
The Effect of Branching Strategies on Software Quality

Emad Shihab
Software Analysis and Intelligence Lab (SAIL)

Queens University, Canada
emads@cs.queensu.ca

Christian Bird and Thomas Zimmermann
Microsoft Research
Redmond, WA, USA

{cbird, tzimmer}@microsoft.com

ABSTRACT
Branching plays a major role in the development process of large
software. Branches provide isolation so that multiple pieces of the
software system can be modified in parallel without affecting each
other during times of instability. However, branching has its own
issues. The need to move code across branches introduces addi-
tional overhead and branch use can lead to integration failures due
to conflicts or unseen dependencies. Although branches are used
extensively in commercial and open source development projects,
the effects that different branch strategies have on software quali-
ty are not yet well understood. In this paper, we present the first
empirical study that evaluates and quantifies the relationship be-
tween software quality and various aspects of the branch structure
used in a software project. We examine Windows Vista and Win-
dows 7 and compare components that have different branch char-
acteristics to quantify differences in quality. We also examine the
effectiveness of two branching strategies – branching according to
the software architecture versus branching according to organiza-
tional structure. We find that, indeed, branching does have an
effect on software quality and that misalignment of branching
structure and organizational structure is associated with higher
post-release failure rates.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – Process Metrics

Keywords
Branching, Quality

1. INTRODUCTION
Coordination is key as software development becomes a more and
more complex enterprise. Software projects today range in size
up to tens of millions of lines of code, are developed by teams of
thousands of developers, and may support multiple releases at
different stages of development. Managing all of the changes
being made to a codebase is an increasingly difficult task. Soft-
ware Configuration Management Systems (SCMs, also known as
version control systems) are important tools, as they are the pri-
mary mechanism used to coordinate the sharing of actual code
artifacts, the key output in software products. In large-scale soft-
ware projects where all changes are immediately seen by all de-
velopers (i.e. one “line” of development), changes can lead to a
number of significant problems: single changes can cause build
breaks and halt the progress of the entire project; piecemeal
changes to interoperating components can lead to incompatibility,

and finding the change that causes a test to fail can almost be
impossible, especially for long-running test suites. While some of
these effects are present in smaller projects too, the impact is in-
tensified in large projects; a build break that affects a team of five
developers is not as serious as a break that affects thousands of
developers.

One of the key features of modern SCMs that helps to mitigate
these problems associated with the complexity of software pro-
jects is the support of parallel lines of development known as
branches [1]. A branch is a virtual workspace created from a
particular state of the source code that a developer or team of
developers can make changes to without affecting others working
outside the branch. Branches provide isolation from other chang-
es; for example a build break on a branch affects only the teams
working on that branch and not the entire development team. The
use of branches within a project has a profound effect on the pro-
cesses used during development, from the build processes to re-
lease management [1].

However, like any development tool, branching needs to be lever-
aged correctly in order to be most effective [2]. Teams may
choose to work in branches to avoid dealing with the work of
other teams, but some coordination is required. Branches may
introduce a false sense of safety, as changes made in different
branches will eventually be merged together (either manually or
automatically), and bugs may arise if these changes are syntacti-
cally or semantically incompatible. The process of moving code
between branches represents additional error-prone work for de-
velopers. A complex branching structure may hinder the devel-
opment process, making it hard to track code changes, causing
build failures (due to unexpected dependencies), increasing the
chances of introducing regression failures and making it difficult
to maintain the code base [3]. In fact, some claim that branching
is the most problematic area of SCM [4]. Therefore, it is im-
portant to understand how branching structures affect software
systems and impact their quality. We note that these outcomes are
not caused by the branches themselves, but rather by the process-
es and coordination required when employing the use of branches.

However, the relationship between branching structure and quality
remains an important open question. With more projects in open
source [5] and commercial contexts [6] employing branches in
their development, understanding the impact of branching is in-
creasingly relevant. To address this, we perform an empirical
study to examine the effect of branch structure on software quality
in Windows. We find that many aspects of branch use do indeed
affect software quality.

As a prescriptive step, we also examine how to best align branch-
ing structures with other aspects of a software project. Specifical-
ly, we compare the branch structure with the organization of the
teams within the project and also with the architecture of the
software itself to determine which is the better branching strategy.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
ESEM’12, September 19–22, 2012, Lund, Sweden
Copyright 2012 ACM 978-1-4503-1056-7/12/09…$15.00.

To the best of our knowledge, this is the first study to empirically
examine the effect of branching on software quality. We make the
following contributions in this study:

1. We define metrics to capture the effects of branching on
software quality.

2. We perform an empirical study and quantify the effects of
branching on software quality in two releases of a large in-
dustrial project.

3. We examine the effect of mismatch between the branching
structure and organizational and architectural structures.

4. We provide recommendations of branch use for projects that
heavily utilize branching.

The rest of the paper is organized as follows. We first survey prior
work in the area of SCM branching. We then provide terminolo-
gy and describe our data collection process. Next, we discuss our
hypotheses regarding branching strategies and define the metrics
used to evaluate these hypotheses. Finally, we present the results
of our analysis, discuss implications of these results, and make
recommendations based on our findings.

2. RELATED WORK
A number of researchers have studied the role of branching within
SCMs. Midha [7] outlined key characteristics of SCMs and their
use at Lucent Technologies and iterated the need of future SCMs
to facilitate the creation and support of multiple branches (referred
to in the paper as streams). Walrad and Strom [1] investigated
tradeoffs between several branching models and suggested the use
of a branch-by-purpose model which calls for branches to be cre-
ated only when there is a specific purpose (e.g. when software is
released). Wingerd and Seiwald [4] provided best practices for
SCMs and suggested branching only when necessary, such as
when incompatible policies arise (e.g. when developers have dif-
ferent commit privileges), branching late to make sure as many
changes as possible are propagated, and using branching instead
of code freezing to allow parallel development. Appleton et al. [2]
and Buffenbarger and Gruell [8] studied and proposed branching
patterns and best practices to use in order to achieve efficient
parallel development.

