

Lessons Learned from Building and Deploying

a Code Review Analytics Platform

Christian Bird, Trevor Carnahan, Michaela Greiler

Microsoft, Redmond, WA, USA

{cbird, trevorc, mgreiler}@microsoft.com

Abstract— Tool-based code review is growing in popularity and

has become a standard part of the development process at Mi-

crosoft. Adoption of these tools makes it possible to mine data

from code reviews and provide access to it. In this paper, we pre-

sent an experience report for CodeFlow Analytics, a system that

collects code review data, generates metrics from this data, and

provides a number of ways for development teams to access the

metrics and data. We discuss the design, design decisions and chal-

lenges that we encountered when building CodeFlow Analytics.

We contacted teams that used CodeFlow Analytics over the past

two years and discuss what prompted them to use CodeFlow Ana-

lytics, how they have used it, and what the impact has been. Fur-

ther, we survey research that has been enabled by using the Code-

Flow Analytics platform. We provide a series of lessons learned

from this experience to help others embarking on a task of building

an analytics platform in an enterprise setting.

I. INTRODUCTION

Code Review is an important practice at Microsoft and in

other companies and open source projects [1] [2], as it has been

shown to improve software quality, increase awareness, and dis-

seminate knowledge [3] [4]. While there has been active re-

search leveraging the data that results from development tasks

such as developing and checking in source code changes [5], ex-

ecuting builds [6], and fixing defects [7], until the past few years

[3] [8] [9] [10] code review remained a software engineering

task that was largely unexplored from a mining perspective.

Similar to these other software development tasks, tool-based

code review leaves behind traces of activity. As the MSR com-

munity has demonstrated, activity traces provide an opportunity

for data to be mined and analyzed, enabling teams to measure

themselves and derive insight [11].

Microsoft has developed an in-house code review tool,

CodeFlow, which has grown in popularity to become the pre-

dominant code review tool in all product groups. While Code-

Flow provides a mechanism to examine data about an individual

review, there is no convenient way to mine and analyze data

from code reviews. As development teams at Microsoft have

sought to become more data driven, there have been repeated

requests for the ability to easily aggregate, analyze, and monitor

data about their code review process. Two years ago, in an effort

to address this need, we developed and deployed a real-time

code review data gathering and metric computing platform

named CodeFlow Analytics (CFA). In the time since then, teams

across Microsoft have discovered, used, and begun to rely on

CFA as a source of information and insight. In this paper, we

describe our experiences with building, deploying, and support-

ing CodeFlow Analytics. Some aspects of the success of CFA

have come as a result of intentional design decisions early on,

while others were more the result of luck. At the same time, we

also made mistakes along the way and encountered unantici-

pated challenges. We have continually adapted CFA as review-

ing tools have evolved, as resources at Microsoft have changed,

and as teams have requested additional functionality.

We make the following contributions in this paper:

1. We describe the design of CodeFlow Analytics, includ-

ing the types of data that it collects, the metrics it com-

putes, and the ways by which users can access it.

2. We report insights such as adoption patterns, frequent

usage scenarios, and challenges during adoption from

interviews with nine development teams across Mi-

crosoft that have used CodeFlow Analytics.

3. We discuss the ways that CodeFlow Analytics has sup-

ported research in the code review space.

Our hope is that others can learn from our experience as they

attempt to build, deploy, and support software development data

platforms in their own organizations. To that end, herein we have

highlighted lessons learned from CFA that we believe are useful

outside of our own specific context. We have also shared the

reasons and ways that development teams have used CFA, as we

maintain that they are reflective of how teams think about using

data from their development processes. We stress that this is a

practice paper, not a research paper. As such, we will not be pre-

senting novel algorithms. Nor will we provide low level con-

crete details about our system, many of which are specific to Mi-

crosoft and would doubtless be of little use to most readers.

More details regarding data collection and storage of software

engineering data at Microsoft can be found in the work of Czer-

wonka et al. [12].

II. DESCRIPTION OF CODEFLOW ANALYTICS

Most teams at Microsoft have adopted code review as a

standard practice to manage software quality and aid team

awareness. The primary tool that teams use to conduct reviews

is CodeFlow, an in-house developed collaborative code review

tool that allows users to directly annotate source code and inter-

act with review participants in a live chat model [13]. The func-

tionality of CodeFlow is similar to other review tools such as

Google’s Mondrian [14], Facebook’s Phabricator [15] or open-

source Gerrit [16]. Developers who want their code to be re-

viewed create a package with the source code changes, select

reviewers, provide a description of the change to be reviewed,

and submit the review to the CodeFlow service. CodeFlow then

notifies the selected reviewers about the incoming task via email.

The developer that creates the code change and submits it for

review is the review Author, and those who receive the review,

provide feedback on the change, and can sign off, are termed the

Reviewers.

To understand the data that CFA collects, it is first important

to understand how CodeFlow is used. Once reviewers open a

CodeFlow review, they interact with it via a single desktop win-

dow (Figure 1). On the top left (A), they see the list of files

changed in the code change submitted for review, plus a “de-

scription.txt” file, which contains a textual explanation of the

change, written by the author. On bottom left, CodeFlow shows

the list of reviewers and their status (B). In this example we see

that Christian is the review author and Trevor, Ricky, Rock, and

Birendra are the reviewers (“CodeFlow Analytics Developers”

is a mailing list that the review is sent to, as well). Trevor and

Birendra have signed off on the changes while Ricky and Rock

have yet to do so. CodeFlow’s main view (C) shows the differ-

ences in the currently selected file. Both the reviewers and the

author can highlight portions of the code and add comments in-

line (F). These comments can start threads of discussion and are

the interaction points for the people involved in the review. Each

user viewing the same review in CodeFlow sees events as they

happen. Thus, if an author and reviewer are working on the re-

view at the same time, the communication is synchronous and

comment threads act similar to instant messaging. The com-

ments are persisted so that if they work at different times, the

communication becomes asynchronous. The bottom right pane

(D) shows the summary of all the comments in the review along

with their status (discussions begin in an “active” state and can

be set to “resolved,” “won’t fix,” “pending,” or “closed,” similar

to bug reports). The author can make changes based on review-

ers’ feedback and submit an updated change, called an iteration

in CodeFlow parlance. In the example above, there are five it-

erations of the change which can be viewed by clicking on the

tabs labelled “1” through “5” (E). Once the reviewers are con-

fident in the change and sign off, the author marks the review as

completed and typically checks his or her change into the pro-

ject’s source code repository.

