
Detecting Patch Submission and Acceptance in OSS Projects

Christian Bird, Alex Gourley, Prem Devanbu
Dept. of Computer Science

UC Davis
Davis, CA 95616,USA

cabird,acgourley,devanbu@ucdavis.edu

Abstract

The success of open source software (OSS) is com-
pletely dependent on the work of volunteers who con-
tribute their time and talents. The submission of
patches is the major way that participants outside of
the core group of developers make contributions. We
argue that the process of patch submission and accep-
tance into the codebase is an important piece of the
open source puzzle and that the use of patch-related
data can be helpful in understanding how OSS projects
work. We present our methods in identifying the sub-
mission and acceptance of patches and give results and
evaluation in applying these methods to the Apache
webserver, Python interpreter, Postgres SQL database,
and (with limitations) MySQL database projects. In
addition, we present valuable ways in which this data
has been and can be used.

1 Introduction

One of the primary tenets of the open source phi-
losophy is that anyone can decide to contribute to a
particular project in any way that they want. The suc-
cess of OSS projects is highly dependent on a stream
of newcomers who are able and willing to contribute
in a number of ways such as writing documentation,
fixing bugs, adding new features, sharing technical ex-
pertise, providing support to users, etc. While each
OSS project has a core group of developers with write
access to the source code (and in some cases documen-
tation) within it’s repository, newcomers without this
privilege can also make contributions. These contri-
butions are primarily made by submitting patches on
project mailing lists. In our investigations, the mail-
ing list participant pool is usually one to two orders of
magnitude larger then the inner circle of developers.

However, only some of the mailing list participants
actually submit work-gifts in the form of patches. Most
developers are drawn from this smaller group. There-

fore, the patch submission and acceptance process is
critical to OSS communities and worthy of study. We
present a method of collecting patch submission and
acceptance data that has largely been overlooked until
now. This mined data can give us finer grained in-
sights into OSS communities (which have largely been
divided into the roles of developers, dev mailing list
participants, and users), give more information about
the files contained in project file repositories, and tell us
more about developers themselves by examining their
submissions prior to becoming developers and their re-
views afterwards.

We have developed a method to both detect patch
submissions on the project mailing lists and determine
if the submitted patch was applied to the codebase
within the project repository. In this paper we discuss
some of the issues faced in datamining patches in an
open source project and present our methods for over-
coming them. We also present our findings and a pre-
liminary evaluation from applying these methods to the
Apache, Python, PostgreSQL, and MySQL projects.
In addition, we discuss ways in which this patch data
has been used and can be used in the future.

2 Related Work

This work is inspired by two studies of OSS projects.
Nicolas Ducheneaut performed an ethnographic study
on the Python project which emphasized the impor-
tance of patches in the development and social pro-
cess [3]. Von Krogh et al examined joining scripts
(among other things) for newcomers and the pro-
cesses by which they made contributions to the Freenet
project [5]. In addition, there is a large body of litera-
ture which supports the notion that patch submission
is a critical aspect in open source software.

3 Methodology

The process of detecting patch submissions and ac-
ceptances is part of a much larger project at UC Davis

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

that aims to mine many forms of data from various
OSS projects and use that data to understand how
these projects work. We already have many of the
tools in place for this form of detection and analy-
sis. For each project under study, we have downloaded
and analyzed the complete source code repository and
the developer mailing lists. The results of the analy-
sis, stored in a database system, contains information
such as who made changes to what files in the reposi-
tory or what messages were sent on a particular date.
With the full text of every message sent and every file
ever checked into the repository, we are ready to begin
the process of detecting submitted patches and deter-
mining which of them were accepted and applied. In
the OSS world, a patch file usually represents a num-
ber of changes to be applied to multiple files within
a codebase. For each file, there is a series of contigu-
ous changes called patch hunks. For our purposes, we
divide these multi-file patches into individual patches,
one per file needing modification. Thus, if a contrib-
utor posts a message that contains a patch modifying
two files, we treat these as two separate patches. With-
out loss of information this allows us to examine patch
acceptance at a finer level of granularity.