Perry et al. [9] perform an empirical study to investigate and un-
derstand the nature of large scale parallel development and find
that multiple levels of parallelism exists (i.e. at the release, MR
and IRM levels), that as much as 12.5% of all deltas may be in
conflict and up to 50% of files are changed by multiple developers
in the same release. Premraj et al. [3] examined the branching and

merging in an industrial agile development setting and found that
the roles of branchers (e.g. architects, developers, or testers) and
the type of files (e.g. header files or configuration files) they work
on dictates the cost of merging. They also presented findings that
suggested that programs should be structured not only by the
software architecture, but also by the team structure, so that com-
munication about prevention and unnecessary branching could be
possible. Bird et al. [6] examined a theory that branches are creat-
ed to accomplish a goal and groups of developers making changes
on a branch represent virtual teams with a common goal. Then,
they examined the relationships between files changed in a branch
and the people who make changes to the branch and found sup-
port for their theory in Windows Vista and Windows 7.
The prior work has focused primarily on providing best practices
for branching or studying the role of branching in large teams. It
is important to note that most of these best practices suggested are
based on experience and theoretical scenarios. In this work, we
complement the previous work by empirically studying and eval-
uating the effects of branching on software quality. In addition,
our study proposes and validates metrics that capture general
characteristics of branches (i.e. we do not constrain ourselves to
one branching model). For example, our findings regarding
branch depth can be used to compare two different branching
models based on their depth characteristics.

3. TERMINOLOGY AND METRICS
3.1 Terminology
We start by introducing relevant terminology used in this paper.
The Windows Vista and Windows 7 teams heavily relied on
branching to manage their large code base. Generally speaking,
branches are created based on a specific structure that is agreed
upon within the development teams. As the project evolves, more
branches are created to support development.

 To maintain order in the branching structure, related branches are
grouped into branch families. A branch family is a subtree rooted
off of the trunk (a.k.a. main, the release branch). For example, all
of the branches used to build tools are grouped into one ‘tools’
branch family. In some cases, a branch may be added to a branch
family in order to provide further isolation. In such cases, the new
branch is said to be one level “deeper” in the branch tree. Figure 1
shows an example of two branch families and the different branch
depths. In our study, we use the notion of branch depth as the
measure of how deep a branch is from the main branch. Once a
change is checked in on a branch at depth n, it is merged into the

Figure 1: Example branch structure

main

Branch
Integrate

Depth&2

Branch'family'A

Branch'family'B

Depth&1
Depth&0

Depth&2
Depth&3

`

Changes(to"foo.dll
Changes(to(bar.dll

Time

Depth&1

parent branch at depth n-1, and eventually is merged into the trunk
(level 0).
To differentiate between development and branching activity, we
classify changes into two types: changes to the actual code, which
we call development changes (add, edit and delete operations) and
changes which move and merge code between branches, which
we call branching changes. In our context, a branch change is a
change that copies or integrates (also known as merges) a file
change from one branch to another. These two categories of
changes are fundamentally different, as modifying code and mov-
ing code require different skillsets and pose different types of risk
(e.g. implementation errors vs. integration errors). In practice,
these two types of changes are performed by contributors that
have different roles and even different job titles within the project.

3.2 Data Collection
To conduct our study, we leveraged data from two releases of one
of the largest projects at Microsoft, Windows. Windows is com-
posed of thousands of executable files (.exe), shared libraries (.dll)
and drivers (.sys), which we refer to as binaries. We collected
historical development data for each binary in Windows Vista and
7 from the release of Windows Server 2003 to the release of Win-
dows 7. We chose to perform our analysis at the binary level be-
cause failure data is collected and reported at this level at Mi-
crosoft and we have observed cases where a failure caused by a
change to one source file for a binary was fixed in a different
source file for the same binary. We decided to perform our case
study on Windows Vista and 7 because they are two large releases
that have a rich development history and heavily use branches.

We collected a number of different metrics for each component.
To gather the metrics for each component, we leveraged the
commit histories and software failure data of Windows Vista and
Windows 7. Each change in the repository contains the change
author, the change date, a change log message, the source files
modified by the change, the branch and branch family of each
source file, the type of change (e.g. development or branching)
and the purpose of the change (e.g. bug fix or enhancement). We
used a mapping of source files to binaries in order to collect the
different metrics at the component level.

As an indicator of software quality, we used the number of post-
release failures per binary. Both versions of Windows have been
released for multiple years and have an installation base in the
hundreds of millions. Most defects are found quickly and the re-
port rate falls off dramatically after the first year, indicating that
our results are unlikely to change with time. Various code metrics,
such as churn, complexity and size metrics were also gathered
from the source code repositories and build process for each com-
ponent. We use the code metrics in our models as control varia-
bles since they are known to also relate to failures [10]. We detail
all of the metrics calculated from our data in the next section.
Prior research has shown that when characteristics such as size
and complexity are not considered, they may affect the validity of
other software metrics [11].

As part of our study examines the relationship between branching
structure and organizational structure, we gathered snapshots of
the Windows organizational hierarchy (who reports to whom as
well as job titles) over the course of Windows Vista and 7 devel-
opment.
Lastly, the binaries within Windows are logically partitioned into
systems, subsystems, areas, and (in some cases) subareas. For
instance, an mp3 decoding library may be in the audio codec area
of the audio subsystem within the multimedia system. We use this

hierarchical breakdown for both releases of Windows as the sys-
tem architecture and use it to determine how well branches span
architectural boundaries.

4. RESEARCH QUESTIONS
Our high level research question is “How much and in what ways
does branching affect software quality?” To answer this question,
we evaluate quality at the component level and the branch level
through the use of a number of measures of branch use. In this
section we present the testable hypotheses that we evaluate as well
as the rationale that underlies each of these hypotheses and the
metrics that we use to quantify different aspects of branch use.
Each hypothesis is related to the research question in a different
way and has different implications for software teams.
Our hypotheses come from discussions with developers, manag-
ers, and other stakeholders in Windows and other projects at Mi-
crosoft. They have indicated that it is just as valuable to know
which branching characteristics (i.e. metrics) do not have a rela-
tionship with software failures as those that do; both inform
stakeholders’ decisions and practices.

