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ABSTRACT 
Branching plays a major role in the development process of large 
software. Branches provide isolation so that multiple pieces of the 
software system can be modified in parallel without affecting each 
other during times of instability. However, branching has its own 
issues. The need to move code across branches introduces addi-
tional overhead and branch use can lead to integration failures due 
to conflicts or unseen dependencies. Although branches are used 
extensively in commercial and open source development projects, 
the effects that different branch strategies have on software quali-
ty are not yet well understood. In this paper, we present the first 
empirical study that evaluates and quantifies the relationship be-
tween software quality and various aspects of the branch structure 
used in a software project. We examine Windows Vista and Win-
dows 7 and compare components that have different branch char-
acteristics to quantify differences in quality. We also examine the 
effectiveness of two branching strategies – branching according to 
the software architecture versus branching according to organiza-
tional structure. We find that, indeed, branching does have an 
effect on software quality and that misalignment of branching 
structure and organizational structure is associated with higher 
post-release failure rates. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – Process Metrics 

Keywords 
Branching, Quality 

1.  INTRODUCTION 
Coordination is key as software development becomes a more and 
more complex enterprise.  Software projects today range in size 
up to tens of millions of lines of code, are developed by teams of 
thousands of developers, and may support multiple releases at 
different stages of development.  Managing all of the changes 
being made to a codebase is an increasingly difficult task. Soft-
ware Configuration Management Systems (SCMs, also known as 
version control systems) are important tools, as they are the pri-
mary mechanism used to coordinate the sharing of actual code 
artifacts, the key output in software products. In large-scale soft-
ware projects where all changes are immediately seen by all de-
velopers (i.e. one “line” of development), changes can lead to a 
number of significant problems: single changes can cause build 
breaks and halt the progress of the entire project; piecemeal 
changes to interoperating components can lead to incompatibility, 

and finding the change that causes a test to fail can almost be 
impossible, especially for long-running test suites. While some of 
these effects are present in smaller projects too, the impact is in-
tensified in large projects; a build break that affects a team of five 
developers is not as serious as a break that affects thousands of 
developers. 

One of the key features of modern SCMs that helps to mitigate 
these problems associated with the complexity of software pro-
jects is the support of parallel lines of development known as 
branches [1].  A branch is a virtual workspace created from a 
particular state of the source code that a developer or team of 
developers can make changes to without affecting others working 
outside the branch. Branches provide isolation from other chang-
es; for example a build break on a branch affects only the teams 
working on that branch and not the entire development team.  The 
use of branches within a project has a profound effect on the pro-
cesses used during development, from the build processes to re-
lease management [1].  

However, like any development tool, branching needs to be lever-
aged correctly in order to be most effective [2]. Teams may 
choose to work in branches to avoid dealing with the work of 
other teams, but some coordination is required.  Branches may 
introduce a false sense of safety, as changes made in different 
branches will eventually be merged together (either manually or 
automatically), and bugs may arise if these changes are syntacti-
cally or semantically incompatible.  The process of moving code 
between branches represents additional error-prone work for de-
velopers.  A complex branching structure may hinder the devel-
opment process, making it hard to track code changes, causing 
build failures (due to unexpected dependencies), increasing the 
chances of introducing regression failures and making it difficult 
to maintain the code base [3].  In fact, some claim that branching 
is the most problematic area of SCM [4]. Therefore, it is im-
portant to understand how branching structures affect software 
systems and impact their quality.  We note that these outcomes are 
not caused by the branches themselves, but rather by the process-
es and coordination required when employing the use of branches. 

However, the relationship between branching structure and quality 
remains an important open question. With more projects in open 
source [5] and commercial contexts [6] employing branches in 
their development, understanding the impact of branching is in-
creasingly relevant. To address this, we perform an empirical 
study to examine the effect of branch structure on software quality 
in Windows. We find that many aspects of branch use do indeed 
affect software quality. 

As a prescriptive step, we also examine how to best align branch-
ing structures with other aspects of a software project.  Specifical-
ly, we compare the branch structure with the organization of the 
teams within the project and also with the architecture of the 
software itself to determine which is the better branching strategy. 
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To the best of our knowledge, this is the first study to empirically 
examine the effect of branching on software quality. We make the 
following contributions in this study: 

1. We define metrics to capture the effects of branching on 
software quality. 

2. We perform an empirical study and quantify the effects of 
branching on software quality in two releases of a large in-
dustrial project. 

3. We examine the effect of mismatch between the branching 
structure and organizational and architectural structures. 

4. We provide recommendations of branch use for projects that 
heavily utilize branching. 

The rest of the paper is organized as follows. We first survey prior 
work in the area of SCM branching.  We then provide terminolo-
gy and describe our data collection process.  Next, we discuss our 
hypotheses regarding branching strategies and define the metrics 
used to evaluate these hypotheses.  Finally, we present the results 
of our analysis, discuss implications of these results, and make 
recommendations based on our findings. 

2. RELATED WORK 
A number of researchers have studied the role of branching within 
SCMs. Midha [7] outlined key characteristics of SCMs and their 
use at Lucent Technologies and iterated the need of future SCMs 
to facilitate the creation and support of multiple branches (referred 
to in the paper as streams). Walrad and Strom [1] investigated 
tradeoffs between several branching models and suggested the use 
of a branch-by-purpose model which calls for branches to be cre-
ated only when there is a specific purpose (e.g. when software is 
released).  Wingerd and Seiwald [4] provided best practices for 
SCMs and suggested branching only when necessary, such as 
when incompatible policies arise (e.g. when developers have dif-
ferent commit privileges), branching late to make sure as many 
changes as possible are propagated, and using branching instead 
of code freezing to allow parallel development. Appleton et al. [2] 
and Buffenbarger and Gruell [8] studied and proposed branching 
patterns and best practices to use in order to achieve efficient 
parallel development.  