CodeFlow’s simplicity, low barrier for feedback, and flexi-

ble support for all of Microsoft’s disparate engineering systems

(it currently supports Git, Team Foundation Server, Perforce,

and an internal source code management system) has driven its

adoption since its inception five years ago. In aggregate, Code-

Flow is used by engineers in every division to perform 100k to

150k code reviews every month, and 4.9 million code reviews to

date spanning every shipping product at Microsoft, as well as a

host of internal projects.

While CodeFlow has achieved widespread use, convenient

access to the raw data to drive deep understanding and aggregate

data to compute and track team, project, and organizational met-

rics around the code review process was missing. The data was

stored in xml files, one per review, on disk behind the middle-

tier services. The only access pattern was to retrieve a single

code review at a time.

CodeFlow Analytics addresses this problem by continually

monitoring activity on reviews, storing data about each review

when it becomes available, processing this data into metrics and

dimensions (described later), and making it easily available to

teams. The architecture for CodeFlow Analytics is a Kimball-

styled data warehouse [17] using business intelligence tools

from Microsoft SQL Server running on Microsoft Azure (Mi-

crosoft’s cloud computing platform [18]). For data acquisition,

CFA uses a Windows service to poll the central CodeFlow

server on a regular basis. We have found that activity on a review

occurs in bursts (as reviewers open a review and provide feed-

back throughout the change under review) and thus the service

polls for a list of the ID’s of added or modified reviews every ten

minutes, but waits to gather the data for a review until it has re-

mained dormant for at least ten minutes. This design decision

cuts down the number of requests for CodeFlow data from the

server and the number of updates to our database by over 40%,

a large performance boost. This raw review data is stored di-

rectly into a simple relational database. Every two hours, it is

processed into a dimensional model, or star schema [17], via a

T-SQL based “Extract, Transform, and Load” (ETL) process

[17], and then processed into an Analysis Services tabular cube

[19], an in-memory database that supports both traditional rela-

tional data storage (where raw review data is stored) as well as a

dimensional model. A dimensional model consists of facts

(computed metrics) and dimensions, which provide the ability to

slice or filter the facts. As a concrete example, one might be

interested in the average number of files in a review for reviews

conducted in 2014 in Windows. In this case, 2014 is a filter in

the time dimension and “Windows” is a filter in the product di-

mension, while average number of files is a computed fact based

on those dimensions. Using such a tabular model allows CFA

to be as responsive as we need, as an on-disk relational model

would be prohibitively expensive in terms of time (CFA not only

houses a large amount of data, but must be able to serve requests

from many teams across the company concurrently).

Entities in the raw database along with their attributes in-

clude: aspects of the code review (e.g., project, author, descrip-

tion), reviewers (e.g., their current status, when they were as-

Fig. 1 Screenshot of CodeFlow Review Tool

signed), the files in the review (e.g. file path, repository loca-

tion), feedback threads and comments (e.g., content of the com-

ments, who made them and when, where in each file the com-

ment is located), and related work items (references to check-

ins, tasks, and defect database entries). We also track when and

how each entity changes. For instance, the database may show

that a particular review currently has the status “completed,” but

it also contains data regarding prior states, so that one can deter-

mine that its previous status was “active” and find the specific

time that the status changed.

In the relational data warehouse, the data in the raw database

is merged with data from the Microsoft employee database, al-

lowing analysis by organizational hierarchy, role, or even geog-

raphy.

The output of processing is a set of fact tables containing

metrics and dimension tables, which in turn contain attributes

useful for filtering and slicing the metrics. Examples of the met-

rics include: time to first response, time to sign-off, time to com-

pletion, number of threads by final state, number of comments,

number of iterations, number of files, number of reviewers, num-

ber of sign-offs, as well as variants of these that have been re-

quested by teams. Examples of dimensions are projects, months,

and countries. Users can select the facts that they are interested

in, filter and slice by chosen dimensions, and then aggregate in

various ways. For example, a user may want to see the average

number of sign-offs in his or her project per month. In this case,

specifying the project dimension will filter reviews to the project

of interest, while slicing along the month dimension yields a

time series. The aggregation used is “average” on the fact “sign-

offs.” As another example, a developer might look at the 75th

percentile number of reviewers in his team. In total, CFA pro-

vides over 200 facts and dimensions. We provide the median,

average, and percentiles of the metrics to characterize distribu-

tions and identify outliers.

Data consumption scenarios are a point of emphasis for

CFA. One goal is to optimize the “time to insight,” or the time

between having a curious question about code reviews and get-

ting an empirical answer from the data. Another goal was to

broadly enable many ways to experience the data. We intention-

ally did not create our own user interface for CFA, instead

providing many ways to access the data so that customers could

use the data how they see fit and leverage it in their existing tools

For the casual user with no material data experience who

wants quick insights into his or her team’s code review process,

CFA provides Excel templates that query the cube and expose

standard metrics. Figure 2 shows such a template that displays

various metrics, including review outcome by project (top left),

average hours to first and last activity and signoff by week (top

right), participation (middle right), and feedback activity (bot-

tom right).

CFA also allows casual users who are curious and want to

ask ad-hoc questions to use Power Q&A [20]. Power Q&A ena-

bles users to ask natural language queries about data and presents

the results in intuitive visualizations. As a simple example, en-

tering the query “show the code review count by country by role

in 2014 in Bing” results in the map visualization shown in Figure

3. The experience is interactive and allows users to quickly ex-

plore the dataset and answer questions. As another example Fig-

ure 4 shows how easy it is to inquire about the size of the review

(in terms of files and iterations), the feedback received, and

whether those metrics are dependent on role.

The natural language capabilities did require additional work

to provide natural language synonyms for raw data, metrics, and

dimensions to help the query processor, but this was a one-time

cost for us that has been beneficial to users.

More advanced consumption experiences are available to the

analyst users who want to dive deeper in the data to derive new

insights and metrics.

The two primary data sources made available are the Analy-

sis Services Tabular cube (facts and dimensions) and the SQL

Server relational data warehouse (raw review data). Making cu-

rated data available in these two formats gives the analyst users

a full spectrum of query and analysis tools that analysts are likely

Fig. 2 Excel Power View Charts generated from CFA

Fig. 3 Power Q&A showing reviews completed by country and role.

Area of pie chart proportional to review count, green portion is by

developers, orange is by testers.

to already be comfortable with, such as Excel, Power BI, Tab-

leau, SQL Server Management Studio, and R, as well as the abil-

ity to write custom code in any language that has SQL drivers

available (e.g. C#, Java, or Python).

