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ABSTRACT
Today’s software development is distributed and involves contin-
uous changes for new features and yet, their development cycle
has to be fast and agile. An important component of enabling this
agility is selecting the right reviewers for every code-change - the
smallest unit of the development cycle. Modern tool-based code
review is proven to be an effective way to achieve appropriate code
review of software changes. However, the selection of reviewers
in these code review systems is at best manual. As software and
teams scale, this poses the challenge of selecting the right reviewers,
which in turn determines software quality over time. While pre-
vious work has suggested automatic approaches to code reviewer
recommendations, it has been limited to retrospective analysis. We
not only deploy a reviewer suggestions algorithm -WhoDo - and
evaluate its effect but also incorporate load balancing as part of it
to address one of its major shortcomings: of recommending expe-
rienced developers very frequently. We evaluate the effect of this
hybrid recommendation + load balancing system on five reposito-
ries within Microsoft. Our results are based around various aspects
of a commit and how code review affects that. We attempt to quanti-
tatively answer questions which are supposed to play a vital role in
effective code review through our data and substantiate it through
qualitative feedback of partner repositories.

CCS CONCEPTS
• Human-centered computing → Empirical studies in collabo-
rative and social computing; • Software and its engineering →
Software configuration management and version control systems;
Software maintenance tools; Programming teams.
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software-engineering, recommendation, code-review

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE 2019, 26–30 August, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Sumit Asthana, B.Ashok, Chetan Bansal, Ranjita Bhagwan, Christian Bird,
Rahul Kumar, Chandra Maddila, and Sonu Mehta. 2019. WhoDo: Automat-
ing reviewer suggestions at scale. In Proceedings of The 27th ACM Joint
European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering (ESEC/FSE 2019). ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Large software projects have continuously evolving code-bases
and an ever changing set of developers. Making the development
process smooth and fast, while maintaining code-quality is vital to
any software development effort. As one approach for meeting this
challenge, code review [1, 2] is widely accepted as an effective tool
for subjecting code to scrutiny by peers and maintaining quality.
Modern code review [3], characterized by lightweight tool-based
reviews of source code changes, is in use broadly across both com-
mercial and open source software projects [17]. This form of code
review provides developers with an effective workflow to review
code changes and improve code and this process has been studied
in depth in the research community [5, 6, 11, 13, 17–20, 23].

One topic that has received much attention over the past five
years is the challenge of recommending the most appropriate re-
viewers for a software change. Bacchelli and Bird [3] found that
when the reviewing developer had a deep understanding of the code
being reviewed, the feedback was "more likely to find subtle defects
... more conceptual (better ideas, approaches) instead of superficial
(naming, mechanical style, etc.)". Kononenko et al [12] found that
selecting the right reviewers impacts quality. Thus, many have pro-
posed and evaluated approaches for identifying the best reviewer
for a code review [4, 8, 14, 15, 22, 24, 26] (see section 2 for a more
in-depth description of related work). At Microsoft, many devel-
opment teams have voiced a desire for help in identifying those
developers that have the understanding and expertise needed to
review a given software change.

The large and growing size of the software repositories at many
software companies (including Microsoft, the company involved
in the evaluation of our approach) has created the need for an
automated way to suggest reviewers [3]. One common approach
that several projects have used is a manually defined set of groups
that identify experts in an area of code collectively. These groups are
used in conjunction with rules which trigger the addition of groups
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whenever files in a pre-defined part of the system change (e.g., add
participants in the Network Protocol Review group whenever a
file is changed in /src/networking/protocols/TCPIP/*/). This
ensures that the appropriate group of experts are informed of the
file change and can review it. However, such solutions are hard to
scale, suffer from becoming stale quickly, and may miss the right
reviewers even when rules and groups are manually kept up to
date.

Motivated by the need for help in identifying the most appropri-
ate reviewers and the difficulty of manually tracking expertise, we
have developed and deployed an automatic code review system at
Microsoft called WhoDo. In this paper, we report our experience
and initial evaluation of this deployment on five software reposi-
tories. We leverage the success of previous works like Zanjani et
al. [26] that demonstrated that considering past history of code
in terms of authorship and reviewership with respect to the cur-
rent change is an effective way to recommend peer reviewers for a
code change. Based on the positive metrics of our evaluation and
favorable user-feedback, we have proceeded to deployWhoDo onto
many additional repositories across Microsoft. Currently, it runs
on 123 repositories and this number continues to grow rapidly.