Perry et al. [9] perform an empirical study to investigate and un-
derstand the nature of large scale parallel development and find 
that multiple levels of parallelism exists (i.e. at the release, MR 
and IRM levels), that as much as 12.5% of all deltas may be in 
conflict and up to 50% of files are changed by multiple developers 
in the same release. Premraj et al. [3] examined the branching and 

merging in an industrial agile development setting and found that 
the roles of branchers (e.g. architects, developers, or testers) and 
the type of files (e.g. header files or configuration files) they work 
on dictates the cost of merging. They also presented findings that 
suggested that programs should be structured not only by the 
software architecture, but also by the team structure, so that com-
munication about prevention and unnecessary branching could be 
possible. Bird et al. [6] examined a theory that branches are creat-
ed to accomplish a goal and groups of developers making changes 
on a branch represent virtual teams with a common goal. Then, 
they examined the relationships between files changed in a branch 
and the people who make changes to the branch and found sup-
port for their theory in Windows Vista and Windows 7. 
The prior work has focused primarily on providing best practices 
for branching or studying the role of branching in large teams. It 
is important to note that most of these best practices suggested are 
based on experience and theoretical scenarios. In this work, we 
complement the previous work by empirically studying and eval-
uating the effects of branching on software quality. In addition, 
our study proposes and validates metrics that capture general 
characteristics of branches (i.e. we do not constrain ourselves to 
one branching model). For example, our findings regarding 
branch depth can be used to compare two different branching 
models based on their depth characteristics.  

3. TERMINOLOGY AND METRICS 
3.1 Terminology 
We start by introducing relevant terminology used in this paper. 
The Windows Vista and Windows 7 teams heavily relied on 
branching to manage their large code base. Generally speaking, 
branches are created based on a specific structure that is agreed 
upon within the development teams. As the project evolves, more 
branches are created to support development. 

 To maintain order in the branching structure, related branches are 
grouped into branch families. A branch family is a subtree rooted 
off of the trunk (a.k.a. main, the release branch). For example, all 
of the branches used to build tools are grouped into one ‘tools’ 
branch family. In some cases, a branch may be added to a branch 
family in order to provide further isolation. In such cases, the new 
branch is said to be one level “deeper” in the branch tree. Figure 1 
shows an example of two branch families and the different branch 
depths. In our study, we use the notion of branch depth as the 
measure of how deep a branch is from the main branch.  Once a 
change is checked in on a branch at depth n, it is merged into the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Example branch structure 
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parent branch at depth n-1, and eventually is merged into the trunk 
(level 0). 
To differentiate between development and branching activity, we 
classify changes into two types: changes to the actual code, which 
we call development changes (add, edit and delete operations) and 
changes which move and merge code between branches, which 
we call branching changes. In our context, a branch change is a 
change that copies or integrates (also known as merges) a file 
change from one branch to another. These two categories of 
changes are fundamentally different, as modifying code and mov-
ing code require different skillsets and pose different types of risk 
(e.g. implementation errors vs. integration errors).  In practice, 
these two types of changes are performed by contributors that 
have different roles and even different job titles within the project.  

3.2 Data Collection 
To conduct our study, we leveraged data from two releases of one 
of the largest projects at Microsoft, Windows.  Windows is com-
posed of thousands of executable files (.exe), shared libraries (.dll) 
and drivers (.sys), which we refer to as binaries. We collected 
historical development data for each binary in Windows Vista and 
7 from the release of Windows Server 2003 to the release of Win-
dows 7. We chose to perform our analysis at the binary level be-
cause failure data is collected and reported at this level at Mi-
crosoft and we have observed cases where a failure caused by a 
change to one source file for a binary was fixed in a different 
source file for the same binary. We decided to perform our case 
study on Windows Vista and 7 because they are two large releases 
that have a rich development history and heavily use branches. 

We collected a number of different metrics for each component. 
To gather the metrics for each component, we leveraged the 
commit histories and software failure data of Windows Vista and 
Windows 7. Each change in the repository contains the change 
author, the change date, a change log message, the source files 
modified by the change, the branch and branch family of each 
source file, the type of change (e.g. development or branching) 
and the purpose of the change (e.g. bug fix or enhancement). We 
used a mapping of source files to binaries in order to collect the 
different metrics at the component level. 

As an indicator of software quality, we used the number of post-
release failures per binary. Both versions of Windows have been 
released for multiple years and have an installation base in the 
hundreds of millions. Most defects are found quickly and the re-
port rate falls off dramatically after the first year, indicating that 
our results are unlikely to change with time. Various code metrics, 
such as churn, complexity and size metrics were also gathered 
from the source code repositories and build process for each com-
ponent. We use the code metrics in our models as control varia-
bles since they are known to also relate to failures [10]. We detail 
all of the metrics calculated from our data in the next section. 
Prior research has shown that when characteristics such as size 
and complexity are not considered, they may affect the validity of 
other software metrics [11]. 

As part of our study examines the relationship between branching 
structure and organizational structure, we gathered snapshots of 
the Windows organizational hierarchy (who reports to whom as 
well as job titles) over the course of Windows Vista and 7 devel-
opment. 
Lastly, the binaries within Windows are logically partitioned into 
systems, subsystems, areas, and (in some cases) subareas.  For 
instance, an mp3 decoding library may be in the audio codec area 
of the audio subsystem within the multimedia system. We use this 

hierarchical breakdown for both releases of Windows as the sys-
tem architecture and use it to determine how well branches span 
architectural boundaries. 

