deal with the learning curve of using a 

new system. Interviewees expressed that they appreciated the 

quick responses and had confidence in the community. One de-

veloper told us, "We work with Trevor closely and he helps a lot.  

Most of my requirements he takes care of so it's fine." 

Users are more likely to invest time in a solution if they know 

that the community is active and that they can get help when 

needed. 

E. Why and how is CodeFlow Analytics used? 

One of the most important questions we asked in interviews 

was why people chose to use CFA and how they were able to 

use it.  That is, what was the impetus to search for, find, and use 

code review data? The answers that we received were varied and 

many individuals actually provided multiple reasons for using it. 

In this subsection we have organized their responses into cate-

gories and provided descriptions and illustrations. 

Empirically Confirming Beliefs 

                                                           
1 http://research.microsoft.com/en-us/projects/thinkweek/ 

Six of the interviewees indicated that they had beliefs about 

their code review practices and how well they were working, but 

they wanted to have empirical evidence to support their anecdo-

tal experiences.  They believed that such evidence would provide 

support for taking actions to change code review practices in 

their teams 

For example, one development lead that works with two 

teams said that he felt like one team was much faster doing code 

reviews than the other, and since a change requires code review 

prior to checking in, their development speed had slowed down.  

He turned to CFA to confirm his suspicions and to help drive 

change by adopting the faster team’s practices.  In his words “So 

I wanted to just gather the data to back up my hypothesis and try 

to inflict the change.  Hey, this other team is getting things done 

much quicker - what are we doing here?” When the data sup-

ported his beliefs, he began trying to understand what the faster 

team was doing differently so that he could help the slower team. 

The manager of the Office internationalization team felt that 

the distributed nature of his team (some in Russia, some in Bra-

zil, etc.) was hurting productivity because it would take eight 

hours or longer for an issue to be discussed or resolved (e.g., one 

person would be sleeping while the other was working and vice 

versa). His team initially didn’t believe there was an issue, but 

they were more receptive once they saw the data. “So I just gath-

ered the data to see if I was the crazy one or if my team was off.” 

Education 

Five interviewees told us that they used data from code re-

views to find areas that they could improve through team educa-

tion. For example, one of the teams looks through all of the com-

ments made in code reviews every two weeks to look for patterns 

indicative of bad practices, poor understanding of the system, or 

incorrect use of tools.  If there are many questions about how a 

component works or comments point out errors in an author’s 

change to a component, then the topic of the next training session 

is teaching about that component. In one instance, they saw 

many comments about issues in a change that would have been 

easily caught by StyleCop, a tool to enforce style and con-

sistency rules that the team is supposed to use.  As a result, they 

conducted training on the use of StyleCop so that authors would 

use it prior to review, saving reviewers’ time. 

Another developer from Visio manually inspected thousands 

of comments and created a taxonomy of the types of things to 

look for during code review.  He developed a set of patterns and 

anti-patterns and wrote a paper for Microsoft’s ThinkWeek1, a 

forum for any employee to submit ideas around topics that im-

pact the future of the company. 

Another individual looked at behavior in code reviews to un-

derstand the communication style of the team. This helped un-

cover the team dynamics and how various members of the team 

provide and respond to feedback so that they could address prob-

lems. 

Reports and Dashboards 

Almost all of the subjects we interviewed used the data in 

CFA to generate reports of some kind, including dashboards.  

The audience for these fell into two main categories. The first 



 

 

category were reports intended for the actual teams or individu-

als participating in code review, so that they could see how they 

were doing and if they were meeting goals. One member of Bing 

created a dashboard web site where developers could go to see 

how they were doing with respect to various metrics of code re-

view. Others created dashboards to actively drive behavior like 

increased participation rates.   

The second category of reporting was reports that were gen-

erated for management. As one developer told us, there were 

monthly meetings with the leadership team where they would 

talk about how development was doing and what they could do 

to improve.  In these meetings he would “try to show the metrics 

to them and see if they can believe that's useful and move the 

metrics and take action to move the metrics.”    