As discussed in Section 2, reviewer recommendation has been
the subject of much research. However, it is not clear which of these
systems have been deployed in practice and the evaluation of such
recommendation systems has consisted primarily of historical com-
parison, determining how well the recommendations match what
actually happened and who participated in the review. While such
an offline evaluation [9] is useful, it may not provide an accurate
picture of the impact of the recommendation system when used in
practice. For example, there is an (often implicit) assumption that
those who participated in the review were in fact the best people
to review the change and those who were not invited were not
appropriate reviewers. To address this concern, in this paper we
report on the deployment of our reviewer recommender to a set of
software projects at Microsoft, a large and diverse software com-
pany. Our evaluation measures impacts quantitatively, examining
user involvement and time to completion of reviews, as well as
qualitatively through a user study of the developers that used our
system.

In addition, we find that the proposed reviewer recommendation
systems in literature do not take into account reviewer load, the
distribution of reviews across available reviewers. In practice, we
found that reviewer recommendation systems will often assign a
large proportion of reviews to a small set of experienced developers
(e.g., 20% of the developers in a project are assigned 80% of the
reviews). To address this, we present the first (to our knowledge)
approach that incorporates load balancing into live reviewer rec-
ommendations along with an evaluation of the positive impact of
load balancing.

We describe our efforts from building this model to deploying it
to scaling it to repositories across Microsoft. In this paper, we:

• Provide a description of a straightforward, interpretable au-
tomatic code reviewer recommendation system that works
in practice.

• Describe the problem of load balancing and present an ap-
proach to address the issue of unbalanced recommendations.

• Provide an evaluation of the recommendation system in live
production.

• Present the results of a user study of software developers
that used the recommendation system.

2 RELATEDWORK
Tool based code review is the adopted standard in both OSS and
proprietary software systems [17] and many tools exist that enable
developers to look at software changes effectively and review them.
Reviewboard1, Gerrit2 and Phabricator3, the popular open source
code review tools and Microsoft’s internal code review interface
share some common characteristics:

• Each code change has a review associated with it and almost
all code changes (depending on team policies) have to go
through the review process.

• Each review shows the associated changes in a standard diff
format.

• Each review can be reviewed by any number of developers.
Currently, reviewers are added by the author of the change
or through manually defined rules.

• Each reviewer can leave comments on the change at any
particular location of the diff pinpointing errors or asking
for clarifications.

• The code author addresses these comments in subsequent
iterations/revisions and this continues until all comments
are resolved or one of the reviewer signs-off.

One potential bottleneck of the above workflow is addition of
code reviewers by authors. This is a manual activity and several
social factors [7] such as developer relations, code knowledge play
a role in it. This system, while, effective is also biased towards inter-
personal relations which can lead to incorrect assignment in cases
of large repositories where groups of teams are changing different
code areas. A change affecting an unknown area might be signed-
off by a teammate without appropriate expertise in the related area.
To mitigate this effect, the code review interface has provisions
for defining manual rules on files that if changed, would trigger
addition of certain group aliases who own that file. One of the prin-
cipal motivations of our system is to extend this kind of ownership
definition beyond manual rules and track it automatically over time.

We are certainly not the first to attack the challenge of building
a system to automatically recommend developers for code-review.
Balachandran [4] was the first to introduce a system for recom-
mending reviewers. His tool, Review Bot, recommends reviewers
for a review based by determining which source code lines were
changed and identifying those who had reviewed the previous
changes that modified or added those same lines in the past.

RevFinder [21, 22], subsequently proposed by Thongtanunam
et al. is based on the idea that those who have reviewed a file in
the past are qualified to review that file in the future. The intuition
behind RevFinder is that files that have similar paths are similar
and should be managed and reviewed by similar experienced code-
reviewers.

1https://www.reviewboard.org/
2https://www.gerritcodereview.com/
3https://secure.phabricator.com/
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Tie, an approach introduced byXia et al. [24] builds on RevFinder
by using file path similarity metrics and incorporating a text mining
component that examines the code review request and compares it
to the text in previously completed code review requests.

cHRev, developed by Zanjani et al. [26], uses historical informa-
tion including how frequently and recently a developer provided
code review comments about a file, in addition to the total number
of review comments made for a file, to rank the best developers to
review a change to that file in the future. Our model is based on
participation in past reviews for a file, but also incorporates the
history of developers that made changes to the file, as we found that
in some cases, the primary author of a file never actually provided
code review comments about it. In these cases, the primary author
should still be recommended to review changes.