4.1 Effects on Component Quality
One goal of our research is to examine the effects of branching on
software quality. Based on discussions with developers we expect
that overly complex branching structures negatively impact the
quality of a software system. Since software components that are
developed in more complex branching structures require more
process overhead in terms of branching and integrating activity as
well as more coordination, we expect more opportunities for error
and that these components will have more post-release failures.
Therefore, we focus our study on three factors that we believe
measure the complexity of a branching structure, namely – branch
activity, branch scatter and branch depth.
H1. Branch Activity: Software components with high branching
activity have more failures.
Branches are meant to provide a level of isolation for develop-
ment teams to work on parts of the code base without having to
worry about affecting others. However, this level of isolation
comes at the cost of having to resolve integration conflicts when
changes on these branches are finally merged back. Integration
changes are risk-prone because a) the developer merging the code
may not be the developer that made the code changes (and thus
may lack key knowledge), b) the changes represented in a merge
are often aggregated and are therefore large and widespread, c)
the integration is often temporally distant from the development
changes themselves, and d) developers may rely on the invalid
assumption that lack of syntactic conflicts implies a lack of se-
mantic conflicts or issues [12]. Therefore, we expect higher levels
of branching activity to lead to more post-release failures since
higher activity requires more integration. We use the branching
activity metric to evaluate this hypothesis.

Branching Activity – is defined as a ratio, the number of branch-
ing changes divided by the number of development changes, per
component. We use the ratio instead of simply using the number
of branching changes since components that have many develop-
ment changes are more likely to have more branching changes as
well (we control for total number of changes by using a churn
metrics in our models). We use the branching activity metric to
evaluate our first hypothesis (H1) that more branching activity
reduces software quality.

H2a. Branch Scatter: Software components spread across many
branch families have more failures.

In addition to the hypothesis that higher levels of branching activi-
ty may lead to more failures, we also hypothesize based on dis-
cussions with developers, that components that have changes
scattered across different branch families will experience more
integration failures. The intuition is that software components that
are spread across many branch families have changes that will not
integrate until they reach the main branch and will thus happen in
larger batches and later in the development cycle. Furthermore,
teams working in different branch families are typically organiza-
tionally farther apart and have disparate tasks. Prior research has
shown that in such cases, awareness is lowered, coordination
breakdowns occur more often, and failures result [13] [14]. This
measure is different from the branching activity metric. A soft-
ware component may have high branching activity but only be
modified in two branches that are in a single branch family (i.e., it
keeps going back and forth). In this case, the branch scatter would
be low. We use the branch scatter metric to evaluate this hy-
pothesis.

Branching Scatter – is defined as the ratio of unique branch fam-
ilies that a component is in divided by the number of development
changes. Again, we use the ratio instead of using the number of
branch families that a component touches, to control for the fact
that components that have more development changes are more
likely to be scattered across branch families. We use the branch-
ing scatter metrics to evaluate our hypothesis (H2a) that higher
levels of branch scatter reduce software quality.

H2b. Branch Scatter: Software components that are equally
developed across multiple branch families have more failures.

In addition to simple branch scatter, we examine the effect of the
proportion of scatter across branch families. The intuition is that a
component may need to be changed in different branch families;
however the majority of the changes to the component should be
made mainly within a single branch family. If a component is
developed equally across many branch families, then there is more
room for missed dependencies and conflicts. We use the branch
scatter entropy metric to validate this hypothesis.

Branch Scatter Entropy – is defined as the entropy of the scatter
of the changes to a component across branch families. In certain
cases, a component may need to be shared across different fami-
lies. The intuition is that if a component is changed equally across
the different branch families, this is worse than having a compo-
nent change mainly in one branch family and lightly changed in
the others. For example, a component may need to be modified in
two branch families, however, if 95% of its changes happen in
one branch family and only 5% in the other that is much better
than having 50% of its changes in each branch family. We use
Shannon Entropy [15] to capture this effect of distribution (e.g.
[16], [17]). Entropy is defined as ! ! = − (!! ∗ !"#!!!)!

!!! ,
where !! ≥ 0,∀!!! ∈ 1,2,… ,! and !! = 1!

!!! . Maximal entro-
py is achieved when all elements in a distribution, P have the
same probability of occurrence (i.e. !! = ! !! ,∀!!! ∈ 1, 2,… ,!). In
contrast, minimal entropy is achieved if one element !! in the
distribution, P has probability of occurrence 1 (i.e. !! = 1) and all
remaining elements in P have a probability of occurrence 0 (i.e.
∀!! ≠ !, !! = 0). Since some components are changed in a dif-
ferent number of branch families compared to others, we normal-
ize by dividing the entropy value by !"#!!, where m is the num-
ber of branch families containing changes to that component.

To illustrate our intuition, we use the example shown in Figure 1.
Foo.dll and bar.dll both have equal number of changes (depicted
by the solid and hollow dots on the branches). Three of the four

changes to foo.dll are in branch family A. Therefore, developers
working on the branches in branch family A are more likely to be
aware of the other changes to foo.dll. On the other hand, bar.dll
has two changes in branch family A and another two changes in
branch family B. Therefore, it is more difficult for the developers
working on the branches in the two branch families to be aware of
all the changes to bar.dll, possibly causing incompatible changes,
leading to a higher number of failures. In this example, foo.dll has
lower branch scatter entropy value than bar.dll.

H3a. Branch depth: Software components developed primarily
in deeper branches have more failures.

In addition to measuring the branching activity and frequency,
software components that are developed in deeper branches are
more isolated and must “travel” further to a release branch. Thus,
they have a higher likelihood of conflicts upon integration to the
release branches. To evaluate these claims, we use the branch
depth metrics to examine whether branch depth has an effect on
the quality of a component. We use the low and high branch
depth metrics to validate this hypothesis.

