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Abstract
Large services experience extremely frequent changes to code
and configuration. In many cases, these changes are corre-
lated across files. For example, an engineer introduces a new
feature following which they also change a configuration file
to enable the feature only on a small number of experimen-
tal machines. This example captures only one of numerous
types of correlations that emerge organically in large services.
Unfortunately, in almost all such cases, no documentation
or specification guides engineers on how to make correlated
changes and they often miss making them. Such misses can
be vastly disruptive to the service.

We have designed and deployed Rex, a tool that, using a
combination of machine learning and program analysis, learns
change-rules that capture such correlations. When an engineer
changes only a subset of files in a change-rule, Rex suggests
additional changes to the engineer based on the change-rule.
Rex has been deployed for 14 months on 360 repositories
within Microsoft that hold code and configuration for ser-
vices such as Office 365 and Azure. Rex has so far positively
affected 4926 changes without which, at the very least, code-
quality would have degraded and, in some cases, the service
would have been severely disrupted.

1 Introduction

Large-scale services run on a foundation of very large code-
bases and configuration repositories. To run uninterrupted, a
service not only depends on correct code, but also on correct
network and security configuration, and suitable deployment
specification. This causes various dependencies both within
and across components/sources of the service which emerge
organically. When an engineer changes a certain region of
code or configuration, these dependencies require them to
make changes to other code or configuration regions. For
instance, when an engineer adds a new feature to a service,
they may need to add a function to test the feature. Also, they
may need to configure the service to deploy the new feature

only to a small set of machines to test it further. Similarly,
when an engineer renames a service API, they must also
change firewall rule specifications so that the rules apply to
the now renamed API rather than to the old one.

Such correlations can occur between code files across com-
ponents, between code and configuration files, or between
configuration files. Unfortunately, unlike pure code, which
goes through compilation, reviewing and systematic testing
to weed out bugs, these correlations are often not specified,
checked for, and are left undocumented. Consequently engi-
neers, with no documentation or specification to go by, often
miss making necessary changes to code or configuration files.
This can delay deployment, increase security risks and, in
some cases, even disrupt the service completely. Disruptions
due to such correlations are surprisingly frequent [12]. For
instance, an engineer recently caused a disruption at Sales-
force because they did not perform all necessary dependent
configuration changes related to a change they initiated [22].

To address this problem, we present Rex, a tool that learns
these correlations using a combination of machine learning
and program analysis. Using association rule mining on many
months of file changes, Rex determines sets of files that often
change together. Rex also uses differential syntax analysis
to learn change-rules: each change-rule captures a set of
correlated changes across files. When an engineer makes a
file change, Rex analyzes the change and uses the change-
rules to suggest additional changes if required.

While the idea of using association rule mining to deter-
mine correlations in code and configuration has been pro-
posed before [6, 35, 37], previous work has not concentrated
on generalizing the algorithm. To the best of our knowledge,
Rex is the first tool that combines association rule mining
with syntactic analysis to determine change-rules. Moreover,
Rex takes the crucial step of making correlated change anal-
ysis generalize well to multiple file-types and services, and
deploying it at a large-scale. We do this through three key
observations made by studying the characteristics of services:

1. Correlations occur in a multitude of unpredictable ways.
Consequently, Rex’s algorithm should not rely on any hard-
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coded domain knowledge, neither should it depend on any
manual configuration or tuning.

2. Configuration management practice varies widely across
services and projects. Every service has distinct configura-
tion management and maintenance strategies as a result of
which machine learning models have to be service or project-
specific, with no extrapolation from one to the other. To make
matters even more challenging, even a single service or project
can change characteristics significantly over time. Hence,
Rex’s models have to be periodically retrained so that its
suggestions can be accurate.

3. Care has to be taken while applying association rule
mining on large code and configuration files. Services depend
upon a large amount of code and configuration. Applying rule
mining which is exponential in the size of the input at the
level of individual code and configuration constructs is simply
not feasible. We realized this early in the design process and
therefore apply rule-mining at the file-level.

Rex is deployed on 360 Microsoft repositories which hold
code and configuration for services such as Exchange Online,
OneDrive, Azure, Dynamics CRM and Skype. We are cur-
rently scaling out Rex at a fast pace, on-boarding almost one
repository per day. Till date, Rex has suggested 4926 changes
to engineers that, if not made, may have adversely affected
our services in many ways.

In this paper, we make the following contributions:

• We demonstrate different types of correlations that exist
across code and configuration of large services.

• We describe a novel two-step algorithm to perform cor-
related change analysis involving file-level association
rule mining followed by differential syntactic analysis
of the changes made to the files.