Jeong et al. [10] developed amethod for recommending reviewers
for source code changes based on a variety of features including size
of the change (both in lines of code and files affected), the identity
of the author of the change, the names of the files changed, source
code features such as counts of various keywords and braces, and
even bug report information such as bug severity and priority if
the change was intended to correct a related bug.

Ouni et al. [14] even incorporated socio-technical collaboration
graphs of developers into reviewer recommendation based on the
notion that “the socio-technical factor related to the relationship
between reviewer contributors is a crucial aspect that affects the review
quality”. Their work was inspired by Yang et al’s findings that
developers’ communication social networks is a strong predictor of
their activity and collaboration with regard to code review (which
they term “peer review”) [25].

Rahman et al. [15, 16] actually determined developers’ expertise
by looking across multiple projects. Their approach attempts to de-
termine if developers’ had used particular libraries or technologies
in other projects that would make them appropriate reviewers for
a change in a particular project. They gathered data from GitHub4
to determine the history of changes that developers had made and
what technologies/libraries they had used in the past.

Our report differs from this body of work in three primary ways.
First, as our goal is to recommend reviewers quickly for repositories
that may be very large, we use a simplified approach that uses only
one data source, the history of PRs in a project. We do not rely
on bug databases, an ecosystem of software projects, a history of
developer communication, or features of source code that would
require some level of code analysis. These add complexity, require
additional data sources (that may or may not exist), and take addi-
tional time. Second, while the existing systems mentioned used a
retrospective, historical approach to evaluate the performance of
their approaches, we deploy our reviewer recommendation system
and evaluate it based on the results of it being used in practice.
Third, our experience is that reviewer recommendation systems of-
ten suggest a small set of developers to participate in most reviews,
leading to a very skewed assignment of reviews. As a result, we
are the first to both identify the problem and address it by incorpo-
rating reviewer load balancing into our reviewer recommendation
system.

4http://www.github.com

3 SYSTEM DESIGN
In this section, we first describe the WhoDo reviewer recommen-
dation algorithm in detail with specific emphasis on the scoring
function used to prioritize reviewers. Next, we describe how we
augment the algorithm to balance load across all reviewers.

3.1 Scoring Function
WhoDo’s scoring function creates a ranked order of developers as
potential reviewers for a pull-request using commit and review his-
tories. Developers who have in the past either committed changes
to the files in the pull-request, or have reviewed files in the pull-
request, are more likely to be added as reviewers. We say that a
developer has reviewed a pull-request if and only if they have either
signed off on the pull-request, or left at least one comment.

Given a pull-request, the score for each reviewer is:

Score (r ) = C1.
∑
f ∈F

nchanдe (r , f ) .
1

tchanдe (r , f )
+

C2.
∑
d ∈D

nchanдe (r ,d) .
1

tchanдe (r ,d)
+

C3.
∑
f ∈F

nr eview (r , f ) .
1

tr eview (r , f )
+

C4.
∑
d ∈D

nr eview (r ,d) .
1

tr eview (r ,d)

where r is the reviewer, F is the set of all files in the pull-request,
andD is the set of all last-level parent directories that are changed in
the pull request.nchanдe (r , f ) is the number of times reviewer r has
committed changes to file f in the past.nr eview (r , f ) is the number
of times reviewer r has reviewed file f . Similarly, nchanдe (r ,d) is
the number of times reviewer r has committed changes within
directory d and nr eview (r ,d) is the number of times reviewer r
has reviewed files in directory d . Hence, the larger the number of
times a reviewer has interacted with the file (or last-level directory
in which the file sits), the higher the reviewer’s score.

tchanдe (r , f ) is the number of days since reviewer r changed
file f , and tr eview (r , f ) is the number of days since the reviewer
reviewed file f . Similarly, tchanдe (r ,d) is the number of days since
reviewer r changed directory d , and tr eview (r ,d) is the number
of days since the reviewer reviewed files in directory d . These
terms are in the denominator. Hence, reviewers with more recent
interactions with the files and directories of the pull-request will
have lower values for these, and WhoDo will rank them higher.