Branching Depth (Low, Medium, High) – is defined as the ratio
of development changes to a component in low depth branches,
medium depth branches and high depth branches. The choice for
using three categories rather than using a continuous measure
maintains confidentiality at Microsoft and also allows for general-
ity; a branch structure of any depth can be easily binned into these
categories. Furthermore, this allows for a non-monotonic relation-
ship between depth and failure rates. We use the branch depth
metrics to evaluate our hypothesis (H3a) that development at
deeper branches reduces software quality. In the example, figure
1, foo.dll has 50% of its changes at low depth branches (i.e.
branches in depth 1) and 50% of its changes at medium depth
branches (i.e. branch at depth 2).
H3b. Branch depth: Software components that are developed
evenly across low, medium and high depth branches have more
failures.

Similar to the proportion of branch scatter across multiple branch
families hypothesis, we also examine whether components that
are mainly developed in one depth level have better quality than
components that are equally developed at all depth levels. We use
the branch depth entropy metric to validate this hypothesis.

Branch Depth Entropy – is defined as the entropy of the changes
at each depth level (low, medium, and high). This is in an effort
to determine whether changing components evenly at different
depth levels (high depth entropy) is better or worse (in terms of
software quality) than a component that changes primarily in one
depth level (low depth entropy).
Since the depth of the branch reflects its purpose (e.g. core func-
tionality is often developed at lower levels), being distributed
across different depth levels may lead to confusion in the purpose
of the component. Using the example in Figure 1, foo.dll has 50%
of its changes at low branch depth and 50% of its changes at me-
dium branch depth, whereas bar.dll has all of its changes in medi-
um depth branches. In this example, foo.dll may be harder to work
with since it does not clearly reside in any one depth level. We use
the branch depth entropy metric to evaluate our hypothesis (H3b)
that even distribution across branch depths reduces software quali-
ty. Since different components are changed in a different number
of branch depths compared to others, we normalize by dividing
the entropy value by log2(m), where m is the number of branch
depths containing changes to that component.

4.2 Architectural and Organizational
Congruence
In the previous section, we examined topological characteristics
of the relationships between changes to components on branches
and post-release failures. An equally important question is how
the branching structure should align with the architecture of the
system being developed and the organization of the teams devel-
oping the system. According to Conway’s Law [18], in an ideal
setting the decomposition of the system into subsystems and sub-
systems into components would match the division of the devel-
opers into teams. In practice, due to cross-cutting concerns, archi-
tectural coupling, and external organizational factors such as ge-
ography [19], pre-existing organizational structures, and organiza-
tional churn [20], there is rarely perfect congruence between sys-
tem architecture and organizational structure. Thus, a branching
structure can match organizational structure at the cost of span-
ning subsystem and component boundaries, or it may closely align
with the system architecture and cross-cut the organization.

The decision is not clear. Prior work suggests that components
with changes spanning organizations increase failures [13]. How-
ever, cross-cutting concerns – functionality requiring changes that
span system architecture -- also lead to failures [21].

Therefore, in an effort to provide actionable results to software
teams to assist them to decide on effective branching strategies,
we examine the effect of aligning the branching structure to archi-
tectural or organizational structure on branch quality. This leads
to two competing hypotheses:

H4a. Branching according to architectural structure: Branches
with higher architectural mismatch have more failures.

One strategy to follow when creating branches is to dedicate one
branch per component. Doing so, allows software components to
be developed in isolation. However, in certain cases multiple
components are modified in a single branch, causing branches to
cross-cut the architecture (i.e., architectural mismatch). We expect
branches that include work on multiple components to have more
failures.

Archictectural Mismatch – is the number of individual systems,
subsystems, areas, components and subcomponents (forming a
hierarchy) that are affected by the changes on a branch. We expect
that a branch that contains only changes to one subsystem have
fewer failures than a branch that changes many.

H4b. Branching according to organizational structure:
Branches with higher organizational mismatch have more failures.

In many cases multiple teams need to coordinate when developing
a software component. Therefore, having the branching structure
match the organizational structure may be ideal. We expect that
branches that are contributed to from multiple organizations (i.e.,
organizational mismatch) have more failures.

To answer the aforementioned question, we measure the effect
that architectural and organization mismatch has on branch
quality. To measure architectural and organizational mismatch of
the branch, we define the following metrics:

Organizational Mismatch – includes the number of managers,
development leads, and engineers (counted and used in our models
separately) that make changes to files on the branch. The number
of engineers that work in a branch serve to represent the size of the
group working in a branch. However, each team has one
development lead and a number of leads report to one development
manager. Thus, each lead and each manager is indicative of

additional teams working in a branch. We expect a branch with
twenty engineers, six leads, and two managers to have more
failures than a branch with twenty engineers, one lead, and one
manager because the former spans organizational structure.

We quantify branch quality by mapping components (and their
post-release failures) to the branches they were changed on. Using
a technique similar to the approach used by Ostrand et al. to
calculate the failure ratios of developers [22], we use the ratio of a
component’s changes on a branch (analogous to changes made by
a developer in Ostrand’s approach) to map post-release failures to
that specific branch. For example, assume that a component A had
8 post-release failures and that A had a total of 20 development
changes, 15 changes on branch B1 and 5 changes on branch B2.
We map 6 (!"!" ∗ 8 =6) failures to branch B1 and 2 (!!" ∗ 8 =2)
failures to B2.
These metrics enable us to study the effect of mismatch on branch
quality. As before, we build linear regression models and use the
goodness-of-fit measure to compare which of architectural or
organizational mismatch better explain branch failures. We also
report direction and magnitude of the relationship to quality (de-
rived from regression coefficients).

4.3 Analysis Techniques and Statistical Mod-
eling
We use multiple linear regression models to study the effect of
branching on software quality.

Linear regression models are generally used in empirical studies
to model an outcome of a response variable (e.g. model the num-
ber of post-release failures) or to model the relationship between
an observed phenomena (represented by the model independent
variables) and an observed outcome (represented as the dependent
variable). In this paper, we use linear regression models to achieve
the latter, to study the relationship. Prediction is not the aim of
this paper. In particular, we use linear regression to examine the
relationship of one or more of the branching metrics with software
quality, while controlling for code and process metrics.
 The independent variables in our linear regression models are the
branching activity, scatter and depth metrics; the dependent varia-
ble is the number of post-release failures. All of our measure-
ments are performed at the software component level.