4. RESEARCH QUESTIONS 
Our high level research question is “How much and in what ways 
does branching affect software quality?”  To answer this question, 
we evaluate quality at the component level and the branch level 
through the use of a number of measures of branch use.  In this 
section we present the testable hypotheses that we evaluate as well 
as the rationale that underlies each of these hypotheses and the 
metrics that we use to quantify different aspects of branch use. 
Each hypothesis is related to the research question in a different 
way and has different implications for software teams. 
Our hypotheses come from discussions with developers, manag-
ers, and other stakeholders in Windows and other projects at Mi-
crosoft.  They have indicated that it is just as valuable to know 
which branching characteristics (i.e. metrics) do not have a rela-
tionship with software failures as those that do; both inform 
stakeholders’ decisions and practices. 

4.1 Effects on Component Quality 
One goal of our research is to examine the effects of branching on 
software quality. Based on discussions with developers we expect 
that overly complex branching structures negatively impact the 
quality of a software system. Since software components that are 
developed in more complex branching structures require more 
process overhead in terms of branching and integrating activity as 
well as more coordination, we expect more opportunities for error 
and that these components will have more post-release failures. 
Therefore, we focus our study on three factors that we believe 
measure the complexity of a branching structure, namely – branch 
activity, branch scatter and branch depth. 
H1. Branch Activity: Software components with high branching 
activity have more failures. 
Branches are meant to provide a level of isolation for develop-
ment teams to work on parts of the code base without having to 
worry about affecting others. However, this level of isolation 
comes at the cost of having to resolve integration conflicts when 
changes on these branches are finally merged back. Integration 
changes are risk-prone because a) the developer merging the code 
may not be the developer that made the code changes (and thus 
may lack key knowledge), b) the changes represented in a merge 
are often aggregated and are therefore large and widespread, c) 
the integration is often temporally distant from the development 
changes themselves, and d) developers may rely on the invalid 
assumption that lack of syntactic conflicts implies a lack of se-
mantic conflicts or issues [12]. Therefore, we expect higher levels 
of branching activity to lead to more post-release failures since 
higher activity requires more integration. We use the branching 
activity metric to evaluate this hypothesis. 

Branching Activity – is defined as a ratio, the number of branch-
ing changes divided by the number of development changes, per 
component. We use the ratio instead of simply using the number 
of branching changes since components that have many develop-
ment changes are more likely to have more branching changes as 
well (we control for total number of changes by using a churn 
metrics in our models). We use the branching activity metric to 
evaluate our first hypothesis (H1) that more branching activity 
reduces software quality. 

H2a. Branch Scatter: Software components spread across many 
branch families have more failures. 



In addition to the hypothesis that higher levels of branching activi-
ty may lead to more failures, we also hypothesize based on dis-
cussions with developers, that components that have changes 
scattered across different branch families will experience more 
integration failures. The intuition is that software components that 
are spread across many branch families have changes that will not 
integrate until they reach the main branch and will thus happen in 
larger batches and later in the development cycle.  Furthermore, 
teams working in different branch families are typically organiza-
tionally farther apart and have disparate tasks.  Prior research has 
shown that in such cases, awareness is lowered, coordination 
breakdowns occur more often, and failures result [13] [14].  This 
measure is different from the branching activity metric. A soft-
ware component may have high branching activity but only be 
modified in two branches that are in a single branch family (i.e., it 
keeps going back and forth). In this case, the branch scatter would 
be low.  We use the branch scatter metric to evaluate this hy-
pothesis. 

Branching Scatter – is defined as the ratio of unique branch fam-
ilies that a component is in divided by the number of development 
changes. Again, we use the ratio instead of using the number of 
branch families that a component touches, to control for the fact 
that components that have more development changes are more 
likely to be scattered across branch families. We use the branch-
ing scatter metrics to evaluate our hypothesis (H2a) that higher 
levels of branch scatter reduce software quality.  

H2b. Branch Scatter: Software components that are equally 
developed across multiple branch families have more failures. 

In addition to simple branch scatter, we examine the effect of the 
proportion of scatter across branch families. The intuition is that a 
component may need to be changed in different branch families; 
however the majority of the changes to the component should be 
made mainly within a single branch family. If a component is 
developed equally across many branch families, then there is more 
room for missed dependencies and conflicts. We use the branch 
scatter entropy metric to validate this hypothesis. 

Branch Scatter Entropy – is defined as the entropy of the scatter 
of the changes to a component across branch families. In certain 
cases, a component may need to be shared across different fami-
lies. The intuition is that if a component is changed equally across 
the different branch families, this is worse than having a compo-
nent change mainly in one branch family and lightly changed in 
the others. For example, a component may need to be modified in 
two branch families, however, if 95% of its changes happen in 
one branch family and only 5% in the other that is much better 
than having 50% of its changes in each branch family. We use 
Shannon Entropy [15] to capture this effect of distribution (e.g. 
[16], [17]). Entropy is defined as ! ! = − (!! ∗ !"#!!!)!

!!! , 
where !! ≥ 0,∀!!! ∈ 1,2,… ,! and !! = 1!