Another query interface developed for developers is a REST

web API over the Analysis Services Tabular Model. The REST

API makes it simple to include code review data into virtually

any application with a simple JavaScript or web call. This has

enabled developers to build web sites with dashboards, incorpo-

rate data in issue trackers, and incorporate review data into tools

such as Visual Studio.

The lingua franca for data is SQL for data hounds and web

APIs for app developers. Those less experienced with data

analysis or wanting to easily explore data should have easy

entry points. These should all be available from the begin-

ning.

A. Challenges

There are a number of challenges that CFA has had that we

have had to overcome. Here are some, along with our solutions.

Branch agnostic data collection and analysis.

Several version control systems are used within Microsoft.

Most of them, with the exception of Git, are not branch agnostic.

This means that the branch path is reported as a part of the file

path, similar to the way branches are part of the directory struc-

ture in subversion. For example, consider a file foo.c in direc-

tory bar. Then the path of this file would be /bar/foo.c. Now,

let us assume this file is part of the code base currently available

in two branches, main and release. Since CodeFlow records

the full path of each file submitted in a review, a review with

changes to /bar/foo.c on either of these branches would con-

tain either /main/bar/foo.c or /release/bar/foo.c.

Even though these are in fact separate files, logically we might

want to recognize them as one “entity” that is edited in two dif-

ferent branches. This example is trivial, but in practice, the por-

tion of the path that is part of the branch can be arbitrarily deep.

For example, the creation of a branch rc_1 from the release

branch would result in the creation of the file /re-
lease/rc_1/bar/foo.c. Branching systems of such large-

scale software systems as Microsoft Windows or Microsoft Of-

fice tend to be extremely complex (sometimes up to seven levels

deep) to allow parallel development by thousands of engineers.

In theory, is it possible to obtain the list of all branches for all

projects that use CodeFlow, which would make solving this

problem fairly straightforward by simply comparing each path

to all branches and looking for the longest common prefix.

In practice, the number of projects and permissions issues

make such a solution impractical. Therefore, we had to imple-

ment heuristics that can take care of extracting the branch path

from the file path. As we know that the complete path (i.e.,

branch path and file path) always starts with the branch path, we

designed a heuristic to identify the branch portion of the path. If

we do not extract enough of the path into the branch portion (e.g.,

if we split the aforementioned path into /release for branch

path and /rc_1/bar/foo.c for the file path), we run into the

problem that the same file in different branches will be seen as

several distinct files. On the other hand, if we remove too many

segments from the complete path (e.g., if we split the above path

into /release/rc_1/bar for the branch portion and /foo.c

as the file path) then two files that should be treated separately

could be conflated. We did a thorough analysis of the false pos-

itive and false negatives rates for several segment length heuris-

tics and settled for an approach that increases the file path with

the length of the complete path. This is necessary because the

chance of having distinct files with the same file path parts in-

creases the deeper the directory structure is. We try to ensure a

minimal length of two segments for the file path and a minimal

branch path of one segment, given that the complete path is long

enough. This simple approach outperformed many more com-

plex approaches, such as finding common prefixes of branch

paths. Our validation against multiple product codebases

showed that we correctly split over 97% of the paths.

Linking multiple data sources.

Even though CFA provides a rich set of data to explore code

review behavior, we quickly found that users wanted to link code

review data with other artefacts created during software devel-

opment. In particular, users wanted to “link” code reviews to the

actual checkins of the code change in the software repository.

Such linkages allow users to track, for example, how long it took

from submitting a code change for review to the final checkin in

the code base; a metric frequently asked for by development

teams using code review.

As reviews and checkins happen in completely different sys-

tems, there is no easy way to find this relationship. We devel-

oped a machine learning model using logistic regression that

uses features such as the proportion of file paths that a review

and checkin have in common, the identities of the review author

Fig. 4 Power Q&A showing average number of resolved threads of

discussion (y-axis), average number of iterations (x-axis), average

number of files per review (area of circle) by author role (color and

label of circle) in Bing in 2015.

and checkin author, the difference in time between code review

signoff date and checkin date, and the textual similarity between

review description and the commit message. Our model achieves

precision and recall values above 95%, levels high enough that

we have confidence making the review-check in linkage data

available to developers.

III. USE OF CODEFLOW ANALYTICS BY PRODUCT TEAMS

As CFA has been available for two years, a number of teams

have begun to use it. In an effort to understand why and how

they use it, what the impact has been, and how we can improve

CFA, we contacted teams to ask them about their experiences.

A. Methodology for interviews

When CFA was initially created, we created two mailing

lists, “CodeFlow Analytics Discussion” and “CodeFlow Analyt-

ics Support” where people interested in using and asking ques-

tions about CFA could send messages. Traffic on these mailing

lists give an indication of who is using CFA, what they are doing

with it, and the difficulties they are running into. We solicited

fifteen people who had previously participated in these mailing

lists for a short fifteen minute interview and were able conduct

nine interviews with a total of eleven people.

The interviews were conducted online and were recorded so

that we could refer to them later. Interviews lasted between fif-

teen and thirty minutes. We chose a semi-structured interview

style as that allowed us to obtain information about our general

areas of interest while still allowing flexibility to pursue inter-

esting avenues of discussion as the interviewee brought them up

[21]. We asked about the following topics during our interviews:

 The background and current role of the interviewee.

 How the interviewee found CFA.

 What the intended purpose of using CFA was.

 How the interviewee used CFA.

 What the impact of their work using CFA was.

 What went well and what challenges they encountered

using CFA.

For analysis, we took notes during the interview and also lis-

tened to each interview again and took additional notes relative

to each area of questioning. We then met together to discuss our

notes and common themes that emerged from the interviews.

The following subsections contain a discussion of what we

learned regarding the topics that we asked about. In cases where

we provide quotes, we have removed disfluencies (e.g. “um” and

“ah”). We stress that our goal was to understand how teams are

using CFA, what they are accomplishing, what went well, and

what their pain points are. This investigation was purely qualita-

tive and does not attempt to achieve statistical significance.