We also found that interviewees fell into two camps regard-

ing how frequently they use CFA.  A few individuals mentioned 

that they really only used CFA once as a sanity check and don’t 

plan on using it regularly. For example, the Microsoft Dynamics 

Engineering Fundamentals team used CFA when they were do-

ing a self-evaluation of many of their software engineering pro-

cesses (build, test, code review, etc.) and found that compared to 

other areas, their code review was going quite well.  They said 

that they felt like code review was “going ok,” “but the CFA 

stats support that assertion and helped us determine that other 

things are more pressing.” They used this in conjunction with 

evidence from other sources to conclude that their effort at im-

provement would be better used in areas other than code review. 

Other teams are generating these reports on a regular basis 

(most often, teams indicated every two weeks or once per month) 

to monitor whether they are improving and “moving the metrics” 

(as one developer said) in the right direction, e.g., faster turna-

round times from submitting a code review to signoff. One team 

developed a “leaderboard” of three key code review metrics that 

is updated on a daily basis. 

Increase Code Review Use 

Four interviewees told us that they used CFA to measure and 

try to increase participation in code reviews. One developer 

worked in two teams in Office and created a dashboard to track 

participation of testers in the review process. "We have created 

a dashboard so that everybody [referring to testers] will see that 

and they'll basically be motivated to do more code reviews so 

that their participation is seen there." 

Another developer told us that a team within Bing had a goal 

of having all non-trivial changes signed-off in code review prior 

to check in. However, they were not tracking this measure.  

When they discovered CFA, they used it to examine how close 

they were to that goal and found that their sign-off rate was ap-

proximately 60%. They were able to point this out to upper man-

agement, in hopes of creating concrete goals. 

Still another developer used it to demonstrate to a contracted 

remote team that they were missing reviews that they could be 

participating in. 

Common Metrics 

Although CFA calculates and makes available over two hun-

dred metrics and filterable attributes, there were a few that 

emerged quite clearly as the most used among all people inter-

viewed. Teams are most interested in productivity, effective-

ness, and participation and they therefore have tried to identify 

metrics that best approximate these. 

Because most teams require code reviews to be completed 

before a change is checked into the source code repository (and 

subsequently available to everyone else on the team), the time 

taken to perform code reviews has an impact on the productivity 

of the team.  Every person that we talked to that used any of the 

metrics in CFA was interested in time to first response and/or 

time to completion.  Time to first response is a measure of how 

much time passes between when the author submits a code re-

view and when the first comment or sign-off from a reviewer 

occurs.  Time to completion is the time between when the author 

submits the review to when it has been marked as completed 

(usually indicating that the change can be checked in). 

Many also indicated that they were interested in participa-

tion.  The developer mentioned in the previous subsection was 

concerned that a contracted team was only reviewing a small 

proportion of the changes that they were invited to review.  A 

team in Excel felt that including testers in code review was im-

portant.  They and other teams measured this by examining the 

participation rate, the number of reviews that a person partici-

pates in (provides comments and/or signs off) divided by the to-

tal number of reviews that person is invited to. 

Lastly, teams want to make sure that reviews were actually 

having a positive effect and used a few different metrics to try to 

measure this. Average Comments for a reviewer is the number 

of comments that a reviewer makes per review.  If authors are 

not getting feedback for their changes then reviews aren’t having 

impact.  However, we have found (and many teams agree), that 

not all review comments are actually useful to authors [4].  As a 

result, some teams have also used Ever Resolved Comments 

which measures the number of comments in a review that are 

marked as being “resolved,” which is some indication that an 

action was taken and potentially an issue was fixed.  Two teams 

told us that they use both measures to assess the quality of feed-

back left by a reviewer, by computing the number of comments 

made by a reviewer that are eventually marked as resolved di-

vided by the total number comments. These are all proxy 

measures, and the most commonly asked-for metric is a measure 

of usefulness. As one development manager told us, they want 

to know, "Was this an impactful review or a useful comment on 

the review? […] Did it result in a change that wouldn't have 

been there before?"  