!!! . Maximal entro-
py is achieved when all elements in a distribution, P have the 
same probability of occurrence (i.e. !! = ! !! ,∀!!! ∈ 1, 2,… ,!). In 
contrast, minimal entropy is achieved if one element !!  in the 
distribution, P has probability of occurrence 1 (i.e. !! = 1) and all 
remaining elements in P have a probability of occurrence 0 (i.e. 
∀!! ≠ !, !! = 0).   Since some components are changed in a dif-
ferent number of branch families compared to others, we normal-
ize by dividing the entropy value by !"#!!, where m is the num-
ber of branch families containing changes to that component. 

To illustrate our intuition, we use the example shown in Figure 1. 
Foo.dll and bar.dll both have equal number of changes (depicted 
by the solid and hollow dots on the branches). Three of the four 

changes to foo.dll are in branch family A.  Therefore, developers 
working on the branches in branch family A are more likely to be 
aware of the other changes to foo.dll. On the other hand, bar.dll 
has two changes in branch family A and another two changes in 
branch family B. Therefore, it is more difficult for the developers 
working on the branches in the two branch families to be aware of 
all the changes to bar.dll, possibly causing incompatible changes, 
leading to a higher number of failures. In this example, foo.dll has 
lower branch scatter entropy value than bar.dll. 

H3a. Branch depth: Software components developed primarily 
in deeper branches have more failures. 

In addition to measuring the branching activity and frequency, 
software components that are developed in deeper branches are 
more isolated and must “travel” further to a release branch.  Thus, 
they have a higher likelihood of conflicts upon integration to the 
release branches. To evaluate these claims, we use the branch 
depth metrics to examine whether branch depth has an effect on 
the quality of a component. We use the low and high branch 
depth metrics to validate this hypothesis. 

Branching Depth (Low, Medium, High) – is defined as the ratio 
of development changes to a component in low depth branches, 
medium depth branches and high depth branches. The choice for 
using three categories rather than using a continuous measure 
maintains confidentiality at Microsoft and also allows for general-
ity; a branch structure of any depth can be easily binned into these 
categories. Furthermore, this allows for a non-monotonic relation-
ship between depth and failure rates.  We use the branch depth 
metrics to evaluate our hypothesis (H3a) that development at 
deeper branches reduces software quality. In the example, figure 
1, foo.dll has 50% of its changes at low depth branches (i.e. 
branches in depth 1) and 50% of its changes at medium depth 
branches (i.e. branch at depth 2). 
H3b. Branch depth: Software components that are developed 
evenly across low, medium and high depth branches have more 
failures. 

Similar to the proportion of branch scatter across multiple branch 
families hypothesis, we also examine whether components that 
are mainly developed in one depth level have better quality than 
components that are equally developed at all depth levels. We use 
the branch depth entropy metric to validate this hypothesis. 

Branch Depth Entropy – is defined as the entropy of the changes 
at each depth level (low, medium, and high).  This is in an effort 
to determine whether changing components evenly at different 
depth levels (high depth entropy) is better or worse (in terms of 
software quality) than a component that changes primarily in one 
depth level (low depth entropy).  
Since the depth of the branch reflects its purpose (e.g. core func-
tionality is often developed at lower levels), being distributed 
across different depth levels may lead to confusion in the purpose 
of the component. Using the example in Figure 1, foo.dll has 50% 
of its changes at low branch depth and 50% of its changes at me-
dium branch depth, whereas bar.dll has all of its changes in medi-
um depth branches. In this example, foo.dll may be harder to work 
with since it does not clearly reside in any one depth level. We use 
the branch depth entropy metric to evaluate our hypothesis (H3b) 
that even distribution across branch depths reduces software quali-
ty. Since different components are changed in a different number 
of branch depths compared to others, we normalize by dividing 
the entropy value by log2(m), where m is the number of branch 
depths containing changes to that component. 



4.2 Architectural and Organizational        
Congruence 
In the previous section, we examined topological characteristics 
of the relationships between changes to components on branches 
and post-release failures.  An equally important question is how 
the branching structure should align with the architecture of the 
system being developed and the organization of the teams devel-
oping the system. According to Conway’s Law [18], in an ideal 
setting the decomposition of the system into subsystems and sub-
systems into components would match the division of the devel-
opers into teams.  In practice, due to cross-cutting concerns, archi-
tectural coupling, and external organizational factors such as ge-
ography [19], pre-existing organizational structures, and organiza-
tional churn [20], there is rarely perfect congruence between sys-
tem architecture and organizational structure. Thus, a branching 
structure can match organizational structure at the cost of span-
ning subsystem and component boundaries, or it may closely align 
with the system architecture and cross-cut the organization. 

The decision is not clear. Prior work suggests that components 
with changes spanning organizations increase failures [13].  How-
ever, cross-cutting concerns – functionality requiring changes that 
span system architecture -- also lead to failures [21]. 

Therefore, in an effort to provide actionable results to software 
teams to assist them to decide on effective branching strategies, 
we examine the effect of aligning the branching structure to archi-
tectural or organizational structure on branch quality.  This leads 
to two competing hypotheses: 

H4a. Branching according to architectural structure: Branches 
with higher architectural mismatch have more failures. 

One strategy to follow when creating branches is to dedicate one 
branch per component. Doing so, allows software components to 
be developed in isolation. However, in certain cases multiple 
components are modified in a single branch, causing branches to 
cross-cut the architecture (i.e., architectural mismatch). We expect 
branches that include work on multiple components to have more 
failures. 

Archictectural Mismatch – is the number of individual systems, 
subsystems, areas, components and subcomponents (forming a 
hierarchy) that are affected by the changes on a branch.  We expect 
that a branch that contains only changes to one subsystem have 
fewer failures than a branch that changes many. 

H4b. Branching according to organizational structure: 
Branches with higher organizational mismatch have more failures. 