C1, C2, C3 and C4 are constant coefficients. An administrator
deploying WhoDo can manipulate these four coefficients to weigh
authorship over reviewership, or vice-versa. Giving more weight to
code authorship loops in more junior developers in the recommen-
dation system, since junior developers tend to write code more than
review code. In our deployments of WhoDo, we wanted to give
equal weightage to both authorship and reviewership and therefore
set all coefficients to 1.0.

Finally, WhoDo picks the reviewers with the top k scores and
adds them as reviewers to the pull-request.

3
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3.2 Load Balancing
The function we described in Section 3.1 does not attempt to bal-
ance load across developers. Consequently, WhoDo may assign a
disproportionately high load to a few active and knowledgeable
developers, who have reviewed and committed to multiple parts
of the code-base regularly. In this section, we show how WhoDo
addresses this issue.

Wemodify the score based on the load of the reviewer to mitigate
the affect of such unbalanced recommendations. We term this as
ScoreLoadBalanced.

ScoreLoadBalanced (r ) =
Score (r )

Load (r )

Load (r ) =eθ .TotalOpenReviews

TotalOpenReviews is the total number of incomplete pull-requests
to which the developer has been added as a reviewer. By using
this metric, we aim to capture the current review workload of the
user. θ is a parameter between 0 and 1 to control the amount of
load balancing: the higher the value of θ , the more aggressive is
the load balancing. We use the exponential function to smoothen
our assignments. Figure 1 shows the value of Load(reviewer ) for
different values of θ . Choosing θ of 0.5 will decrease our original
reviewer score by a load value of 7.3 if the reviewer has more than
4 active reviews, while choosing θ of 0.2 will cause a penalty of
3.32 only This gives the deployers of WhoDo an intuition on how
to choose the appropriate value of θ for their repositories.

Figure 1: The load as a function of different values of the
parameter θ

To evaluate this load balancing strategy, we simulated WhoDo,
both with and without load balancing on one of our organization’s
repositories, LargeRepo5. We ran this experiment for a period of
two months. We set θ in the load balancing algorithm to be 0.5. This
is because we wanted to start levying penalty when the average
load crosses a limit of 5 open reviews. Figure2 shows a comparison
of WhoDo with and without load balancing. We plot a metric that
we call suggestion frequency for each reviewer, which is the number
of times WhoDo suggested the reviewer in the evaluation period.
5More details of LargeRepo are given in Section 6.2

The graph shows the suggestion frequencies for all reviewers. The
x-axis shows reviewers sorted in decreasing order of suggestion
frequency for WhoDo without load balancing.

The graph suggests that, with load balancing, WhoDo performs
a better distribution of reviews across all reviewers. The average
suggestion frequency without load-balancing is 10.10, and the stan-
dard deviation is 10.17. With load balancing, the average suggestion
frequency is 9.34 and the standard deviation is reduced to 5.67. In
Section 6.4, we show additional results on how WhoDo improves
reviewer assignments after deploying the load balancing algorithm
on LargeRepo. It is to be noted however, that load balancing comes
at the expense of reduced expertise on code-reviews since the al-
gorithm is not choosing the most optimal set of reviewers but the
most optimal reviewers with minimum load.

Figure 2: Effect of aggressive load balancing. X-axis shows
developers, leftmost aremore senior. Y-axis depicts the num-
ber of times the developer was suggested by the algorithm.

4 DISCUSSION
We identify that evaluation of the reviewer recommendations prob-
lem is hard because we know the people who did the review but we
don’t know of people who did not do the review but were eligible to
do so. For this reason, we did not start off with a machine learning
approach as it requires ground truth in the form of positive and
negative labels. It would be wrong to treat all the people who did
not do the review as negative samples.

Developers are more comfortable with reviewers within their
immediate organization. So they decide to add reviewers who are
in their own organization, even if they are not the right reviewers.
That said, there is some value in adding "close" reviewers because
closer reviewers may bemore familiar with the change. This follows
from the fact that feature development often happens in groups
of small teams and corresponding team member are often familiar
with the change. This factor is difficult to adopt in our evaluation.