B. Background and Role

All of those interviewed were either managers of develop-

ment teams or individual developers, though one interviewee

was a tester when he originally began using CFA. We observe

that nearly all activity on the CFA mailing lists come from de-

velopment managers and developers, indicating that they are the

most interested in using data regarding code reviews. Very little

discussion comes from program managers or upper manage-

ment. One interview was with a vendor (a contractor working

for Microsoft), while the others were all full time Microsoft em-

ployees. The projects that the interviewees currently work on

are were intentionally diverse so as to give a broad perspective

[22], and included Visio, Bing, OneNote, Xbox, Excel, Office

Internationalization, Visual Studio Online, Microsoft Dynamics,

and an internal IT ticketing system. This diverse set of teams

gives us confidence that if broad consensus for certain topics in

our interviews emerged, they are likely representative of CFA

users. Geographically, most interviewees are in Redmond, WA,

with four others coming from Brazil, North Carolina, and India

(2).

C. How is CodeFlow Analytics discovered?

In a company as large and diverse as Microsoft, we have ob-

served that it is not always easy to find something, even if you

know that it exists. Conversely, it is hard to publicize a new pro-

ject or tool to the right people across the entire company. None-

theless, CFA has achieved a fairly broad adoption. In an effort

to understand how people came to know of CFA, we asked them

how they found out about it. The answers we were given were

diverse and there was no clear consensus that emerged. Some

interviewees were told about CFA from friends or coworkers

who had used or heard about it. When we first made CFA avail-

able, we publicized it by making informal presentations to engi-

neering teams and making announcements on the “CodeFlow

Users” mailing list. Some of the interviewees saw the announce-

ment at that time and “decided to try it out.”

One finding that we had was that those people with a con-

crete purpose and a good idea of what they wanted to do were

more deliberate in trying to find code review data when they dis-

covered CFA. They either asked on the CodeFlow users’ mailing

list (we are on this list and respond to such requests), or they

searched for code review data on CodeBox, an internal Source-

Forge-like site for hosting community side-projects at Mi-

crosoft, and found CFA.

Just because you build it, doesn’t mean they will come.

Matching the right producers to the right consumers is a

problem of large organizations. People’s habits when looking

for systems like CFA are diverse, therefore creators should

pursue several avenues including informal talks, announce-

ments on mailing lists and forums, and web locations (internet

and/or intranet) to promote their service.

D. How is starting with CodeFlow Analytics experienced?

Most people started with either the Excel template or with

direct access to the database. We observed that most exploratory

people used Excel, whereby people with a clear goal used either

the database or Excel. Interestingly, those that used the direct

database access tended to not use Excel.

Two people said they started by looking at very simple things

such as how many reviews and how many comments their team

had recently completed so that they could get accustomed to the

data. One aspect of this was developing trust in the system and

the data. We observed a common pattern of starting simple, then

moving on to more sophisticated queries, and finally pursing the

actual goal. Several engineers mentioned that the CFA web page

was very helpful in getting started.

People felt that it was easy to get started. Several interview-

ees reported that they were up and running quickly, whether they

used Excel or the database entry point. One interviewee told us

"The vendor on my team just grabbed the thing and he got it

working in, I think, the matter of an hour." We believe this has

to do with the fact that CFA data can be accessed via multiple

interfaces, allowing people to use whatever means is most com-

fortable and familiar to them. Many engineers, and especially the

ones that used direct database access on the raw data, explained

that the data schema was intuitive and easy to work with. As one

person expressed it: “The way of organizing the data is very nat-

ural and self-explanatory. I don't need to read a lot of documents

and I can understand most of them." We believe that this was the

case because the raw collected data maps clearly to the concrete

entities and activity in the CodeFlow tool, such as comments,

files, and reviewers.

A few engineers that used Excel as a basis for their investi-

gations and used the dimensional model which included the facts

(computed metrics) and various dimensions as filters, mentioned

that some of the names of facts were not self-explanatory, and

that they would like a more explicit definition for the indicators

they see.

Provide a clear set of definitions for both the data and the

metrics. For some users it will be essential, others can use it

to gain confidence in their intuitive understanding.

On the other hand, as people progressed with their analysis

and moved on to answer specific questions or reach a specific

goal, analysis was experienced as more difficult as questions

about the data began to pop up and they were less confident.

Several engineers expressed that translating their original ques-

tions into something that could be measured was hard. We de-

scribe these challenges in a dedicated challenges section (Sec-

tion III-H), as these were most often experienced after the first

steps and analysis with CFA. In general, the support through di-

rect contact and mailing lists has been crucial to helping people

handle challenges and deal with the learning curve of using a

new system. Interviewees expressed that they appreciated the

quick responses and had confidence in the community. One de-

veloper told us, "We work with Trevor closely and he helps a lot.

Most of my requirements he takes care of so it's fine."

Users are more likely to invest time in a solution if they know

that the community is active and that they can get help when

needed.

E. Why and how is CodeFlow Analytics used?

One of the most important questions we asked in interviews

was why people chose to use CFA and how they were able to

use it. That is, what was the impetus to search for, find, and use

code review data? The answers that we received were varied and

many individuals actually provided multiple reasons for using it.

In this subsection we have organized their responses into cate-

gories and provided descriptions and illustrations.

Empirically Confirming Beliefs

1 http://research.microsoft.com/en-us/projects/thinkweek/

Six of the interviewees indicated that they had beliefs about

their code review practices and how well they were working, but

they wanted to have empirical evidence to support their anecdo-

tal experiences. They believed that such evidence would provide

support for taking actions to change code review practices in

their teams

For example, one development lead that works with two

teams said that he felt like one team was much faster doing code

reviews than the other, and since a change requires code review

prior to checking in, their development speed had slowed down.

He turned to CFA to confirm his suspicions and to help drive

change by adopting the faster team’s practices. In his words “So

I wanted to just gather the data to back up my hypothesis and try

to inflict the change. Hey, this other team is getting things done

much quicker - what are we doing here?” When the data sup-

ported his beliefs, he began trying to understand what the faster

team was doing differently so that he could help the slower team.

The manager of the Office internationalization team felt that

the distributed nature of his team (some in Russia, some in Bra-

zil, etc.) was hurting productivity because it would take eight

hours or longer for an issue to be discussed or resolved (e.g., one

person would be sleeping while the other was working and vice

versa). His team initially didn’t believe there was an issue, but

they were more receptive once they saw the data. “So I just gath-

ered the data to see if I was the crazy one or if my team was off.”

Education

Five interviewees told us that they used data from code re-

views to find areas that they could improve through team educa-

tion. For example, one of the teams looks through all of the com-

ments made in code reviews every two weeks to look for patterns

indicative of bad practices, poor understanding of the system, or

incorrect use of tools. If there are many questions about how a

component works or comments point out errors in an author’s

change to a component, then the topic of the next training session

is teaching about that component. In one instance, they saw

many comments about issues in a change that would have been

easily caught by StyleCop, a tool to enforce style and con-

sistency rules that the team is supposed to use. As a result, they

conducted training on the use of StyleCop so that authors would

use it prior to review, saving reviewers’ time.