In many cases multiple teams need to coordinate when developing 
a software component. Therefore, having the branching structure 
match the organizational structure may be ideal. We expect that 
branches that are contributed to from multiple organizations (i.e., 
organizational mismatch) have more failures. 

To answer the aforementioned question, we measure the effect 
that architectural and organization mismatch has on branch 
quality. To measure architectural and organizational mismatch of 
the branch, we define the following metrics: 

Organizational Mismatch – includes the number of managers, 
development leads, and engineers (counted and used in our models 
separately) that make changes to files on the branch. The number 
of engineers that work in a branch serve to represent the size of the 
group working in a branch.  However, each team has one 
development lead and a number of leads report to one development 
manager.  Thus, each lead and each manager is indicative of 

additional teams working in a branch.  We expect a branch with 
twenty engineers, six leads, and two managers to have more 
failures than a branch with twenty engineers, one lead, and one 
manager because the former spans organizational structure. 

We quantify branch quality by mapping components (and their 
post-release failures) to the branches they were changed on. Using 
a technique similar to the approach used by Ostrand et al. to 
calculate the failure ratios of developers [22], we use the ratio of a 
component’s changes on a branch (analogous to changes made by 
a developer in Ostrand’s approach) to map post-release failures to 
that specific branch. For example, assume that a component A had 
8 post-release failures and that A had a total of 20 development 
changes, 15 changes on branch B1 and 5 changes on branch B2. 
We map  6 (!"!" ∗ 8 =6) failures to branch B1 and 2 ( !!" ∗ 8 =2)  
failures to B2.  
These metrics enable us to study the effect of mismatch on branch 
quality. As before, we build linear regression models and use the 
goodness-of-fit measure to compare which of architectural or 
organizational mismatch better explain branch failures.  We also 
report direction and magnitude of the relationship to quality (de-
rived from regression coefficients). 

4.3 Analysis Techniques and Statistical Mod-
eling 
We use multiple linear regression models to study the effect of 
branching on software quality.  

Linear regression models are generally used in empirical studies 
to model an outcome of a response variable (e.g. model the num-
ber of post-release failures) or to model the relationship between 
an observed phenomena (represented by the model independent 
variables) and an observed outcome (represented as the dependent 
variable). In this paper, we use linear regression models to achieve 
the latter, to study the relationship. Prediction is not the aim of 
this paper. In particular, we use linear regression to examine the 
relationship of one or more of the branching metrics with software 
quality, while controlling for code and process metrics.  
 The independent variables in our linear regression models are the 
branching activity, scatter and depth metrics; the dependent varia-
ble is the number of post-release failures. All of our measure-
ments are performed at the software component level. 

One of the assumptions of linear regression is that the residuals 
must be normally distributed.  We observed that, similar to many 
other software metrics, our control variables and some branch 
metrics here highly skewed, leading to non-normality of residuals.  
To alleviate this problem, we used a log transformation on these 
metrics with high skew and/or kurtosis values. 

 As our evaluation criteria, we examine the statistical significance, 
magnitude, and direction of the variable’s contribution in the 
model.  In addition, similar to previous work (e.g. [23]) we use 
model fit (variance explained, also known as adjusted R2) as eval-
uation as well. We begin by building a base model, which con-
tains our control variables, and record the adjusted R2. Then, we 
incrementally add one variable at a time and measure the im-
provement in adjusted R2.  

We employed Variance Inflation Factor (VIF) analysis to measure 
the level of multicollinearity between independent variables [24] 
and removed highly correlated variables from the linear regression 
models, i.e. any variables that had a VIF value above 10, as rec-
ommended by Kutner et al. [24]. To test for statistical 



significance, we performed ANOVA analysis on the models and 
report the p-value of the independent variables.  

5. CASE STUDY RESULTS 
We now present the results of our case studies on Windows Vista 
and Windows 7. We build linear regression models that model the 
number of post-release failures and examine whether or not add-
ing branching metrics improves the model fit. For each version of 
Windows, we built five models. We start by building a base mod-
el with the control metrics, which in our case are churn, complexi-
ty, size, the number of files and the number of development 
changes to a software component. Then, we build an additional 
four models where we incrementally add the branch activity, 
branch scatter, branch depth metrics, and branch families, respec-
tively.  
Tables 1 and 2 present the results of our analysis. Arrows (↑ and 
↓) are used to denote direction of the effect, a ↑ denotes a positive 
effect and a ↓ denotes a negative effect. The model fit (R2) of each 
model is shown in the last row of the tables. A log transformation 
was applied to some metrics, indicated in the left column, as dis-
cussed earlier. In all cases the effects were statistically significant 
with a p<0.01. 

The base models provide a model fit of 72% and 17% for Win-
dows Vista and Windows 7, respectively. The lower model fit for 
Windows 7 is likely due to the fact that Windows 7 had both few-
er post-release defects and less variance in post-release defects 
across binaries. Adding the branch activity metric to the base 
model improved model fit to 75% for Windows Vista and 18% for 
Windows 7. The model fit is further increased to 77% when the 
branch scatter metrics are added Windows Vista and 19% for 
Windows 7. Branch depth metrics added a fractional (less than 
0.5%) improvement to model fit in Windows Vista and did not 
add to the model fit in Windows 7. These model fit values are in 
the same range as prior work on software quality that achieves 
model fits values between 22-33% deviance explained [25]. In all 
cases, we found one or more of the metrics in each metric catego-
ry (i.e., activity, distribution or depth), except for the case of depth 
metrics in Windows 7 to be statistically significant and improve 
model fit. 