One of the assumptions of linear regression is that the residuals
must be normally distributed. We observed that, similar to many
other software metrics, our control variables and some branch
metrics here highly skewed, leading to non-normality of residuals.
To alleviate this problem, we used a log transformation on these
metrics with high skew and/or kurtosis values.

 As our evaluation criteria, we examine the statistical significance,
magnitude, and direction of the variable’s contribution in the
model. In addition, similar to previous work (e.g. [23]) we use
model fit (variance explained, also known as adjusted R2) as eval-
uation as well. We begin by building a base model, which con-
tains our control variables, and record the adjusted R2. Then, we
incrementally add one variable at a time and measure the im-
provement in adjusted R2.

We employed Variance Inflation Factor (VIF) analysis to measure
the level of multicollinearity between independent variables [24]
and removed highly correlated variables from the linear regression
models, i.e. any variables that had a VIF value above 10, as rec-
ommended by Kutner et al. [24]. To test for statistical

significance, we performed ANOVA analysis on the models and
report the p-value of the independent variables.

5. CASE STUDY RESULTS
We now present the results of our case studies on Windows Vista
and Windows 7. We build linear regression models that model the
number of post-release failures and examine whether or not add-
ing branching metrics improves the model fit. For each version of
Windows, we built five models. We start by building a base mod-
el with the control metrics, which in our case are churn, complexi-
ty, size, the number of files and the number of development
changes to a software component. Then, we build an additional
four models where we incrementally add the branch activity,
branch scatter, branch depth metrics, and branch families, respec-
tively.
Tables 1 and 2 present the results of our analysis. Arrows (↑ and
↓) are used to denote direction of the effect, a ↑ denotes a positive
effect and a ↓ denotes a negative effect. The model fit (R2) of each
model is shown in the last row of the tables. A log transformation
was applied to some metrics, indicated in the left column, as dis-
cussed earlier. In all cases the effects were statistically significant
with a p<0.01.

The base models provide a model fit of 72% and 17% for Win-
dows Vista and Windows 7, respectively. The lower model fit for
Windows 7 is likely due to the fact that Windows 7 had both few-
er post-release defects and less variance in post-release defects
across binaries. Adding the branch activity metric to the base
model improved model fit to 75% for Windows Vista and 18% for
Windows 7. The model fit is further increased to 77% when the
branch scatter metrics are added Windows Vista and 19% for
Windows 7. Branch depth metrics added a fractional (less than
0.5%) improvement to model fit in Windows Vista and did not
add to the model fit in Windows 7. These model fit values are in
the same range as prior work on software quality that achieves
model fits values between 22-33% deviance explained [25]. In all
cases, we found one or more of the metrics in each metric catego-
ry (i.e., activity, distribution or depth), except for the case of depth
metrics in Windows 7 to be statistically significant and improve
model fit.

Furthermore, we divided the changes based on the branch families
they were in. The purpose of doing so was to study whether cer-
tain branch families are more risky than others. The results are
shown in the last column of Tables 1 and 2. Since the sum of the
changes in each branch family is equal to the number of develop-
ment changes, we cannot include both metrics in the model.
Therefore, we remove the number of development changes from
the model and add the number of changes in each branch family,
labeled as Branch Groups in the tables. We see that using the
branch families improves the model fit to be 79% for Windows
Vista and 36% for Windows 7. This is a large improvement, sug-
gesting that changes in certain branch families leads to more fail-
ures compared to other branch families. One explanation for the
considerable improvement in model fit in Windows 7 compared to
Vista is the fact that Windows 7 had more branch families than
Windows Vista. Thus branch families provide more discrimina-
tion in Windows 7.

5.1 Quantifying the Effect of Branching on
Software Quality
Although model fit is traditionally used to evaluate linear regres-
sion models, its importance depends on the context in which it is
evaluated. Since our base models were fairly robust (providing a
model fit of 72% for Windows Vista for example), we did not
expect a large improvement in model fit. Our primary goal was
determining which measures had a statistically significant rela-
tionship with post-release failures.
Having identified the statistically significant metrics, we are inter-
ested in quantifying the relationship of these metrics on post-
release failures. For example, we would like to be able to quantify
the increase in post-release failures if branching activity increased
by 10%. Quantifying the effect is of primary importance to practi-
tioners because it helps them better understand - how and by how
much – their branching practices impact their software quality.
Quantifying the effect allows practitioners to put a cost on the
impact of their branching practices (e.g. mapping an increase of
10% in failures to dollars lost) and argue for process change, if
needed.
To practically quantify effect, we study each metric in isolation.
We do so by using the fitted model and setting all the metrics

 Base Model Model 2 Model 3 Model 4 Model 5

log(Size) ↑ ↑ ↑ ↑ ↑

log(Churn) ↑ ↑ ↑ ↑ ↑

log(Complexity) - - - - -

log(Dev. Changes) ↑ ↑ ↑ ↑ -

log(No. Files) ↑ ↑ ↑ ↑ ↑

Branch Activity

↑ ↑ ↑ ↑

log(Branch Scatter)

↑ - -

Branch Scatter Entropy

↑ ↑ ↑

Low Branch Depth

↑ ↑

log(High Branch Depth)

- -

Branch Depth Entropy

↓ ↓

Branch Groups

↑

R2 72% 75% 77% 77% 79%

Table 1: Post-release failures model for Vista. Arrows indicate effect on failures. Table 3 shows
magnitude of effects.

other than the metric of interest to their median values. Then, we
vary the metric we are interested in studying the effect of, from its
minimum to its maximum value and observe the change in the
projected number of post-release failures. To put the in-
crease/decrease of effect into perspective, we normalize the effect
of each metric, by its effect at the median value. The direction of
the effect can be positive or negative. A positive direction indi-
cates that an increase in the metric causes an increase in post-
release failures. A negative direction indicates that an increase in
a metric leads to less post-release failures.