Another developer from Visio manually inspected thousands

of comments and created a taxonomy of the types of things to

look for during code review. He developed a set of patterns and

anti-patterns and wrote a paper for Microsoft’s ThinkWeek1, a

forum for any employee to submit ideas around topics that im-

pact the future of the company.

Another individual looked at behavior in code reviews to un-

derstand the communication style of the team. This helped un-

cover the team dynamics and how various members of the team

provide and respond to feedback so that they could address prob-

lems.

Reports and Dashboards

Almost all of the subjects we interviewed used the data in

CFA to generate reports of some kind, including dashboards.

The audience for these fell into two main categories. The first

category were reports intended for the actual teams or individu-

als participating in code review, so that they could see how they

were doing and if they were meeting goals. One member of Bing

created a dashboard web site where developers could go to see

how they were doing with respect to various metrics of code re-

view. Others created dashboards to actively drive behavior like

increased participation rates.

The second category of reporting was reports that were gen-

erated for management. As one developer told us, there were

monthly meetings with the leadership team where they would

talk about how development was doing and what they could do

to improve. In these meetings he would “try to show the metrics

to them and see if they can believe that's useful and move the

metrics and take action to move the metrics.”

We also found that interviewees fell into two camps regard-

ing how frequently they use CFA. A few individuals mentioned

that they really only used CFA once as a sanity check and don’t

plan on using it regularly. For example, the Microsoft Dynamics

Engineering Fundamentals team used CFA when they were do-

ing a self-evaluation of many of their software engineering pro-

cesses (build, test, code review, etc.) and found that compared to

other areas, their code review was going quite well. They said

that they felt like code review was “going ok,” “but the CFA

stats support that assertion and helped us determine that other

things are more pressing.” They used this in conjunction with

evidence from other sources to conclude that their effort at im-

provement would be better used in areas other than code review.

Other teams are generating these reports on a regular basis

(most often, teams indicated every two weeks or once per month)

to monitor whether they are improving and “moving the metrics”

(as one developer said) in the right direction, e.g., faster turna-

round times from submitting a code review to signoff. One team

developed a “leaderboard” of three key code review metrics that

is updated on a daily basis.

Increase Code Review Use

Four interviewees told us that they used CFA to measure and

try to increase participation in code reviews. One developer

worked in two teams in Office and created a dashboard to track

participation of testers in the review process. "We have created

a dashboard so that everybody [referring to testers] will see that

and they'll basically be motivated to do more code reviews so

that their participation is seen there."

Another developer told us that a team within Bing had a goal

of having all non-trivial changes signed-off in code review prior

to check in. However, they were not tracking this measure.

When they discovered CFA, they used it to examine how close

they were to that goal and found that their sign-off rate was ap-

proximately 60%. They were able to point this out to upper man-

agement, in hopes of creating concrete goals.

Still another developer used it to demonstrate to a contracted

remote team that they were missing reviews that they could be

participating in.

Common Metrics

Although CFA calculates and makes available over two hun-

dred metrics and filterable attributes, there were a few that

emerged quite clearly as the most used among all people inter-

viewed. Teams are most interested in productivity, effective-

ness, and participation and they therefore have tried to identify

metrics that best approximate these.

Because most teams require code reviews to be completed

before a change is checked into the source code repository (and

subsequently available to everyone else on the team), the time

taken to perform code reviews has an impact on the productivity

of the team. Every person that we talked to that used any of the

metrics in CFA was interested in time to first response and/or

time to completion. Time to first response is a measure of how

much time passes between when the author submits a code re-

view and when the first comment or sign-off from a reviewer

occurs. Time to completion is the time between when the author

submits the review to when it has been marked as completed

(usually indicating that the change can be checked in).

Many also indicated that they were interested in participa-

tion. The developer mentioned in the previous subsection was

concerned that a contracted team was only reviewing a small

proportion of the changes that they were invited to review. A

team in Excel felt that including testers in code review was im-

portant. They and other teams measured this by examining the

participation rate, the number of reviews that a person partici-

pates in (provides comments and/or signs off) divided by the to-

tal number of reviews that person is invited to.

Lastly, teams want to make sure that reviews were actually

having a positive effect and used a few different metrics to try to

measure this. Average Comments for a reviewer is the number

of comments that a reviewer makes per review. If authors are

not getting feedback for their changes then reviews aren’t having

impact. However, we have found (and many teams agree), that

not all review comments are actually useful to authors [4]. As a

result, some teams have also used Ever Resolved Comments

which measures the number of comments in a review that are

marked as being “resolved,” which is some indication that an

action was taken and potentially an issue was fixed. Two teams

told us that they use both measures to assess the quality of feed-

back left by a reviewer, by computing the number of comments

made by a reviewer that are eventually marked as resolved di-

vided by the total number comments. These are all proxy

measures, and the most commonly asked-for metric is a measure

of usefulness. As one development manager told us, they want

to know, "Was this an impactful review or a useful comment on

the review? […] Did it result in a change that wouldn't have

been there before?"

Development teams will use metrics that best approximate

productivity, quality, and efficiency. Focus on metrics related

to those measures instead on “interesting,” but ultimately

less-actionable metrics.

Metrics versus Data

We observed that, due to the diverse goals that teams using

CFA had, the types of information that they wanted were varied.

Some only wanted metrics, as they were interested in reports or

measuring themselves against quantitative goals. Others wanted

the ability to start with aggregate metrics such as average num-

ber of reviewers per review and then “drill down” to individual

data points, especially outliers, for investigation. As mentioned

earlier in this section, a few teams only performed a manual anal-

ysis of individual code reviews, such as reading through code

review comments for patterns. Thus, it was beneficial to provide

both computed metrics and the raw data from which they were

derived.

Provide both the derived metrics and the raw data so that

teams can quantitatively measure themselves, but also manu-

ally investigate the individual cases when desired.

F. Impacts and Outcomes from using CodeFlow Analytics

After having examined the reasons that various teams have

used CFA, we also asked them about what outcomes they saw

and what impact it had.

Few teams actually had quantitative evidence supporting

outcomes. One exception was Bing, where the percentage of

checkins that had gone through code reviews rose from around

60% to over 80% and some teams are now consistently achiev-

ing 100% sign-off. They credit both a focus from upper manage-

ment (as a result of reports from CFA) and visibility of sign-off

metrics in web dashboards.