Furthermore, we divided the changes based on the branch families 
they were in. The purpose of doing so was to study whether cer-
tain branch families are more risky than others. The results are 
shown in the last column of Tables 1 and 2. Since the sum of the 
changes in each branch family is equal to the number of develop-
ment changes, we cannot include both metrics in the model. 
Therefore, we remove the number of development changes from 
the model and add the number of changes in each branch family, 
labeled as Branch Groups in the tables. We see that using the 
branch families improves the model fit to be 79% for Windows 
Vista and 36% for Windows 7. This is a large improvement, sug-
gesting that changes in certain branch families leads to more fail-
ures compared to other branch families.  One explanation for the 
considerable improvement in model fit in Windows 7 compared to 
Vista is the fact that Windows 7 had more branch families than 
Windows Vista. Thus branch families provide more discrimina-
tion in Windows 7. 

5.1 Quantifying the Effect of Branching on 
Software Quality  
Although model fit is traditionally used to evaluate linear regres-
sion models, its importance depends on the context in which it is 
evaluated. Since our base models were fairly robust (providing a 
model fit of 72% for Windows Vista for example), we did not 
expect a large improvement in model fit. Our primary goal was 
determining which measures had a statistically significant rela-
tionship with post-release failures. 
Having identified the statistically significant metrics, we are inter-
ested in quantifying the relationship of these metrics on post-
release failures. For example, we would like to be able to quantify 
the increase in post-release failures if branching activity increased 
by 10%. Quantifying the effect is of primary importance to practi-
tioners because it helps them better understand - how and by how 
much – their branching practices impact their software quality. 
Quantifying the effect allows practitioners to put a cost on the 
impact of their branching practices (e.g. mapping an increase of 
10% in failures to dollars lost) and argue for process change, if 
needed.  
To practically quantify effect, we study each metric in isolation. 
We do so by using the fitted model and setting all the metrics 

  Base Model Model 2 Model 3 Model 4 Model 5 

log(Size) ↑ ↑ ↑ ↑ ↑ 

log(Churn) ↑ ↑ ↑ ↑ ↑ 

log(Complexity) - - - - - 

log(Dev. Changes) ↑ ↑ ↑ ↑ - 

log(No. Files) ↑ ↑ ↑ ↑ ↑ 

Branch Activity 
 

↑ ↑ ↑ ↑ 

log(Branch Scatter) 
  

↑ - - 

Branch Scatter Entropy  
 

↑ ↑ ↑ 

Low Branch Depth 
   

↑ ↑ 

log(High Branch Depth) 
  

- - 

Branch Depth Entropy 
   

↓ ↓ 

Branch Groups 
    

↑ 

R2 72% 75% 77% 77% 79% 

Table 1: Post-release failures model for Vista. Arrows indicate effect on failures.  Table 3 shows 
magnitude of effects. 



other than the metric of interest to their median values. Then, we 
vary the metric we are interested in studying the effect of, from its 
minimum to its maximum value and observe the change in the 
projected number of post-release failures. To put the in-
crease/decrease of effect into perspective, we normalize the effect 
of each metric, by its effect at the median value. The direction of 
the effect can be positive or negative. A positive direction indi-
cates that an increase in the metric causes an increase in post-
release failures. A negative direction indicates that an increase in 
a metric leads to less post-release failures. 

We illustrate with an example in Figure 2 where we plot the 
change in effect for the branch activity metric in Windows Vista. 
The x-axis shows the change in the value of the metric from its 
minimum to its maximum value. The y-axis shows the change in 
the amount of projected post-release failures, normalized by the 
median. We also plot the 95% confidence interval, shown by the 
dashed lines. At 100% on the y-axis represents the modeled num-
ber of post-release failures when branch activity is at its median 

value (and all other metrics in the model are also set to their me-
dian). Decreasing the branch activity metric to its minimum value 
would reduce the amount of failures to 85% (± 2.9%) of the value 
observed at the median. If branch activity was at its maximum 
value, we expect an increase of up to 59% (± 11%) more failures.  
Figure 3 shows a similar graph, depicting the effects of branch 
scatter entropy in Windows 7. 

 Table 3 summarizes the effects of all metrics at their minimum 
and maximum values (values below 100% indicate decreases in 
failures, values above, increases). We find that for Windows 
Vista, branch activity, branch scatter and low branch depth have 
the biggest effect, increasing the amount of post-release failures 
by up to 59%. Branch scatter entropy and depth entropy have a 
moderate effect. In Windows 7, we find that branch activity and 
branch scatter entropy both have a large effect (up to 70%), how-
ever they also have wide variation. 
The majority of the metrics have a positive relationship with post-
release failures, except for the entropy metrics, which have a neg-

  Base Model Model 2 Model 3 Model 4 Model 5 

log(Size) ↑ ↑ ↑ ↑ ↑ 

log(Churn) ↑ ↑ ↑ ↑ ↑ 

log(Complexity) ↑ ↑ ↑ ↑ ↑ 

log(Dev. Changes) ↑ ↑ ↑ ↑ - 

log(No. Files) ↑ ↑ ↑ ↑ ↑ 

Branch Activity 

 
↑ ↑ ↑ ↑ 

log(Branch Scatter) 
  

- - - 

Branch Scatter Entropy  

  
↓ ↓ ↓ 

Low Branch Depth 
   

- - 

log(High Branch Depth) 

   
- - 

Branch Depth Entropy 
   

- - 

Branch Groups 

    
↑ 

R2 17% 18% 19% 19% 36% 

Table 2. Post-release failure models for Windows 7. Arrows indicate effect on failures. Table 3 shows 
magnitude of effects. 