3.1 Patch Submission Detection

The developer mailing list(s) is, in most projects,
the prescribed medium by which patches are submit-
ted for review and application to the repository. There-
fore, the first step of detecting patch submissions and
extracting the bodies of those patches for use later in-
cludes analysis of the full text of the messages posted
on this mailing list.

Patches are created by running the diff utility on
original and modified versions of the same file or files.
Thus, although there are multiple formats for patches
(e.g. unified, context, etc), the number of forms is
limited and easily recognizable.

For purposes of illustration, below is a “patch of-
fering” from mailing list participant Mark Bixby sug-
gesting a modification to the “configure” file in apache
1.3.10 after testing a recent change on the MPE/iX
architecture.

From: Mark Bixby <mark_bixby@hp.com>
Subject: RE: Test the baby...
Date: 2000-01-17 14:34:28-08

Looks good on MPE/iX, except for some minor configure breakage.
Could somebody please apply this patch for me?

Thanks!
- Mark B.

--- apache_1.3.10/configure Tue Jan 11 11:47:42 2000
+++ apache_1.3.10_m/configure Mon Jan 17 13:55:58 2000
@@ -339,6 +339,10 @@

iflags_program="${iflags_program} -e .exe"
iflags_core="${iflags_core} -e .exe"
;;

+ *MPE/iX*)
+ default_layout="Apache"

+ iflags_program="-m 755"
+ ;;

*)
default_layout="Apache"

@@ -357,9 +361,6 @@
set -- --with-layout="$default_layout" "$@"

fi
;;

- *MPE/iX*)
- iflags_program="-m 755"
- ;;
esac

We use a series of regular expressions to detect any
known forms of headers in the bodies of all messages
from the mailing lists. The headers indicate the form
of the patch, the name of the file being patched, and
the path to the file in the repository (though the last
is not always accurate).

We dealt with two issues when detecting and ex-
tracting patches from the messages. First, since the
body of the patch is embedded within the normal text
of the message, it is difficult to determine where the
patch actually ends. This is partially overcome by us-
ing the line counts contained within the headers for
each hunk of the patch. However, this is complicated
by the second issue, which is that some email clients au-
tomatically wrap long lines of text (which often occur
in source code). We therefore use a hand-tuned heuris-
tic based on the content of each line (such as whether
the first character is whitespace or not) to determine
where the patch ends and the normal email communi-
cation begins again. Random sampling indicates that
this technique incorrectly marks the end of a patch in
an email less than 5% of the time.

Once the patches have been detected and extracted
from the messages, we store the body of the patch along
with author and file information in our database.

3.2 Finding Patch Applications

We’re also interested in which patches were actually
accepted into the codebase. At a high level, this process
seems relatively trivial. One simply needs to determine
which file in the repository the patch references and
check the patch against every version of that file. This
ends up being more difficult than it sounds. We have
found that the directory path in patch headers are often
inaccurate. Therefore, in order to determine which file
the patch may apply to, we search the entire repository
for any file with the same name. In addition, in order to
reduce computational time, we constrain the versions
of files that we test to those that exist in the time
interval from one day before to 80 days after the patch
submission. After testing without this limitation, we
found that this interval safely finds nearly all successful
patch applications (common sense and experience also
indicate that patches aren’t applied much earlier or
later than time of submission).

Checking a particular version of a file to see if it ap-
pears that a patch has been applied is also somewhat

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

difficult. It’s possible to use the patch -R command,
which attempts to apply the patch in reverse. The
problem with this approach is that patched files are
sometimes modified prior to being committed to the
repository. If a developer applies a submitted patch
and then moves a curly brace from the end of one line
to the beginning of the next, the original patch will
not reverse apply and this approach will yield a false
negative. In this case the problem is that patches are
line based. Other issues that we encountered causing
false negatives were comments being added, removed,
or modified, and variables being renamed prior to com-
mitting patched files.

In an effort to improve the recall of our patch appli-
cation detection process, we wrote our own tool to deal
with these problems and other issues that may be en-
countered in the future. To address the problem of line
based changes (such as the moved curly brace above),
our tool reads both the patch and candidate file and
produces two sequences of tokens. We use specialized
scanners for files depending on the programming lan-
guage used (determined by file extension) and also a
generic scanner for files containing natural text or un-
recognized languages. Due to the object oriented na-
ture of our tool, it is quite easy to extend the generic
scanner to recognize new languages by simply specify-
ing the keywords, comments, identifiers, symbols, etc.
with extended regular expressions.