Four teams indicated that they had seen an improvement by

watching the metrics change over time (thought they did not pro-

vide us with actual numbers) and also observed attitude shifts in

the team with regard to the importance of code review. For ex-

ample, Visio did see a rise in tester participation once the team

began monitoring and encouraging code review activity.

For two teams, their use of CFA helped them decide that their

effort would best be served in areas other than code review. So

while the outcome was that they did not change their practices,

they were more confident in the decision to not change because

it was backed by data.

Several of those interviewed expressed a feeling that they be-

lieved it would have an impact, but that it was still too early to

tell how much of an impact they would see. Some were also

worried about possible negative impacts. “I have no doubt that

those analysis will lead to behavior changes, but I am concerned

about that change,” said one, who was fearful that team mem-

bers might focus too much on numbers.

As a few teams had education as their impetus to use CFA, a

common outcome was improved training. One interviewee trav-

elled to Asia to provide training on code review practices to a

contracted team. Another team has provided training multiple

times on weaknesses found through analysis of code reviews.

Still another wrote an internal paper on reviewing practices.

G. Challenges faced during use of CodeFlow Analytics

This section details some of the challenges we observed dur-

ing the interviews. Some of these can be used to improve the

CFA experience. Other challenges are inherent to analytics, and

some really can't be fixed. Nonetheless, users of analytics sys-

tems should be aware of them.

Translating questions into metrics

Several engineers had a hard time translating their original

questions into metrics that they felt reflected their initial intent.

Engineers explained that they had to decide exactly what the

terms they used meant. For example, several participants men-

tioned that they wanted to measure response time and participa-

tion rate, but initially they had no concrete definition for how a

response time should be measured. Is it the time to first com-

ment, or the time to first signoff? In general, people mentioned

that they had to make tweaks to the metrics provided to make

them useful for their context. They did indicate that the availa-

bility of predefined metrics in CFA supported them during the

investigation and clarification process and provided a good start-

ing point for more detailed adjustments.

Deriving proxy measures

Some engineers explained that they had to create proxy

measures, as the direct measure could not be implemented. For

example, several engineers wanted to measure the duration from

the creation of a code review to successful checkin of this code

change in the code base. As CFA data contains only review data

and does not have repository checkin information, such metrics

cannot be obtained from the single database. In most cases, en-

gineers used the time to “signoff”, i.e., the event that peer re-

viewers deemed the code change as good enough for checkin,

instead of checkin time. One engineer said: "I was able to gather

the data. […] I think I have to refine the query between what’s

available and redefining my question to be a more correct one.

But in the end […] I got close enough data so I was able to de-

liver the point to the team."

No data is an island - The ability to “link” and join different

data sources reflecting different parts of the development pro-

cess (e.g., review and testing practices) is important. We

should enhance our solution space and make available link-

ages more accessible.

Unawareness of data availability

Some of the data points or metrics that engineers said were

not in CFA were actually either directly accessible through the

database interface or by querying the data in a certain way. For

example, many engineers wanted to look at individual reviews

and comments. Those are not surfaced in the Excel template, but

they can be obtained with additional work. Some gave up on this

task, while others looked manually through code reviews and

comments by opening them via the normal code review dash-

board—a tedious manual task. One potential fix for this is in-

cluding low-level individual data in the example Excel template

(e.g., last 10 recent comments). As we discuss in Section II, we

do have data that allows users to “link” code reviews to checkins.

However, only one participant discovered this data. Discovering

such information should be easier for users, for example by dis-

cussing different usage scenarios on the CFA web site.

Just because users use part of your system doesn’t mean they

know about all of it. Always consider discoverability.

Interpretation of data

Interpretation of analytics data is not always straight for-

ward. In our study, we observed problems with the ability to in-

terpret the data at hand. For example, some people didn't know

about “FYI” reviews. This a practice used by some teams where

they create reviews whose sole purpose is to inform others about

changes and not to solicit feedback from reviewers. This affects

participation rates, as team members “invited” on these reviews

never actually take any action, other than looking at the change.

Some interviewees unaware of this practice were surprised to see

very low participation rates for some teams. Also, some activi-

ties that are recorded in CFA are not performed by humans, but

are automated tool activities. For example, in one case an engi-

neer explained that most of the reviews contain comments that

occur within the first few seconds of review creation (in this

case, an automated system scans the change for common easy to

detect errors). This prohibited them from looking at first re-

sponse time, as they were unable to separate the tool from human

activity. As another example, CodeFlow allows engineers to

“like” others’ review comments with a “like” button similar to

Facebook. Nevertheless, some people explained they didn't

know what the like button was and how to use it, nor did they

know how they should interpret likes of comments.

Using data without knowing the process that created it is

fraught. Different teams may use the same tool in vastly dif-

ferent ways.

Deriving and interpreting useful indicators

Several engineers explained that some of the indicators were

straightforward to derive and interpret (e.g., average number of

reviews authored or reviewed), whereby more sophisticated in-

dicators were difficult to derive. The difficulty here did not lie in

previously described points, but in the design and interpretation

of the indicator itself: it was unclear whether the signal observed

from the indicator is a good or a bad sign. One engineer formu-

lated it like this: "A lot of metrics we want to use like an inquiry

methodology. It's like, 'why does the data look like that?' We

don't know if it's good or bad, but it would be good to take a look

at that. A perfect example is signoff time. If we look at signoff

time, it could take two hours, it could take 2 days, it could take

20 days, but which one is better, we don't know. It could be si-

gnoff one second blindly, which is not the behavior that we want

to encourage, but a long signoff with a very simple code review

is also something I don't want to encourage, so that's the kind of

thing where we show some data, show some distribution and see

the outliers and have people look at that."

Many people understand that looking at metrics does not ex-

plain the causality for a phenomena or why they see a certain

value. Several explained that they engaged in more thorough in-

vestigations for the outliers they saw or to understand why cer-

tain values occurred. In general, we observed that people were

cautious about abusing metrics and wanted to avoid driving in-

correct behaviors.

Getting to actionable outcomes

Even though some people explained how they actively use

the derived metrics and report to drive behavior, several ex-

plained that making the results actionable is difficult. This chal-

lenge is not specific to CFA, but applies in general to the analyt-

ics field [23]. On the other hand, during the interviews people

explained that they had ideas of how to make this easier. First

and foremost, they asked for a list of frequently asked questions

and answers that detail common mistakes and also common

uses/metrics/indicators. Another frequent suggestion was to

make it easier for users to share their insights and metrics with

others.