Figure 3: Effect of branch scatter entropy on post-release 
failures in Windows 7 

 
Figure 2: Effect of branch activity on post-release failures in 

Windows Vista 



ative relationship. This finding makes intuitive sense, since entro-
py is high when the proportions across the different branches are 
equal. Therefore, having a low branch scatter entropy value means 
that software components that are mainly developed in one branch 
family have less post-release failures than components that are 
developed an equal amount across different branch families. One 
exception is branch scatter entropy in Windows Vista, which has a 
small, but positive effect. One possible explanation is that Win-
dows Vista had few branch families, therefore, branch scatter 
entropy did not play a major role. 
Our results on Windows Vista and 7 can be summarized: 

• H1. Branch activity: has a negative impact on software qual-
ity. It can increase post-release failures by up to 59% in Win-
dows Vista and up to 51% in Windows 7. 

• H2a. Branch Scatter: has a negative impact on software 
quality. It can increase failures by up to 40% in Windows 
Vista. 

• H2b. Branch Scatter Entropy: has a slight positive impact 
on software quality in Windows Vista and negatively impacts 
software quality in Windows 7. It can increase failures by up 
to 43% in Windows 7. 

• H3a and b. Branch Depth and Branch Depth Entropy: 
have very little to no impact on software quality. 

6. BRANCHING STRATEGIES 
Thus far, we have mainly focused on the three hypotheses 
surrounding the effects of branching on software quality at the 
attribute level. Our findings showed that branch activity, and 
branch scatter effect the software quality of components in 
Windows Vista and Windows 7 and branch depth only had a 
moderate effect on quality in Windows Vista. 

However, one question that still lingers is how to best align the 
branching structure? Traditionally, branch structures are aligned 
in one of two ways: to match the architecture of the software 
system or to match the organizational structure. 

Aligning the branching structure with the architectural structure 
means that each branch will be dedicated to a component of the 
software. For example, in a layered software architecture, a 
branch family will be created for each layer. Branches within the 

branch family can be used to develop sub-components and so on. 
The advantage of matching the branching structure with the 
architectural structure is that changes to a component mostly 
happen on the same branch, thereby minimizing integrations. 

Aligning the branching structure along the organizational struc-
ture means that branches match team boundaries. In such a sce-
nario, each team manager will have his own branch family. The 
individual branches within the branch family will be assigned to 
different sub-teams, managed by the different team leads under 
that manager. The advantage of matching the branch structure 
with the organizational structure is that the personnel working on 
the branches are close organizationally, making coordination and 
communication much simpler. 

We built linear regression models that examined the relationship 
of organizational and architectural mismatch of individual 
branches with branch quality.  All measures of organizational 
mismatch -- number of development leads and number of manag-
ers that made changes on a branch -- and architectural mismatch – 
number of subsystems changed on a branch – were statistically 
significant (p < 0.05) and had a negative impact; increased mis-
match decreased quality. 

Table 4 shows the results of our analysis. We find that organiza-
tional mismatch provided a better fit (i.e., higher R2) when model-
ing branch quality in both, Windows Vista and Windows 7.  The 
effects of our measures of organizational and architectural 
measures on defects in branches are shown in Table 5 (same for-
mat as Table 3). This finding indicates that branches that cross-cut 
organizational boundaries have a higher correlation with post-
release failures than branches that cross-cut architectural bounda-
ries. Therefore, we suggest that, contrary to traditional belief, 
branching structures should not only align according to architec-
tural structure of the software, but also according to its organiza-
tional structure.  
Our finding complements prior work that showed organizational 
metrics outperform the traditional process and product metrics in 
modeling software quality at the component level [13].  The dif-
ference between prior work and ours is that we examine the fail-
ures on a per branch basis and compare the effects of architectural 
vs. organizational mismatch rather than examining only organiza-
tional mismatch.  With regard to our hypotheses, we conclude: 

• H4a: Branching according to architectural structure: 
Architectural mismatch increases post-release failures in both 
releases of Windows. 

• H4b: Branching according to organizational structure: 
Organizational mismatch increases post-release failures in 
both releases of Windows. 

• Architectural vs. Organizational Mismatch: Organizational 
structure has a stronger relationship with failures than archi-
tectural mismatch. 

 

Release Metric Min % Max % Direction 

Windows 
Vista 

Branch 
Activity 85±2.9 159±11 Positive 

Branch Scatter 98±1.2 140±10.5 Positive 

Branch Scatter 
Entropy 83±3.8 111±2.3 Positive 

Low Branch 
Depth 92±3.8 141±15.4 Positive 

Branch Depth 
Entropy 86±8.4 111±5.2 Negative 

Windows 
7 

Branch 
Activity 78±7.4 151±26.2 Positive 

Branch Scatter 
Entropy 84±58 143±20.8 Negative 

Table 3: Summary of metric relationships with failures 

 