Once the candidate file and patch have been tok-
enized, we utilize various matching techniques to de-
termine if the patch token sequence appears in the
candidate file token sequence. To deal with comment
addition, deletion, and modification, we attempt to
match the patch token sequence against the file token
sequence both with and without comments. In some
cases, we found patches that consisted solely of a mod-
ification to a comment in order to clarify code. Our
tool is able to recognize cases such as this and act ac-
cordingly. We also account for other problems such as
tokenizing correctly when patches begin or end within
a multi-line comment.

Identifier renaming is a common modification to
patched files prior to committing. Many projects have
naming conventions that well-meaning newcomers may
not be aware of. To mitigate this problem, we check
to see if the patch token sequence appears in the can-
didate file modulo identifier-renaming. Below is an ex-
ample of such an occurrence from our own data. In
this case, the type ap bucket brigade in the patch
has been renamed to apr bucket brigade in the file
after patch application but prior to commit. The first
section of code is from the body of a submitted patch
while the second section represents portions taken from
mod cgi.c itself.

+typedef enum {RUN_AS_SSI, RUN_AS_CGI} prog_types;
+typedef struct {
+ prog_types prog_type;

+ ap_bucket_brigade **bb;
+} exec_info;
+
/* KLUDGE --- for back-combatibility, we don’t have to check ExecCGI

...
+ const char **argv;
+ ap_bucket_brigade *bcgi;
+ ap_bucket *b;
+

typedef enum {RUN_AS_SSI, RUN_AS_CGI} prog_types;
typedef struct {

prog_types prog_type;
apr_bucket_brigade **bb;

} exec_info;

/* KLUDGE --- for back-combatibility, we don’t have to check ExecCGI
...

const char **argv;
apr_bucket_brigade *bcgi;
apr_bucket *b;

We found that in some cases, the patch itself only
applied a renaming of variables (such as when plat-
form specific #define’s in GCC have changed). Our
tool also checks for this and requires exact identifier
matches in these cases.

We examine each hunk of the patch in turn and
check to see if it was applied to the corresponding file.
We use a tuneable threshold for the proportion of hunks
that must be applied for the patch to be considered
successfully accepted. For our purposes, we set this
value to around 3/41. If a successful application is de-
tected, the corresponding database entry for the patch
is updated with the matching file location and version
information for use in later analysis.

4 Results

We have tested our patch mining process on the
Apache webserver, the Python interpreter, and the
PostgreSQL and MySQL database systems. In the
case of MySQL, we only gathered submission data be-
cause we were unable to check out versions of their files
due to their use of a proprietary source code manage-
ment tool (BitKeeper). Table 1 shows the results of
our patch mining for these projects. The values indi-
cate the total number of patch submissions, number
of submissions by non-developers2, total number of ac-
ceptances, number accepted from non-developers, and
distinct number of people who made submissions and
had accepted patches.

Apache Python Postgres MySQL

Patches Submitted 4267 644 1209 185
by non-devs 2101 315 856 137
Patches Accepted 1087 173 591 NA
from non-devs 448 69 407 NA
ppl who submitted 253 106 172 47
ppl with accepted 106 44 92 NA

Table 1. Results of using our tool on projects studied.

1This value is more of a “gut feel” than anything else. We
wanted a patch to be mostly accepted for us to indicate it as so.

2Non-developer indicates someone who was not a developer
at the time of submission.

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

4.1 Evaluation

In order to evaluate our patch mining process we
need to measure both the recall and precision of our re-
sults [4]. Measuring precision requires testing for false
positives, which turns out to be quite easy. We can ex-
amine a patch and the file that the patch was applied
to according to our tool and a quick inspection can
usually determine if the two do in fact match. A ran-
dom sampling of 100 patch applications indicated by
our tool yielded 97% accuracy. All of the errors were
within natural language text (comments or documen-
tation); we are looking into addressing this problem.