Besides, the scoring function defined by us is highly interpretable
because of its simple summation of contributions. For an initial
deployment scenario when the system is deployed, a very important
task that we saw recurring was the request for the interpretation
of suggestions by developers which also helped us identify various

4
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shortcomings of the system and understand the problem at a deeper
level.

5 DEPLOYMENT

Figure 3: Pipeline for the WhoDo recommendation service

Figure 3 provides an overview of the deployment of the WhoDo
reviewer recommendation service. The first stage is aggregating
the past history of developers that the scoring model defined above
can use. We maintain a comprehensive set of repository data like
files changed, review information, changes, etc. which is updated
incrementally every four hours. As part of this data, we also record
the number of changes and reviews by each developer to every
file path they work on in the repository and the last time of such
activity. Recording such information makes it very easy for the
scoring model to query this information directly and aggregate it
across all candidate reviewers.

The standard tool for code review inside Microsoft is Azure De-
vOps which provides an interface similar to open source tools like
Gerrit, GitHub with a page for each pull-request. The page contains
all the information that code reviewers might need for the pull-
request and functionality for adding comments, adding/removing
reviewers, etc. Our service is hooked to the Azure DevOps service
and gets triggered to show a reviewer recommendation whenever
a new pull-request is created or an existing one modified.

5.1 Showing recommendations
We had three choices on how to show the recommendations to the
developers:

• Suggest reviewers as a comment on the pull request.
• Add optional reviewers to the pull request.
• Add required reviewers to the pull request.

The first case, of commenting is non-invasive, where its the pull
request author’s choice to add a suggested developer as a reviewer.
In the last two cases, suggested developers get a notification of

addition to the pull request. Optional reviewers are not required to
sign-off on the pull request for it to be deemed complete, where
as required reviewers need to sign-off on the pull request for it
to be considered complete. We did not consider the first option,
as it requires vigilance on part of code authors to actively work
on our suggestions, whereas the last option would have meant an
incorrect reviewer needing to sign-off on the pull request. Therefore,
we considered adding our suggestions as optional reviewers as a
healthy trade-off between passive and active addition.

6 EVALUATION
Wehave deployedWhoDo on 123 repositories withinMicrosoft. Our
evaluation focuses on five of these repositories. We now provide a
summary of the different experiments we used to evaluate WhoDo.

In Section 6.2, we provide statistics that characterize these repos-
itories. Next, we describe WhoDo’s performance on these reposito-
ries in Section 6.3, without load-balancing. Eventually, we deployed
the WhoDo load-balancing algorithm on the LargeRepo repository.
We describe WhoDo’s load-balancing performance in Section 6.4.

To understand how to improve WhoDo, we performed a user-
study, the results of which we summarize in Section 6.5. Finally, to
see if our results compared well with previous-work, we performed
a retrospective analysis of WhoDo on the same five repositories,
asking questions of how WhoDo’s reviewer suggestions, if it had
been deployed earlier, would have compared to the current manual
process of adding reviewers. We describe this in Section 6.6.

We first describe themetrics used for both parts of our evaluation.
Next we describe the results.

6.1 Metrics
As noted earlier, the ultimate goals of WhoDo are to improve code
quality and increase deployment agility. Hence, we use the follow-
ing metrics to evaluate it.

• Hit rate:WhoDo’s goal is to choose the right set of reviewers
so that the pull-request owner does not have to add any re-
viewers manually. The WhoDo hit-rate is the fraction of PRs
in a repository for which at least one of the reviewers sug-
gested by WhoDo reviewed the PR. In other words, WhoDo
is successful in choosing the right reviewer(s) who review
and complete the PR. A better hit-rate signifies the service
was able to successfully identify a reviewer, and therefore
offload that task from the author.

• Average number of reviews per PR:Weevaluate if, post-deployment,
WhoDo achieves a larger number of completed reviews per-
PR on average than before it was deployed. Having this
larger number through an automated service will hopefully
improve the code quality as more expert reviewers are ex-
amining the code.

• Average PR completion time:We evaluate if, post-deployment,
WhoDo reduced the average PR completion time for a repos-
itory. A reduced PR completion time also reduces the time
to deploy a code-change into production, thereby improving
deployment agility. WhoDo achieves this by choosing the
right set of reviewers as soon as the PR owner creates the PR,
rather than waiting for the owner to manually determine
the right set of reviewers.
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• Average per-reviewer active load: This metric helps evaluate
the efficacy of the WhoDo load-balancing algorithm. We
define per-reviewer active load as the average number of
open reviews that a reviewer has on any given day. We
then average this across all reviewers to get the average
per-reviewer active load.