Unfamiliar with analytics

Not everybody that wanted to use the data was experienced

or familiar with data analytics. Some people explained that dis-

tributions and percentiles were missing, and that they had a hard

time deriving them themselves. Also, normalization of the data

was experienced as a challenge. They said that having better pre-

defined Excel templates or other kinds of examples or queries

would be really helpful. The optimal solution for them would be

free analytics that didn't need any (or not much) customization.

In general, if a user didn’t already have analysis skills, the re-

quired time investment to make CFA useful for their purpose

was problematic, as the main responsibility of those using CFA

was development and not data analysis.

Explicit analysts that take over consulting functionality could

help product teams with various challenges described, e.g., to

derive meaningful indicators, drive desired process improve-

ments, or share insights and lessons learned from working

with other teams.

Access and permissions

Gaining access and permissions to use the CFA data was a

problem for some people. In addition, several explained that it

was unclear how they could share the data with a broader set of

people (e.g., their entire team or management) if they used the

direct database access. How could the larger team use it? In a

few cases, people explained that they ran into permission issues

when sharing the Excel files (e.g., others couldn't open them be-

cause they didn't have permissions). One person explained that

initially he tried to access CFA, but because of permission prob-

lems, he gave up. As a result of early feedback from users, we

modified our permissions policies to make access available to all

Microsoft employees. A few months later he found himself try-

ing again and by that time we had made the changes necessary,

so he was able to access what he needed. However, it is unclear

how many potential users tried, failed, and are not aware of the

access changes.

Access and permission problems can quickly drive users

away. Efforts should be taken to make the entry point as pain-

less as possible.

 Not everyone is a data expert

One engineer explained that upper management had prob-

lems with the visualization in Excel, as column names might be

truncated, and they would not know how to enlarge the columns

to see the whole metrics name. Further he explained that the re-

ports got so complex that he ran out of screen real estate (i.e., he

could not add any more columns without creating the need for

the users of his report to scroll within the Excel sheet). While

this sounds trivial, this is actually a real problem. People should

be able to create reports and pass them around to others that are

not experts in analytics or our system.

It should be easy for someone using your data and analytics

platform create a report that a non-expert can read and un-

derstand.

Requests for the future

In the interviews, we also asked each participant what fea-

tures they felt were missing in CFA, or if they had future requests

for what they would like to see implemented. Most of the engi-

neers had no direct or immediate requests for future features in

CFA. On the other hand, a few mentioned issues that we also

heard indirectly from others, during their explanations of their

approaches - and especially the challenges - they faced (e.g.,

more pre-defined indicators, more fine granular data). One com-

mon request was an automatic way to classify and assess the use-

fulness of comments. This is a separate research endeavor unto

itself.

IV. RESEARCH THAT LEVERAGES CODEFLOW ANALYTICS

CodeFlow Analytics has not just enabled development teams

to monitor themselves and find ways to improve; another im-

portant outcome from CFA has been that ability to use it as a

platform for research. In this section we survey studies and tools

that are enabled by CFA. Our purpose is not to discuss the tech-

niques or conclusions of each piece of research, but rather to in-

dicate the ways in which CFA is used to support.

In 2012, we conducted a study on code review at Microsoft

with the intent of understanding why teams were motivated to

perform code reviews, what they hoped to get out of doing code

reviews, and what the actual outcomes were [4]. We used CFA

to identify over 1,000 participants for the study, as we were in-

terested in finding both developers and managers of teams that

used CodeFlow to involve in observations, interviews and a

broad survey. We also manually inspected and categorized 570

code review comments.

In 2013, we performed an empirical study of code review

practices at Microsoft, Google, and AMD in an effort to deter-

mine what differed and what was similar across these companies

[1]. We used CFA to gather and analyze metrics from Microsoft,

including the time between review submission by the author and

first activity by a reviewer, the total time to complete a review,

the number of reviews per month, the number of lines modified

and files changed per review, the number of comments per re-

view, and distributions of the number of people participating per

code review. We found that there are a number of practices and

characteristics of code review that are very consistent across all

companies included in the study.

Based on feedback from our earlier observations of code re-

views, and prior research of others that indicated that small co-

hesive changes are easier to understand and elicit higher quality

feedback [24] [25], we developed ClusterChanges, a system for

decomposing a change under review into relatively distinct “par-

titions” that can be reviewed independently [26]. We initially

used CFA during the implementation of ClusterChanges so that

we could test it on real reviews that fulfilled some criteria (e.g.

at least four source files, made up mostly of C# source code).

When it came time to perform a user study of ClusterChanges,

we used CFA each morning to identify authors of reviews cre-

ated the previous day, so that the review was fresh in their mind,

and contacted them to invite them to try ClusterChanges. We

also used CFA to randomly select 1000 reviews that fit our cri-

teria that we applied ClusterChanges to, to gather distributions

of decomposition metrics.

Allamanis et al. have been working on a line of research that

applies natural language probability models to source code [27].

We have collaborated with them in an effort to use these lan-

guage models to infer code conventions, find team coding con-

vention violations, and provide suggested changes to improve

convention adherence [28]. As part of that work, we used CFA

to examine 1000 code review comments made by reviewers in

169 reviews, to see how often those reviews include feedback

about following conventions, and found that 38% of them did.

We recently embarked on a study to determine what makes

code review comments useful to authors, what factors have a re-

lationship with comment usefulness, and if we could build a

classifier to automatically determine if a comment is useful [29].

We used features of code reviews exclusively from CFA, includ-

ing content of the comment, who made the comment, the size of

the review, and where code changed in the review, to train and

evaluate our classification model, which is able to achieve pre-

cision and recall rates between 85% and 90%. We also investi-

gated the effects of factors such as developer experience, types

of files being reviewed, and team membership on comment use-

fulness.

One common challenge that many teams performing code

review face is knowing who to include on the code review. A

system to recommend the best reviewer is a common request

from teams at Microsoft and other companies [2]. We have de-

veloped such a review recommendation system, currently in pi-

lot phase, that recommends reviewers based on data from CFA.

This considers the files a developer has authored and reviewed

in the past, how many reviews a developer currently has out-

standing, and the developer’s median response time to reviews.

The impact of the described research may not be as direct as

the impact teams can have that use CFA themselves. However,

these studies do provide insight regarding the code review pro-

cess of developers at Microsoft, and the tools resulting from such

studies are already beginning to help teams conduct code re-

views more efficiently and productively.