We illustrate with an example in Figure 2 where we plot the
change in effect for the branch activity metric in Windows Vista.
The x-axis shows the change in the value of the metric from its
minimum to its maximum value. The y-axis shows the change in
the amount of projected post-release failures, normalized by the
median. We also plot the 95% confidence interval, shown by the
dashed lines. At 100% on the y-axis represents the modeled num-
ber of post-release failures when branch activity is at its median

value (and all other metrics in the model are also set to their me-
dian). Decreasing the branch activity metric to its minimum value
would reduce the amount of failures to 85% (± 2.9%) of the value
observed at the median. If branch activity was at its maximum
value, we expect an increase of up to 59% (± 11%) more failures.
Figure 3 shows a similar graph, depicting the effects of branch
scatter entropy in Windows 7.

 Table 3 summarizes the effects of all metrics at their minimum
and maximum values (values below 100% indicate decreases in
failures, values above, increases). We find that for Windows
Vista, branch activity, branch scatter and low branch depth have
the biggest effect, increasing the amount of post-release failures
by up to 59%. Branch scatter entropy and depth entropy have a
moderate effect. In Windows 7, we find that branch activity and
branch scatter entropy both have a large effect (up to 70%), how-
ever they also have wide variation.
The majority of the metrics have a positive relationship with post-
release failures, except for the entropy metrics, which have a neg-

 Base Model Model 2 Model 3 Model 4 Model 5

log(Size) ↑ ↑ ↑ ↑ ↑

log(Churn) ↑ ↑ ↑ ↑ ↑

log(Complexity) ↑ ↑ ↑ ↑ ↑

log(Dev. Changes) ↑ ↑ ↑ ↑ -

log(No. Files) ↑ ↑ ↑ ↑ ↑

Branch Activity

↑ ↑ ↑ ↑

log(Branch Scatter)

- - -

Branch Scatter Entropy

↓ ↓ ↓

Low Branch Depth

- -

log(High Branch Depth)

- -

Branch Depth Entropy

- -

Branch Groups

↑

R2 17% 18% 19% 19% 36%

Table 2. Post-release failure models for Windows 7. Arrows indicate effect on failures. Table 3 shows
magnitude of effects.

Figure 3: Effect of branch scatter entropy on post-release
failures in Windows 7

Figure 2: Effect of branch activity on post-release failures in

Windows Vista

ative relationship. This finding makes intuitive sense, since entro-
py is high when the proportions across the different branches are
equal. Therefore, having a low branch scatter entropy value means
that software components that are mainly developed in one branch
family have less post-release failures than components that are
developed an equal amount across different branch families. One
exception is branch scatter entropy in Windows Vista, which has a
small, but positive effect. One possible explanation is that Win-
dows Vista had few branch families, therefore, branch scatter
entropy did not play a major role.
Our results on Windows Vista and 7 can be summarized:

• H1. Branch activity: has a negative impact on software qual-
ity. It can increase post-release failures by up to 59% in Win-
dows Vista and up to 51% in Windows 7.

• H2a. Branch Scatter: has a negative impact on software
quality. It can increase failures by up to 40% in Windows
Vista.

• H2b. Branch Scatter Entropy: has a slight positive impact
on software quality in Windows Vista and negatively impacts
software quality in Windows 7. It can increase failures by up
to 43% in Windows 7.

• H3a and b. Branch Depth and Branch Depth Entropy:
have very little to no impact on software quality.

6. BRANCHING STRATEGIES
Thus far, we have mainly focused on the three hypotheses
surrounding the effects of branching on software quality at the
attribute level. Our findings showed that branch activity, and
branch scatter effect the software quality of components in
Windows Vista and Windows 7 and branch depth only had a
moderate effect on quality in Windows Vista.

However, one question that still lingers is how to best align the
branching structure? Traditionally, branch structures are aligned
in one of two ways: to match the architecture of the software
system or to match the organizational structure.

Aligning the branching structure with the architectural structure
means that each branch will be dedicated to a component of the
software. For example, in a layered software architecture, a
branch family will be created for each layer. Branches within the

branch family can be used to develop sub-components and so on.
The advantage of matching the branching structure with the
architectural structure is that changes to a component mostly
happen on the same branch, thereby minimizing integrations.

Aligning the branching structure along the organizational struc-
ture means that branches match team boundaries. In such a sce-
nario, each team manager will have his own branch family. The
individual branches within the branch family will be assigned to
different sub-teams, managed by the different team leads under
that manager. The advantage of matching the branch structure
with the organizational structure is that the personnel working on
the branches are close organizationally, making coordination and
communication much simpler.

We built linear regression models that examined the relationship
of organizational and architectural mismatch of individual
branches with branch quality. All measures of organizational
mismatch -- number of development leads and number of manag-
ers that made changes on a branch -- and architectural mismatch –
number of subsystems changed on a branch – were statistically
significant (p < 0.05) and had a negative impact; increased mis-
match decreased quality.

Table 4 shows the results of our analysis. We find that organiza-
tional mismatch provided a better fit (i.e., higher R2) when model-
ing branch quality in both, Windows Vista and Windows 7. The
effects of our measures of organizational and architectural
measures on defects in branches are shown in Table 5 (same for-
mat as Table 3). This finding indicates that branches that cross-cut
organizational boundaries have a higher correlation with post-
release failures than branches that cross-cut architectural bounda-
ries. Therefore, we suggest that, contrary to traditional belief,
branching structures should not only align according to architec-
tural structure of the software, but also according to its organiza-
tional structure.
Our finding complements prior work that showed organizational
metrics outperform the traditional process and product metrics in
modeling software quality at the component level [13]. The dif-
ference between prior work and ours is that we examine the fail-
ures on a per branch basis and compare the effects of architectural
vs. organizational mismatch rather than examining only organiza-
tional mismatch. With regard to our hypotheses, we conclude:

• H4a: Branching according to architectural structure:
Architectural mismatch increases post-release failures in both
releases of Windows.

• H4b: Branching according to organizational structure:
Organizational mismatch increases post-release failures in
both releases of Windows.