6.2 Repository Characteristics
Table 1 characterizes the five repositories which we use to evaluate
WhoDo. The LargeRepo repository is the largest, with roughly 120
active developers and more than 8 PRs per day on average. Medium-
Repo has a similar number of active developers, but fewer PRs per
day. The other 3 repositories are smaller in size, with roughly 10-20
active developers and about 2 PRs per day. The table also shows
the date of deployment of service, and the service remains active
to-date on all repositories. Developer coverage for each repository
reflects the percentage of total number of files in the repository that
a developer has touched on an average. Note that the developer
coverage seems higher for the smaller repositories. Cut-off date
refers to the date up to which we take the pull-requests for all our
analyses.

6.3 WhoDo Performance
Wenow state our findings, using themetrics described in Section 6.1,
from WhoDo’s five deployments. Table 2 summarizes our results.

6.3.1 PR Completion Time. We find that, for the smaller reposito-
ries SmallRepo1, MediumRepo, SmallRepo2, and SmallRepo3, the
PR completion time improves significantly, between 13.03% and
21.39%.For the larger LargeRepo repository, without load balancing,
increases by about 14%

We had received complaints of overloaded reviewers from the
larger repo, so further investigation revealed that a fundamental dif-
ference exists between reviewer expertise in smaller versus larger
repositories. In smaller repositories, developers have expertise in a
larger fraction of the code-base. The developer coverage metric in
Table 1 shows this. As a result, the fraction of suitable reviewers
for a pull-request is larger for a small repository than it is for a
large repository. Contrarily, in larger repositories, most reviewers
are experts on only a small set of code-paths within the code-base.
However there do exist some senior, experienced reviewers whose
expertise extends to a larger set of code-paths in larger reposito-
ries too. This is evident from the coverage numbers in Table 1.
Therefore, when we deployed WhoDo without load-balancing on
the large repository, these senior reviewers were assigned a dis-
proportionately large set of reviews, causing a backlog and hence,
affecting overall PR completion time. We addressed this issue by de-
ploying load-balancing into the LargeRepo repository, after which
PR completion time showed further improvement. The results are
in Section 6.4.

6.3.2 Average Number of Reviews. All repositories saw a signifi-
cant increase in average number of reviews per PR. For LargeRepo
though, the increase is significantly more, i.e. 45.66%. We found
that though WhoDo was automatically adding suitable reviewers,
developers were manually adding additional reviewers who they
worked closely with. Consequently, each pull-request was being

examined by a larger set of expert reviewers than before. Based on
this finding, a future goal of WhoDo is to capture author-reviewer
affinity into the model.

6.3.3 Hit Rate. Finally, we evaluated the hit rate that WhoDo pro-
vided.We explain the hit rate and its implication usingMediumRepo
as an example. Note, from Table 2, that MediumRepo had the lowest
hit rate of 58.16%. This means that, for 41.84% of all 589 PRs, i.e.
246 PRs, none of the reviewers suggested by WhoDo interacted
with the PR, and that the owner manually added at least one other
reviewer that WhoDo did not suggest. PR owners adding reviewers
manually has the effect of reducing the hit-rate on all 5 repositories.
To understand why owners add reviewers manually, we performed
the user study described in Section 6.5.

6.4 Load Balancing
We implemented load-balancing intoWhoDo and deployed it on the
LargeRepo repository on 20th December, 2018. We have collected
data on WhoDo’s performance with load-balancing for 45 days. We
have data on WhoDo’s performance without load-balancing for 56
days. Table 3 summarizes the results of this experiment.

Note that after we deployed load balancing, the PR completion
time reduced significantly, from 70.46 hours to 57.92 hours. While
WhoDo without load-balancing on the LargeRepo repository did
not have a significant effect on PR completion times (shown in
Table 2, WhoDo with load-balancing decreased it by 17.79%. The
average reviews per PR also increased from 3.86 to 4.05. In addition,
we see that the active load on reviewers goes down significantly
from 0.663 to 0.359, a decrease by 45.85%. This analysis shows that
larger repositories such as LargeRepo benefit significantly from
using the load-balancing algorithm. Table 4 shows the upper and
lower quantiles, median, mean of pull-request completion times
for the LargeRepo repository. We note that the majority of our
drop in pull-request completion times arises from the higher end,
i.e. pull-requests which take longer. We argue that this is mostly
because a majority of pull-requests which comprise of changes to
one or two files wouldn’t get affected by the increase in number
of reviews. Its only the pull-requests which are major changes
and require a thorough review, which will benefit from the more
available reviewers.