Recall, which measures the false negative rate, is
harder to determine in the absence of a benchmark or
a codebase where the true patch acceptance informa-
tion is known. In lieu of either of the above we use
the results of analysis of the Apache project by Alonso
et al. [1]. In CVS log messages in Apache, develop-
ers (who commit the change) acknowledge submitters
(who provide the change). We consider only the sub-
missions that came from non-developers; in Apache,
these change submissions can be expected to appear
on the mailing list3. This is not a perfect benchmark,
since change (or patch) submissions may be received by
private email or may be informal change submissions
rather than actual patches; or they may be heavily
modified before application. However, we can place a
lower bound on the recall of our approach by determin-
ing which of the commits containing submissions made
by non-developers in the CVS logs were also flagged as
files that had successful patch applications by our tool.
When evaluating recall in this way, we show a mini-
mum 46% recall rate. Indeed, we conceptually catego-
rize patch submissions into three categories: rejected,
accepted, and accepted with modification, the latter
of which, in general, is difficult (if not impossible) to
recognize. For the accepted category, we believe that
our implementation will give very good results; for the
modified category, we find those that only have whites-
pace changes and consistent identifier renamings. It’s
possible that some patches were accepted but the pro-
portion of accepted hunks was below our threshold of
3/4. We plan to study the effect of threshold on recall.

Finally, even as we attempt to improve the recall
performance (by trying to deal with patches accepted
after modification) we argue that patches that are ac-
cepted without modification are per se a phenomennon
worthy of study, since they indicate a high level of ex-
pertise by the patch submitter.

5 Uses of Patch Data

The data produced from datamining patches can
shed light on how and why OSS projects work. In a

3Developers may communicate changes privately

companion paper in MSR 20074, we mounted a quan-
titative statistical analysis of how and when OSS mail-
ing list participants became full fledged developers for
three of the projects studied in this paper [2]. Data
such as the number of patches submitted and the per-
centage of patches accepted was included. We found
that this data represented highly significant predictors
in the Apache and Python projects and improved the
model for the PostgreSQL project.

We plan to use this data to help in our investigation
of questions such as: Are certain areas of the code-
base more prone to patch submission/acceptance than
others? This could indicate code with more bugs or
code that is more easily understood for newcomers.
Are there particular developers who accept most of the
patches submitted by non-developers? This may help
us understand the roles played by different develop-
ers within a project. What is the distribution of patch
submissions/acceptances across time and relative to re-
leases? This could aid in examining the development
cycle within an OSS project.

6 Conclusion

We have presented a method of collecting data re-
lated to OSS communities that to our knowledge has
largely been overlooked until now. This data has im-
plications in it’s ability to augment analysis of both
the software artifact itself and the social community
that exists surrounding an OSS project. Although this
form of data is just one tile in the mosaic of informa-
tion that has been gathered with respect to the open
source movement, we believe that it is an important
one. We have discussed some of the technical hurdles
that have been overcome in the collection of patch re-
lated data, given a somewhat preliminary evaluation of
our methods, and shared possible uses of this data. In
the future, we plan to refine our tools in conjunction
with seeking better ways to evaluate them.

References

[1] O. Alonso, P. Devanbu, and M. Gertz. Extraction of contribu-
tor information from software repositories. Unpublished http:
//wwwcsif.cs.ucdavis.edu/∼bird/papers/alonsomsr2006.pdf.

[2] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and G. Hsu.
Open Borders? Immigration in Open Source Projects. In Pro-
ceedings of the 4th International Workshop on Mining Soft-
ware Repositories, 2007.

[3] N. Ducheneaut. Socialization in an Open Source Software Com-
munity: A Socio-Technical Analysis. Computer Supported Co-
operative Work (CSCW), 14(4):323–368, 2005.

[4] F. W. Lancaster. Information Retrieval Systems: Character-
istics, Testing, and Evaluation. Wiley, 2nd edition, 1979.

[5] G. von Krogh, S. Spaeth, and K. Lakhani. Community, joining,
and specialization in open source software innovation: a case
study. Research Policy, 32(7):1217–1241, 2003.

4Please see http://wwwcsif.cs.ucdavis.edu/∼bird/
papers/bird2007obi.pdf

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