Development teams will use metrics that best approximate 

productivity, quality, and efficiency. Focus on metrics related 

to those measures instead on “interesting,” but ultimately 

less-actionable metrics. 

Metrics versus Data 

We observed that, due to the diverse goals that teams using 

CFA had, the types of information that they wanted were varied.  

Some only wanted metrics, as they were interested in reports or 

measuring themselves against quantitative goals.  Others wanted 

the ability to start with aggregate metrics such as average num-

ber of reviewers per review and then “drill down” to individual 

data points, especially outliers, for investigation.  As mentioned 



 

 

earlier in this section, a few teams only performed a manual anal-

ysis of individual code reviews, such as reading through code 

review comments for patterns. Thus, it was beneficial to provide 

both computed metrics and the raw data from which they were 

derived. 

Provide both the derived metrics and the raw data so that 

teams can quantitatively measure themselves, but also manu-

ally investigate the individual cases when desired. 

F. Impacts and Outcomes from using CodeFlow Analytics 

After having examined the reasons that various teams have 

used CFA, we also asked them about what outcomes they saw 

and what impact it had. 

Few teams actually had quantitative evidence supporting 

outcomes. One exception was Bing, where the percentage of 

checkins that had gone through code reviews rose from around 

60% to over 80% and some teams are now consistently achiev-

ing 100% sign-off. They credit both a focus from upper manage-

ment (as a result of reports from CFA) and visibility of sign-off 

metrics in web dashboards. 

Four teams indicated that they had seen an improvement by 

watching the metrics change over time (thought they did not pro-

vide us with actual numbers) and also observed attitude shifts in 

the team with regard to the importance of code review.  For ex-

ample, Visio did see a rise in tester participation once the team 

began monitoring and encouraging code review activity. 

For two teams, their use of CFA helped them decide that their 

effort would best be served in areas other than code review.  So 

while the outcome was that they did not change their practices, 

they were more confident in the decision to not change because 

it was backed by data.  

Several of those interviewed expressed a feeling that they be-

lieved it would have an impact, but that it was still too early to 

tell how much of an impact they would see.  Some were also 

worried about possible negative impacts. “I have no doubt that 

those analysis will lead to behavior changes, but I am concerned 

about that change,” said one, who was fearful that team mem-

bers might focus too much on numbers. 

As a few teams had education as their impetus to use CFA, a 

common outcome was improved training.  One interviewee trav-

elled to Asia to provide training on code review practices to a 

contracted team. Another team has provided training multiple 

times on weaknesses found through analysis of code reviews.  

Still another wrote an internal paper on reviewing practices. 

G. Challenges faced during use of CodeFlow Analytics  

This section details some of the challenges we observed dur-

ing the interviews. Some of these can be used to improve the 

CFA experience. Other challenges are inherent to analytics, and 

some really can't be fixed.  Nonetheless, users of analytics sys-

tems should be aware of them.  

Translating questions into metrics 

Several engineers had a hard time translating their original 

questions into metrics that they felt reflected their initial intent. 

Engineers explained that they had to decide exactly what the 

terms they used meant. For example, several participants men-

tioned that they wanted to measure response time and participa-

tion rate, but initially they had no concrete definition for how a 

response time should be measured. Is it the time to first com-

ment, or the time to first signoff? In general, people mentioned 

that they had to make tweaks to the metrics provided to make 

them useful for their context. They did indicate that the availa-

bility of predefined metrics in CFA supported them during the 

investigation and clarification process and provided a good start-

ing point for more detailed adjustments. 

Deriving proxy measures 

Some engineers explained that they had to create proxy 

measures, as the direct measure could not be implemented. For 

example, several engineers wanted to measure the duration from 

the creation of a code review to successful checkin of this code 

change in the code base. As CFA data contains only review data 

and does not have repository checkin information, such metrics 

cannot be obtained from the single database. In most cases, en-

gineers used the time to “signoff”, i.e., the event that peer re-

viewers deemed the code change as good enough for checkin, 

instead of checkin time. One engineer said:  "I was able to gather 

the data. […] I think I have to refine the query between what’s 

available and redefining my question to be a more correct one. 