V. CONCLUSION

We have described our experiences designing, deploying,

and supporting CodeFlow Analytics, a code review data analyt-

ics platform. As we had hoped, teams across Microsoft have

begun using this platform, but it has not been without a few chal-

lenges. While we have been able to address some of them, such

as dealing with branches and linking reviews to commits, we still

need to improve in other areas. Despite these, CFA has already

had a positive (and in many cases, measurable) impact on devel-

opment teams. It has also enabled research on many aspects of

code review. We hope that others will find our experience useful

as they build their own data collection and analysis systems.

VI. ACKNOWLEDGMENT

We would like to thank the developers of CodeFlow as well

as the development teams that let us interview them about their

experience with CodeFlow Analytics.

VII. REFERENCES

[1] P. C. Rigby and C. Bird, "Convergent Software Peer Review

Practices," in Proceedings of the the joint meeting of the

European Software Engineering Conference and the ACM

SIGSOFT Symposium on The Foundations of Software

Engineering (ESEC/FSE), 2013.

[2] V. Balachandran, "Reducing human effort and improving

quality in peer code reviews using automatic static analysis

and reviewer recommendation," in Proceedings of the 2013

International Conference on Software Engineering, 2013.

[3] S. McIntosh, Y. Kamei, B. Adams and A. E. Hassan, "The

impact of code review coverage and code review

participation on software quality: A case study of the qt, vtk,

and itk projects," in Proceedings of the 11th Working

Conference on Mining Software Repositories, 2014.

[4] A. Bacchelli and C. Bird, "Expectations, Outcomes, and

Challenges of Modern Code Review," in Proceedings of the

35th International Conference on Software Engineering,

2013.

[5] T. Ball, J.-M. Kim, A. A. Porter and H. P. Siy, "If your

version control system could talk," in ICSE Workshop on

Process Modelling and Empirical Studies of Software

Engineering, 1997.

[6] T. Wolf, A. Schroter, D. Damian and T. Nguyen, "Predicting

build failures using social network analysis on developer

communication," in Proceedings of the 31st International

Conference on Software Engineering, 2009.

[7] N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj and

T. Zimmermann, "What makes a good bug report?," in

Proceedings of the 16th ACM SIGSOFT International

Symposium on Foundations of software engineering, 2008.

[8] A. Meneely, A. C. R. Tejeda, B. Spates, S. Trudeau, D.

Neuberger, K. Whitlock, C. Ketant and K. Davis, "An

empirical investigation of socio-technical code review

metrics and security vulnerabilities," in Proceedings of the

6th International Workshop on Social Software Engineering,

2014.

[9] M. Beller, A. Bacchelli, A. Zaidman and E. Juergens,

"Modern code reviews in open-source projects: which

problems do they fix?," in Proceedings of the 11th Working

Conference on Mining Software Repositories, 2014.

[10] P. Thongtanunam, R. G. Kula, A. E. C. Cruz, N. Yoshida and

H. Iida, "Improving code review effectiveness through

reviewer recommendations," in Proceedings of the 7th

International Workshop on Cooperative and Human Aspects

of Software Engineering, 2014.

[11] K. Herzig and A. Zeller, "Mining Your Own Evidence,"

O'Reilly Media, Inc., 2010.

[12] J. Czerwonka, N. Nagappan, W. Schulte and B. Murphy,

"CODEMINE: Building a software development data

analytics platform at Microsoft," Software, IEEE, vol. 30, pp.

64--71, 2013.

[13] "A Bar, an Idea, and a Garage: The Story of CodeFlow,"

Microsoft, 5 Janjuary 2012. [Online]. Available:

http://news.microsoft.com/2012/01/05/a-bar-an-idea-and-a-

garage-the-story-of-codeflow/. [Accessed February 2015].

[14] N. Kennedy, "How Google does web-based code reviews

with Mondrian.," 2006.

[15] A. Tsotsis, "Meet Phabricator, The Witty Code Review Tool

Built Inside Facebook.," 2006.

[16] Wikipedia, "Gerrit (software)," 2012.

[17] R. Kimball and M. Ross, The Data Warehouse Toolkit: The

Definitive Guide to Dimensional Modeling, Wiley, 2013.

[18] "Microsoft Azure," Microsoft, [Online]. Available:

http://azure.microsoft.com/en-us/overview/what-is-azure/.

[Accessed February 2015].

[19] "Analysis Services," Microsoft, [Online]. Available:

https://msdn.microsoft.com/en-us/library/bb522607.aspx.

[Accessed February 2015].

[20] "Demystifying Power BI Q&A," 27 Feb 2014. [Online].

Available:

http://blogs.msdn.com/b/powerbi/archive/2014/02/27/demyst

ifying-power-bi-q-amp-a-part-1.aspx.

[21] T. Wengraf, Qualitative research interviewing: Biographic

narrative and semi-structured methods, Sage, 2001.

[22] M. Nagappan, T. Zimmermann and C. Bird, "Diversity in

Software Engineering Research," in Proceedings of the the

joint meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on The

Foundations of Software Engineering (ESEC/FSE), 2013.

[23] T. H. Davenport, J. G. Harris and R. Morison, Analytics at

work: Smarter decisions, better results, Harvard Business

Press, 2010.

[24] Y. Tao, Y. Dang, T. Xie, D. Zhang and S. Kim, "How do

software engineers understand code changes?: an exploratory

study in industry," in Proceedings of the ACM SIGSOFT

20th International Symposium on the Foundations of

Software Engineering, 2012.

[25] P. C. Rigby, B. Cleary, F. Painchaud, M. Storey and D. M.

German, "Contemporary peer review in action: Lessons from

open source development," Software, IEEE, vol. 29, pp. 56--

61, 2012.

[26] M. Barnett, C. Bird, J. Brunet and S. Lahiri, "Helping

Developers Help Themselves: Automatic Decomposition of

Code Review Changesets," Proceedings of 37th IEEE/ACM

International Conference on Software Engineering, 2015.

[27] M. Allamanis and C. Sutton, "Mining source code

repositories at massive scale using language modeling," in

Mining Software Repositories (MSR), 2013 10th IEEE

Working Conference on, 2013.

[28] M. Allamanis, E. T. Barr, C. Bird and C. Sutton, "Learning

Natural Coding Conventions," in Proceedings of the 22nd

International Symposium on Foundations of Software

Engineering, 2014.

[29] A. Bosu, M. Greiler and C. Bird, "Characteristics of Useful

Code Reviews: An Empirical Study," Submitted to the

International Conference on Mining Software Repositories,

2015.