 Vista Windows 7 

Arch mismatch 0.426** 0.308** 

Org mismatch 0.543** 0.321** 

Org + Arch 0.594** 0.385** 

(p<0.01 **; p < 0.05 *)  
Table 4: Model fit (R2) of architectural and organizational 

mismatch 



7. IMPLICATIONS 
7.1 Future Research 
Our work has implications for future work. Our findings indicate 
that branching does indeed have an effect on post-release failures. 
At the same time, we believe that there are scenarios where more 
branching activity and scatter is expected, and we are not 
advocating a “branch-free” development process.  For example, 
globally distributed teams, that are not able to communicate 
frequently may have more branching activity than co-located 
teams. This increase in branching activity is due to the fact that 
distributed teams are more concerned about keeping each other 
up-to-date and avoiding conflicts (since conflicts will require 
them to communicate). Our experience in talking with developers 
is that many failures that they deem “caused” by branching are in 
fact not directly caused by the creation of a branch, but rather by 
issues such as unmet (and sometimes unknown) coordination 
needs, poor integration work, and changes that propagate to the 
rest of the project late, all that result from how teams work as a 
result of using branches.  
We have identified which concrete aspects of branching are 
related to decreased quality.  However, changing the branching 
structure will only affect quality to the degree that they change the 
malignant behavior and process problems that lead to problems to 
begin with.  Indeed, our experience studying open source projects 
that use branching heavily [5] [26] suggests that different projects 
use branches in their development processes differently. 
Understanding which “branch processes” lead to better outcomes 
than others in different contexts is a clear avenue for future 
research, and we exhort others to study this and report their 
findings (along with contextual details [27]) as we do the same in 
contexts at Microsoft. 

7.2 Practical Implications 
Our results have important practical implications. Based on our 
findings in this study, we make the following recommendations to 
software practitioners: 

• Practitioners should aim to reduce branch activity since it 
may lead to an increase in the likelihood of failures.  

• Practitioners should aim to reduce the scattering of develop-
ment across many branch families since branch scatter in-
creases the likelihood of failures in Windows Vista.  

• When deciding how to best align branch structure, organiza-
tional mismatch should be closely considered by practition-

ers since it has a stronger relationship with failures than ar-
chitectural mismatch. 

Based on our findings, we are working with product groups within 
Microsoft and suggesting that, in addition to aligning branching 
structure according to architectural structure, branching structures 
should align with the organizational structure of their teams.  
When combined with prior work that empirically evaluates Con-
way’s Law ( [14] [13]), this study provides further evidence that 
the makeup and organization of software teams has a direct rela-
tionship with quality.  Development projects (especially those at 
large scale) would do well to consider this mounting body of evi-
dence. 

8. THREATS TO VALIDITY 
Threats to Construct Validity: consider the relationship between 
theory and observation, in case the measured variables do not 
measure the actual factors. We use post-release failures to 
measure software quality. In certain cases, it might be more 
beneficial to use pre-release failures as a measure of quality since 
branching may cause integration failures that are often reported as 
pre-release failures. However, in our case changes were used to 
identify pre-release failures, therefore, using them to measure 
quality as well would introduce bias in our study. More 
importantly, post-release failures represent those failures not 
caught by QA processes and are more costly as they are customer-
facing failures. 

When evaluating the effect of architectural and organizational 
mismatch on branch quality, we measured branch failures as a 
ratio of development that a component had on that branch times 
the number of failures for that component. Ideally (and if 
possible), one would  map each failure to the branch that the it 
was introduced in. However, we were unable to create such a 
mapping due to lack of data.  

Threats to External Validity: consider the generalization of our 
findings. The studied projects are both developed by Microsoft 
and follow processes that are defined by the development and 
management teams at Microsoft. A common misconception about 
industrial research at large companies such as Microsoft is that the 
software projects are not representative of other software projects 
and thus not valuable. This is not true. While projects might be 
larger in size, most development practices at Microsoft are 
adapted from the general software engineering community outside 
Microsoft. Many commercial and OSS projects also use branches 
to partition work and filter changes based on quality and this 
study represents a first step in examining the relationship between 
branching and quality. Therefore, we believe that this study can be 
replicated on other large software systems that use branches. 
Another frequent misconception is that empirical research within 
one company or one project is not good enough, provides little 
value for the academic community, and does not contribute to 
scientific development. Historical evidence shows otherwise. 
Flyvbjerg provides several examples of individual cases that 
contributed to discovery in physics, economics, and social science 
[28]. W. I. B. Beveridge observed for social sciences: “More 
discoveries have arisen from intense observation than from 
statistics applied to large groups” (as quoted in Kuper & Kuper 
[29] p. 95). This should not be interpreted as a criticism of 
research that focuses on large samples or entire populations. For 
the development of an empirical body of knowledge as 
championed by Basili [30], both types of research are essential. 

Lastly, a common misinterpretation of empirical studies is that 
nothing new is learned (e.g., “I already knew this result”). 

 Vista Windows 7 

Metric Min % Max % Min % Max % 

Managers 100±5 135±24 100±6 146±34 

Leads 78±6 201±25 83±8 156±29 

Engineers 65±8 217±24 67±14 169±25 

Components 92±10 120±8 88±9 119±11 

Subcomponents 88±9 130±9 89±9 113±11 

Table 5: Summary of organizational and architectural 
mismatch on branch quality 



However, such wisdom has rarely been shown to be true and is 
often quoted without scientific evidence. This paper provides such 
evidence: Most common wisdom and intuition is confirmed (e.g., 
“binaries with more branch activity tend to have more failures”) 
while some is challenged (e.g., “branches should be divided along 
architectural boundaries”).  

9. CONCLUSION 
We have presented the first, but hopefully not last, empirical 
evaluation of the relationship between various aspects of branch 
use in a software project and post-release quality.  We have 
demonstrated not only that branch activity and branch scatter lead 
to decreased quality, but we have also quantified the magnitude of 
the relationship.  Further, we have evaluated two differing 
branching strategies and found that organizational alignment is 
more important than architectural alignment, thereby allowing 
software teams to make more informed decisions about their 
branching structure.  This evidence is being used within Microsoft 
and can be of value to other software projects that use branching, 
or are considering it, as well. 
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