But in the end […] I got close enough data so I was able to de-

liver the point to the team." 

No data is an island - The ability to “link” and join different 

data sources reflecting different parts of the development pro-

cess (e.g., review and testing practices) is important. We 

should enhance our solution space and make available link-

ages more accessible. 

Unawareness of data availability 

Some of the data points or metrics that engineers said were 

not in CFA were actually either directly accessible through the 

database interface or by querying the data in a certain way. For 

example, many engineers wanted to look at individual reviews 

and comments. Those are not surfaced in the Excel template, but 

they can be obtained with additional work. Some gave up on this 

task, while others looked manually through code reviews and 

comments by opening them via the normal code review dash-

board—a tedious manual task. One potential fix for this is in-

cluding low-level individual data in the example Excel template 

(e.g., last 10 recent comments). As we discuss in Section II, we 

do have data that allows users to “link” code reviews to checkins. 

However, only one participant discovered this data. Discovering 

such information should be easier for users, for example by dis-

cussing different usage scenarios on the CFA web site.  

Just because users use part of your system doesn’t mean they 

know about all of it.  Always consider discoverability. 

Interpretation of data  

Interpretation of analytics data is not always straight for-

ward. In our study, we observed problems with the ability to in-

terpret the data at hand.  For example, some people didn't know 

about “FYI” reviews.  This a practice used by some teams where 

they create reviews whose sole purpose is to inform others about 

changes and not to solicit feedback from reviewers. This affects 

participation rates, as team members “invited” on these reviews 



 

 

never actually take any action, other than looking at the change.  

Some interviewees unaware of this practice were surprised to see 

very low participation rates for some teams. Also, some activi-

ties that are recorded in CFA are not performed by humans, but 

are automated tool activities. For example, in one case an engi-

neer explained that most of the reviews contain comments that 

occur within the first few seconds of review creation (in this 

case, an automated system scans the change for common easy to 

detect errors). This prohibited them from looking at first re-

sponse time, as they were unable to separate the tool from human 

activity. As another example, CodeFlow allows engineers to 

“like” others’ review comments with a “like” button similar to 

Facebook. Nevertheless, some people explained they didn't 

know what the like button was and how to use it, nor did they 

know how they should interpret likes of comments. 

Using data without knowing the process that created it is 

fraught. Different teams may use the same tool in vastly dif-

ferent ways.  

Deriving and interpreting useful indicators 

Several engineers explained that some of the indicators were 

straightforward to derive and interpret (e.g., average number of 

reviews authored or reviewed), whereby more sophisticated in-

dicators were difficult to derive. The difficulty here did not lie in 

previously described points, but in the design and interpretation 

of the indicator itself: it was unclear whether the signal observed 

from the indicator is a good or a bad sign. One engineer formu-

lated it like this: "A lot of metrics we want to use like an inquiry 

methodology. It's like, 'why does the data look like that?'  We 

don't know if it's good or bad, but it would be good to take a look 

at that.  A perfect example is signoff time. If we look at signoff 

time, it could take two hours, it could take 2 days, it could take 

20 days, but which one is better, we don't know. It could be si-

gnoff one second blindly, which is not the behavior that we want 

to encourage, but a long signoff with a very simple code review 

is also something I don't want to encourage, so that's the kind of 

thing where we show some data, show some distribution and see 

the outliers and have people look at that." 

Many people understand that looking at metrics does not ex-

plain the causality for a phenomena or why they see a certain 

value. Several explained that they engaged in more thorough in-

vestigations for the outliers they saw or to understand why cer-

tain values occurred. In general, we observed that people were 

cautious about abusing metrics and wanted to avoid driving in-

correct behaviors. 