6.5 User Study
As shown in Table 2, WhoDo achieves good hit rates. However,
there are still cases in which, in spite of WhoDo’s automatic re-
viewer additions, several PR owners manually added other review-
ers. The objective of this user study was to understand why this
was happening.

We conducted a user-study by sending email to 75 PR owners
spread across all 5 repos. We sent only one email per developer, to
avoid spamming them and selected only those PRs for investigation,
where none of our 3 recommendations proved useful. In the email,
we asked them their reason for adding the reviewers. We provided
them the following options:

(1) Were the reviewers WhoDo added not relevant?
(2) Were the reviewers WhoDo added from a different team?
(3) While WhoDo’s suggestions were valid, did you add review-

ers because they were available to review promptly?
6
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Repository Active
developers

Average
PRs per day

Developer
Coverage

Total Files Total pull-
requests

Deployed
WhoDo

Cut-off date

SmallRepo1 20 2.1 11.49% 2218 252 10/10/2018 5/2/2019
MediumRepo 113 2.68 1.27% 6440 526 11/12/2018 5/2/2019
SmallRepo2 12 2.43 18.09% 383 196 10/10/2018 5/2/2019
SmallRepo3 13 1.31 22.81% 482 220 10/10/2018 5/2/2019
LargeRepo 116 8.4 2.49% 7750 793 24/10/2018 5/2/2019

Table 1: WhoDo has been deployed on 5 repositories of varying sizes. This table summarizes the characteristics of these repos-
itories, and for how long WhoDo has been active on them.

No. PRs PR Completion Average Number WhoDo Hit
Repository Processed (hours) Of Reviews Rate%

before after before after %impr before after %impr
SmallRepo1 168 258 56.06 44.07 21.39 1.478 1.66 12.11 68.35%
MediumRepo 3268 589 74.88 61.59 17.75 1.74 1.65 5.17 58.16%
SmallRepo2 370 245 19.73 16.55 16.12 1.25 1.45 16.00 78.18%
SmallRepo3 487 222 21.27 18.50 13.02 1.25 1.47 17.6 80.18%
LargeRepo 1787 474 74.26 63.71 14.20 2.65 3.86 45.66 72.54

Table 2: Aggregate PR statistics before and after the deployment of WhoDo service on select repositories

Measure Before Load After Load % %
Balancing Balancing Improvement Improvement over baseline

No. of days of deployment 56 54 - -
No. of PRs 474 415 - -
PR Completion time(hours) 70.46 57.92 12.54 17.79
Average Reviewers per PR 3.86 4.05 4.92 52.83
Average per-reviewer active load 0.663 0.359 45.85

Table 3: Evaluation of load balancing on LargeRepo repository

Q/4 Median 3Q/4 Mean
Before Load Balancing 2.80 22.71 90.65 70.46
After Load Balancing 2.63 20.60 72.82 57.92

Table 4: Statistics of PR completion times on the LargeRepo repository. All values in hours

(4) Do you know the recommended reviewers or have worked
with them before?

(5) Was there any other reason for adding reviewers?

We received a total of 28 responses. The results are summarized
in Figure 4. In most cases, the developers chose the third option,
i.e. while WhoDo’s suggestions were valid, they knew of someone
who could review their PR almost immediately. Evidently enough,
the response statistics were split into 2 categories

As is clear from Figure 4, there is a clear difference in statistics in
response of smaller vs larger repos. A large portion of responses in
SmallRepo1 state that the recommendations were valid but some-
one else did the review because they were available at the time. This
feedback suggests thatWhoDo is making manymore valid reviewer
suggestions than the hit rate suggests, but also that WhoDo’s scor-
ing function needs to capture current availability of reviewers as
well. We leave this for future work.