• Architectural vs. Organizational Mismatch: Organizational
structure has a stronger relationship with failures than archi-
tectural mismatch.

Release Metric Min % Max % Direction

Windows
Vista

Branch
Activity 85±2.9 159±11 Positive

Branch Scatter 98±1.2 140±10.5 Positive

Branch Scatter
Entropy 83±3.8 111±2.3 Positive

Low Branch
Depth 92±3.8 141±15.4 Positive

Branch Depth
Entropy 86±8.4 111±5.2 Negative

Windows
7

Branch
Activity 78±7.4 151±26.2 Positive

Branch Scatter
Entropy 84±58 143±20.8 Negative

Table 3: Summary of metric relationships with failures

 Vista Windows 7

Arch mismatch 0.426** 0.308**

Org mismatch 0.543** 0.321**

Org + Arch 0.594** 0.385**

(p<0.01 **; p < 0.05 *)
Table 4: Model fit (R2) of architectural and organizational

mismatch

7. IMPLICATIONS
7.1 Future Research
Our work has implications for future work. Our findings indicate
that branching does indeed have an effect on post-release failures.
At the same time, we believe that there are scenarios where more
branching activity and scatter is expected, and we are not
advocating a “branch-free” development process. For example,
globally distributed teams, that are not able to communicate
frequently may have more branching activity than co-located
teams. This increase in branching activity is due to the fact that
distributed teams are more concerned about keeping each other
up-to-date and avoiding conflicts (since conflicts will require
them to communicate). Our experience in talking with developers
is that many failures that they deem “caused” by branching are in
fact not directly caused by the creation of a branch, but rather by
issues such as unmet (and sometimes unknown) coordination
needs, poor integration work, and changes that propagate to the
rest of the project late, all that result from how teams work as a
result of using branches.
We have identified which concrete aspects of branching are
related to decreased quality. However, changing the branching
structure will only affect quality to the degree that they change the
malignant behavior and process problems that lead to problems to
begin with. Indeed, our experience studying open source projects
that use branching heavily [5] [26] suggests that different projects
use branches in their development processes differently.
Understanding which “branch processes” lead to better outcomes
than others in different contexts is a clear avenue for future
research, and we exhort others to study this and report their
findings (along with contextual details [27]) as we do the same in
contexts at Microsoft.

7.2 Practical Implications
Our results have important practical implications. Based on our
findings in this study, we make the following recommendations to
software practitioners:

• Practitioners should aim to reduce branch activity since it
may lead to an increase in the likelihood of failures.

• Practitioners should aim to reduce the scattering of develop-
ment across many branch families since branch scatter in-
creases the likelihood of failures in Windows Vista.

• When deciding how to best align branch structure, organiza-
tional mismatch should be closely considered by practition-

ers since it has a stronger relationship with failures than ar-
chitectural mismatch.

Based on our findings, we are working with product groups within
Microsoft and suggesting that, in addition to aligning branching
structure according to architectural structure, branching structures
should align with the organizational structure of their teams.
When combined with prior work that empirically evaluates Con-
way’s Law ([14] [13]), this study provides further evidence that
the makeup and organization of software teams has a direct rela-
tionship with quality. Development projects (especially those at
large scale) would do well to consider this mounting body of evi-
dence.

8. THREATS TO VALIDITY
Threats to Construct Validity: consider the relationship between
theory and observation, in case the measured variables do not
measure the actual factors. We use post-release failures to
measure software quality. In certain cases, it might be more
beneficial to use pre-release failures as a measure of quality since
branching may cause integration failures that are often reported as
pre-release failures. However, in our case changes were used to
identify pre-release failures, therefore, using them to measure
quality as well would introduce bias in our study. More
importantly, post-release failures represent those failures not
caught by QA processes and are more costly as they are customer-
facing failures.

When evaluating the effect of architectural and organizational
mismatch on branch quality, we measured branch failures as a
ratio of development that a component had on that branch times
the number of failures for that component. Ideally (and if
possible), one would map each failure to the branch that the it
was introduced in. However, we were unable to create such a
mapping due to lack of data.

Threats to External Validity: consider the generalization of our
findings. The studied projects are both developed by Microsoft
and follow processes that are defined by the development and
management teams at Microsoft. A common misconception about
industrial research at large companies such as Microsoft is that the
software projects are not representative of other software projects
and thus not valuable. This is not true. While projects might be
larger in size, most development practices at Microsoft are
adapted from the general software engineering community outside
Microsoft. Many commercial and OSS projects also use branches
to partition work and filter changes based on quality and this
study represents a first step in examining the relationship between
branching and quality. Therefore, we believe that this study can be
replicated on other large software systems that use branches.
Another frequent misconception is that empirical research within
one company or one project is not good enough, provides little
value for the academic community, and does not contribute to
scientific development. Historical evidence shows otherwise.
Flyvbjerg provides several examples of individual cases that
contributed to discovery in physics, economics, and social science
[28]. W. I. B. Beveridge observed for social sciences: “More
discoveries have arisen from intense observation than from
statistics applied to large groups” (as quoted in Kuper & Kuper
[29] p. 95). This should not be interpreted as a criticism of
research that focuses on large samples or entire populations. For
the development of an empirical body of knowledge as
championed by Basili [30], both types of research are essential.

Lastly, a common misinterpretation of empirical studies is that
nothing new is learned (e.g., “I already knew this result”).

 Vista Windows 7

Metric Min % Max % Min % Max %

Managers 100±5 135±24 100±6 146±34

Leads 78±6 201±25 83±8 156±29

Engineers 65±8 217±24 67±14 169±25

Components 92±10 120±8 88±9 119±11

Subcomponents 88±9 130±9 89±9 113±11

Table 5: Summary of organizational and architectural
mismatch on branch quality

However, such wisdom has rarely been shown to be true and is
often quoted without scientific evidence. This paper provides such
evidence: Most common wisdom and intuition is confirmed (e.g.,
“binaries with more branch activity tend to have more failures”)
while some is challenged (e.g., “branches should be divided along
architectural boundaries”).