Getting to actionable outcomes 

Even though some people explained how they actively use 

the derived metrics and report to drive behavior, several ex-

plained that making the results actionable is difficult. This chal-

lenge is not specific to CFA, but applies in general to the analyt-

ics field [23]. On the other hand, during the interviews people 

explained that they had ideas of how to make this easier. First 

and foremost, they asked for a list of frequently asked questions 

and answers that detail common mistakes and also common 

uses/metrics/indicators. Another frequent suggestion was to 

make it easier for users to share their insights and metrics with 

others. 

Unfamiliar with analytics 

Not everybody that wanted to use the data was experienced 

or familiar with data analytics. Some people explained that dis-

tributions and percentiles were missing, and that they had a hard 

time deriving them themselves. Also, normalization of the data 

was experienced as a challenge. They said that having better pre-

defined Excel templates or other kinds of examples or queries 

would be really helpful. The optimal solution for them would be 

free analytics that didn't need any (or not much) customization. 

In general, if a user didn’t already have analysis skills, the re-

quired time investment to make CFA useful for their purpose 

was problematic, as the main responsibility of those using CFA 

was development and not data analysis. 

Explicit analysts that take over consulting functionality could 

help product teams with various challenges described, e.g., to 

derive meaningful indicators, drive desired process improve-

ments, or share insights and lessons learned from working 

with other teams. 

Access and permissions  

Gaining access and permissions to use the CFA data was a 

problem for some people. In addition, several explained that it 

was unclear how they could share the data with a broader set of 

people (e.g., their entire team or management) if they used the 

direct database access. How could the larger team use it?  In a 

few cases, people explained that they ran into permission issues 

when sharing the Excel files (e.g., others couldn't open them be-

cause they didn't have permissions). One person explained that 

initially he tried to access CFA, but because of permission prob-

lems, he gave up. As a result of early feedback from users, we 

modified our permissions policies to make access available to all 

Microsoft employees.  A few months later he found himself try-

ing again and by that time we had made the changes necessary, 

so he was able to access what he needed.  However, it is unclear 

how many potential users tried, failed, and are not aware of the 

access changes. 

Access and permission problems can quickly drive users 

away. Efforts should be taken to make the entry point as pain-

less as possible. 

 Not everyone is a data expert 

One engineer explained that upper management had prob-

lems with the visualization in Excel, as column names might be 

truncated, and they would not know how to enlarge the columns 

to see the whole metrics name. Further he explained that the re-

ports got so complex that he ran out of screen real estate (i.e., he 

could not add any more columns without creating the need for 

the users of his report to scroll within the Excel sheet). While 

this sounds trivial, this is actually a real problem. People should 

be able to create reports and pass them around to others that are 

not experts in analytics or our system. 

It should be easy for someone using your data and analytics 

platform create a report that a non-expert can read and un-

derstand. 

 



 

 

Requests for the future 

In the interviews, we also asked each participant what fea-

tures they felt were missing in CFA, or if they had future requests 

for what they would like to see implemented. Most of the engi-

neers had no direct or immediate requests for future features in 

CFA. On the other hand, a few mentioned issues that we also 

heard indirectly from others, during their explanations of their 

approaches - and especially the challenges - they faced (e.g., 

more pre-defined indicators, more fine granular data). One com-

mon request was an automatic way to classify and assess the use-

fulness of comments.  This is a separate research endeavor unto 

itself.  

IV. RESEARCH THAT LEVERAGES CODEFLOW ANALYTICS 

CodeFlow Analytics has not just enabled development teams 

to monitor themselves and find ways to improve; another im-

portant outcome from CFA has been that ability to use it as a 

platform for research.  In this section we survey studies and tools 

that are enabled by CFA.  Our purpose is not to discuss the tech-

niques or conclusions of each piece of research, but rather to in-

dicate the ways in which CFA is used to support. 