Figure 4: Email response on test repositories

Developers for LargeRepo had different feedback to give. Rather
than adding reviewers from their own team, WhoDo added review-
ers from other teams. Here are two example responses:

7
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• Reviewers, while not irrelevant, were not really required to
review the specific changes - Touching a config file which is
used by a lot of components led our model to suggest people
who touched that file most often, even though they were
form a different team.

• WhoDo keeps adding people from different teams and they
didn’t help review at all - This is a drawback of our scoring
system and of all the solutions before this since they are in-
herently similar. We intend to incorporate team information
to fix this problem in our next iteration.

From this user-study, we learn that to improve WhoDo’s hit-rate
we have to include two factors. First, the model should include the
affinity between authors and reviewers, such as team information,
so that we can suggest reviewers who are already familiar with the
author. Second, we should include information on the availability of
the reviewer, for instance, by observing their schedule or calendar.

6.6 Retrospective Analysis
We also performed a retrospective analysis of WhoDo on all five
repositories. The goal of this analysis is to see how well WhoDo’s
suggestions match reviewers who the developers chose manually.
This analysis is akin to that performed in previous-work [26], which
is similar to our work in that they measure prior activity of devel-
opers. Their approach differs in that they look solely at comments
and they count them whereas we look also at sign-offs, as we noted
that, especially for small changes, sometimes a reviewer signs-off
on a change without making any comments.

We note that this retrospective analysis is an important part
of our study because before deploying the scoring model or any
changes to it thereof, it helps establish a baseline level of accuracy
for the system and acts as a sanity check.

Table 5 describes this results of this analysis. Similar to the
previous work[26], we use the following metrics in this analysis,
so that we place it well for comparison against past work:

precision@m =
|RR(p) ∩AR(p)|

RR(p)

recall@m =
|RR(p) ∩AR(p)|

AR(p)

F − score@m =2.
precision@m.recall@m

precision@m + recall@m

where RR(p) and AR(p) are the recommended reviewers and the
actual reviewers who contributed in the review process of the code
change p respectively.m is the size of the recommendation list. In
our case, we recommend 3 developer on pull-requests so we only
report @3 numbers for comparison with previous work.

Additionally we define PR Hits (P@n), as the fraction of all
pull-requests where we were able to make at least one positive
suggestion as an indication of the usefulness of the recommendation

WhoDo obtains very high values for PR Hits for all repositories,
the lowest value being 68.85% and the highest being 96.57%. This
means that in 96.57% of all PRs in the SmallRepo3 repository, one
of the reviewers that WhoDo suggested did in fact complete the
review.

Overall, while the precision and recall numbers do not seem high,
they are comparable to previous systems. For instance, cHRev [26]
reported numbers for four repositories with average precision 0.39,
average recall of 0.69, and average F1-score of 0.5. WhoDo obtains
an average precision of 0.44, an average recall of 0.47, for an average
F1-score of 0.44. These numbers provide a ballpark for their perfor-
mance, but aren’t an exact comparison because they were evaluated
on different software projects with different characteristics (e.g.,
different numbers and distributions of developers and their activity)
The reason why these numbers are not higher could be explained
by our user-study as well. Our user-study found that often there
are multiple reviewers who are qualified to review the PR, but the
owner of the change chose the developer who was most readily
available. We are investigating ways to infer developer availability
and use it to augment the recommended reviewer ranking.

7 CONCLUSION
In this paper we reported our experiences and results from imple-
menting and deploying a code review recommendation system. Our
system, which identifies potential code reviewers based on their
prior experience working with the files and directories involved
in a code review, has been deployed in five software projects at
Microsoft and performs well in helping the right developers to
review the right changes. Of note, we discovered that reviewer rec-
ommendation systems may suffer from reviewer load imbalance and
we have mitigated this issue through a load balancing mechanism.
Use of load balancing leads to a less skewed review assignment
and a decrease in review latency. As far as we know, this is the
first study to report on a deployed code reviewer recommendation
system at scale. We also presented a comprehensive evaluation that
included a set of goal driven metrics, a user study of developers that
used the system, and finally retrospective analysis similar through
that used in other reviewer recommendation studies. We have also
identified the additional factors of author-developer affinity and
reviewer availability when recommending reviewers and we plan to
investigate this in the future. We believe that others implementing
reviewer recommendation in their own software organizations can
benefit from the ideas and findings in this paper.
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