9. CONCLUSION
We have presented the first, but hopefully not last, empirical
evaluation of the relationship between various aspects of branch
use in a software project and post-release quality. We have
demonstrated not only that branch activity and branch scatter lead
to decreased quality, but we have also quantified the magnitude of
the relationship. Further, we have evaluated two differing
branching strategies and found that organizational alignment is
more important than architectural alignment, thereby allowing
software teams to make more informed decisions about their
branching structure. This evidence is being used within Microsoft
and can be of value to other software projects that use branching,
or are considering it, as well.

10. REFERENCES
[1] Walrad, C. and Strom, D. The importance of branching

models in SCM. Computer (2002), 31--38.

[2] Appleton, B., Berczuk, S., Cabrera, R., and Orenstein, R.
Streamed Lines: Branching Patterns for Parallel Software
Development. Vol. 2002, 1998.

[3] Premraj, R., Tang, A., Linssen, N., Geraats, H., and Vliet, H.
To Branch or Not to Branch? In Proceeding of the 2nd
workshop on Software engineering for sensor network
applications. 81-90, (2011).

[4] Wingerd, L. and Seiwald, C. High-Level Best Practices in
Software Configuration Management. In Proceedings of the
Sym. on System Configuration Management. 57-66, (1998).

[5] Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., Germán,
D.M., and Devanbu, P.T. The promises and perils of mining
git. In Mining Software Repositories.1-10, (2009).

[6] Bird, C., Zimmermann, T., and Teterev, A. A Theory of
Branches as Goals and Virtual Teams. In Proceedings of
CHASE. 53-56, (2011).

[7] Midha, A.K. Software configuration management for the
21st century. Bell Labs Technical Journal, 2 (1997), 154--
165.

[8] Buffenbarger, J. and Gruell, K. A Branching/Merging
Strategy for Parallel Software Development. In System
Configuration Management. 86-99, (1999).

[9] Perry, D.E., Siy, H.P., and Votta, L.G. Parallel changes in
large-scale software development: an observational case
study. ACM Transactions on Software Engineering and
Methodology (TOSEM), 10 (2001), 308--337.

[10] Nagappan, N. and Ball, T. Use of relative code churn
measures to predict system defect density. In Proceedings of
the 27th international conference on Software engineering
(2005), 284--292.

[11] Briand, L., Daly, J.W., and Wust, J. A Unified Framework
for Cohesion Measurement in Object-OrientedSystems.
Empirical Softw. Engg., 3, 1 (July 1998), 65--117.

[12] Brun, Y., Holmes, R., Ernst, M.D., and Notkin, D. Proactive
Detection of Collaboration Conflicts. In Proceedings of
ESEC/FSE11. 168-178, (2011).

[13] Nagappan, N., Murphy, B., and Basili, V.R. The Influence of
Organizational Structure on Software Quality: An Empirical
Case Study. In Proceedings of the International Conference
on Software Engineering. 521-530, 2008.

[14] Cataldo, M., Wagstrom, P.A., Herbsleb, J.D., and Carley,
K.M. Identification of coordination requirements:
implications for the Design of collaboration and awareness
tools. In Proceedings of the Conference on Computer
supported cooperative work (2006), 353--362.

[15] Shannon, C. A mathematical theory of communication. The
Bell System Technical Journal, 27 (1948), 379--423.

[16] D'Ambros, M., Lanza, M., and Robbes, R. An extensive
comparison of bug prediction approaches. In Mining
Software Repositories. 31-41, (2010).

[17] Hassan, A.E. Predicting faults using the complexity of code
changes. In International Conference on Software
Engineering. 78-88, (2009).

[18] Conway, M. How do committees invent? Datamation, 14, 4
(1968).

[19] Herbsleb, J.D., Mockus, A., Finholt, T.A., and Grinter, R.E.
An Empirical Study of Global Software Development:
Distance and Speed. In Proceedings of the 23rd International
Conference on Software Engineering. 81-90, (2001).

[20] Mockus, A. Organizational volatility and its effects on
software defects. In ACM SIGSOFT Int’l Symposium on
Foundations of Software Engineering. 117-126, (2010).

[21] Eaddy, M., Zimmermann, T., Sherwood, K.D., Garg, V.,
Murphy, G.C., Nagappan, N., and Aho, A.V. Do
Crosscutting Concerns Cause Defects? IEEE Transactions on
Software Engineering. Vol. 34, 4. 497-515, (2008).

[22] Ostrand, T.J., Weyuker, E.J., and Bell, R.M. Programmer-
based fault prediction. In International Conference on
Predictive Models in Software Engineering. 1-10, (2010).

[23] Cataldo, M., Mockus, A., Roberts, J.A., and Herbsleb, J.D.
Software Dependencies, Work Dependencies, and Their
Impact on Failures. IEEE Transactions on Software
Engineering, 35, 6 (2009), 864--878.

[24] Kutner, M., Nachtsheim, C., and Neter, J. Applied Linear
Regression Models. , 2004.

[25] Cataldo, M., Mockus, A., Roberts, J.A., and Herbsleb, J.D.
Software dependencies, work dependencies, and their impact
on failures. Software Engineering, IEEE Transactions on, 35
(2009), 864--878.

[26] Barr, E.T., Bird, C., Rigby, P.C., Hindle, A., German, D.M.,
and Devanbu, P. Cohesive and isolated Development with
Branches. In International Conference on Fundamental
Approaches to Software Engineering. To appear, (2012).

[27] Murphy-Hill, E.R., Murphy, G.C., and Griswold, W.G.
Understanding context: creating a lasting impact in
experimental software engineering research. Workshop on
Future of Software Engineering. 255-258, (2010).

[28] Flyvbjerg, B. Five misunderstandings about case-study
research. Qualitative inquiry, 12 (2006), 219-245.

[29] Kuper, A. and Kuper, J., eds. The Social Science
Encyclopedia. Routledge, 1985.

[30] Basili, V.R., Shull, F., and Lanubile, F. Building knowledge
through families of experiments. IEEE Transactions on
Software Engineering, 25 (Jul/Aug 1999), 456-473.