In 2012, we conducted a study on code review at Microsoft 

with the intent of understanding why teams were motivated to 

perform code reviews, what they hoped to get out of doing code 

reviews, and what the actual outcomes were [4].  We used CFA 

to identify over 1,000 participants for the study, as we were in-

terested in finding both developers and managers of teams that 

used CodeFlow to involve in observations, interviews and a 

broad survey.  We also manually inspected and categorized 570 

code review comments. 

In 2013, we performed an empirical study of code review 

practices at Microsoft, Google, and AMD in an effort to deter-

mine what differed and what was similar across these companies 

[1].  We used CFA to gather and analyze metrics from Microsoft, 

including the time between review submission by the author and 

first activity by a reviewer, the total time to complete a review, 

the number of reviews per month, the number of lines modified 

and files changed per review, the number of comments per re-

view, and distributions of the number of people participating per 

code review.  We found that there are a number of practices and 

characteristics of code review that are very consistent across all 

companies included in the study. 

Based on feedback from our earlier observations of code re-

views, and prior research of others that indicated that small co-

hesive changes are easier to understand and elicit higher quality 

feedback [24] [25], we developed ClusterChanges, a system for 

decomposing a change under review into relatively distinct “par-

titions” that can be reviewed independently [26].  We initially 

used CFA during the implementation of ClusterChanges so that 

we could test it on real reviews that fulfilled some criteria (e.g. 

at least four source files, made up mostly of C# source code).  

When it came time to perform a user study of ClusterChanges, 

we used CFA each morning to identify authors of reviews cre-

ated the previous day, so that the review was fresh in their mind, 

and contacted them to invite them to try ClusterChanges.  We 

also used CFA to randomly select 1000 reviews that fit our cri-

teria that we applied ClusterChanges to, to gather distributions 

of decomposition metrics. 

Allamanis et al. have been working on a line of research that 

applies natural language probability models to source code [27].  

We have collaborated with them in an effort to use these lan-

guage models to infer code conventions, find team coding con-

vention violations, and provide suggested changes to improve 

convention adherence [28].  As part of that work, we used CFA 

to examine 1000 code review comments made by reviewers in 

169 reviews, to see how often those reviews include feedback 

about following conventions, and found that 38% of them did. 

We recently embarked on a study to determine what makes 

code review comments useful to authors, what factors have a re-

lationship with comment usefulness, and if we could build a 

classifier to automatically determine if a comment is useful [29].  

We used features of code reviews exclusively from CFA, includ-

ing content of the comment, who made the comment, the size of 

the review, and where code changed in the review, to train and 

evaluate our classification model, which is able to achieve pre-

cision and recall rates between 85% and 90%.  We also investi-

gated the effects of factors such as developer experience, types 

of files being reviewed, and team membership on comment use-

fulness. 

One common challenge that many teams performing code 

review face is knowing who to include on the code review.  A 

system to recommend the best reviewer is a common request 

from teams at Microsoft and other companies [2].  We have de-

veloped such a review recommendation system, currently in pi-

lot phase, that recommends reviewers based on data from CFA. 

This considers the files a developer has authored and reviewed 

in the past, how many reviews a developer currently has out-

standing, and the developer’s median response time to reviews. 

The impact of the described research may not be as direct as 

the impact teams can have that use CFA themselves.  However, 

these studies do provide insight regarding the code review pro-

cess of developers at Microsoft, and the tools resulting from such 

studies are already beginning to help teams conduct code re-

views more efficiently and productively. 

V. CONCLUSION 

We have described our experiences designing, deploying, 

and supporting CodeFlow Analytics, a code review data analyt-

ics platform.  As we had hoped, teams across Microsoft have 

begun using this platform, but it has not been without a few chal-

lenges.  While we have been able to address some of them, such 

as dealing with branches and linking reviews to commits, we still 

need to improve in other areas.  Despite these, CFA has already 

had a positive (and in many cases, measurable) impact on devel-

opment teams.  It has also enabled research on many aspects of 

code review.  We hope that others will find our experience useful 

as they build their own data collection and analysis systems. 
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