• We have implemented and deployed Rex and provide an
evaluation based on our deployments.

• We have performed an extensive user study to understand
how useful Rex is in practice.

Section 2 describes different types of correlations Rex has
found across many services. Section 3 provides an overview
of Rex’s approach, limitations, and challenges. Section 4 ex-
plains the algorithms Rex uses to suggest changes. Section 5
and Section 6 provide specifics on its implementation and
deployment. Finally, Sections 7 and 8 describe a thorough
evaluation and user study respectively.

2 Reasons for Correlated Change

Correlations occur due to various reasons. In this section, we
describe several categories of correlations we found through
our deployments. Table 1 shows a sample of correlated
changes that engineers missed making and Rex flagged at

commit-time. We note that though these examples are specific
to our deployments, the problem of correlated configuration is
generic and extends to other organizations as well [14,22,27].
We now describe these categories of correlations with the help
of the examples in Table 1.

2.1 Flighting

When an engineer adds a new feature, they use canary-testing
or “flighting” to deploy it in stages. They first deploy it to
a small subset of machines to ensure that the feature works
as planned and does not cause disruptions. Once they ensure
this, they deploy the feature more widely. Hence, when the
engineer adds code to implement a new feature, they also
need to add configuration to files that define the set of ma-
chines that will test this feature. Services implement flighting
in many different ways. Example 3 shows an instance where
the engineer who develops the new feature decides which set
of machines to run the feature on. Example 7, for a different
service, shows an instance of a change where the engineer
who develops the new feature does not directly turn on the fea-
ture: they provide a “code switch” which other engineers can
use to turn on flighting. These two examples again illustrate
why Rex needs to learn such varied change-rules from data
and why rule-based engines would not work across services.

2.2 Replicating Code and Configuration

While clearly not recommended, we find that engineers some-
times replicate files and file contents across different logical
boundaries of the service. They do this since, without repli-
cation, there will be a larger number of dependencies across
files and components. This in turn will lead to less modular
code-bases which may take longer to test, debug, and deploy.
Example 2 shows an instance where a configuration file is
replicated across different alerting frameworks. An engineer
changed one, without knowing that a replica existed within
the other alerting framework. Rex flagged this file and the
engineer immediately changed the other file as well.

2.3 Complex Configuration

Configuring services is a complex task and, as a result, several
correlations show up between configuration files. Example 4
shows an instance where an engineer renamed a microservice,
but forgot to change the name of the service in the file that
contained its firewall rules. This could have caused a security
issue. Example 8 shows another instance where hardware
configuration files are correlated, and missing this change
could have caused a service disruption.
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No. File 1 File 2 Reason If File 2 unchanged
1 Source code

(JS)
Test file (JS) An engineer added new functionality to source-code and needed to add a unit-

test to test this functionality to another file.
Without the test, a bug in File
1 may go unnoticed.

2 Component
definitions
(C#)

Component
definitions
(C#)

An engineer changed a parameter in the definition of a set of components in
File 1. An alerting framework uses File 1 to determine which components to
probe and alert on. File 2, very similar to File 1, is used by a different alerting
framework for the same reason. Hence, the engineer had to make the same
changes to File 2 as well.

The second alerting framework
would malfunction, leading to
incorrectly suppressed alerts.

3 Feature set
definitions
(INI)

Flight defini-
tion (INI)

An engineer added a new feature to a service. She enabled the feature in de-
ployment by updating a settings file. Additionally, she had to specify how to
“flight” the change, i.e., which subset of machines to run the new feature on. File
2 contains these flight configurations for every feature.

The feature will not deploy un-
til the engineer changes File 2.

4 Microservice
Registry
(XML)

Firewall rule
definitions
(XML)

An engineer changed a microservice’s name in the microservice registry. File
2 holds a mapping from a set of microservices to the firewall rules that apply
to them, so the engineer needed to change the microservice’s name in File 2 as
well.

The required firewall rules
would not have applied to the
renamed microservice, causing
a security threat.

5 Shell script
(PS1)

File storing
security vul-
nerabilities
(XML)

File 2 keeps a record of potential security vulnerabilities such as cleartext
passwords and code susceptible to injection attacks. It stores a record with both
the offending file name, and the line number where the vulnerability exists. A
security scanner uses File 2 to ignore the vulnerabilities it specifies, to avoid
flagging the same vulnerabilities repeatedly. Hence, when an engineer adds or
removes lines from File 1, they need to appropriately change the line number of
the vulnerable code in File 2 as well.

The security scanner would ig-
nore a completely different,
potentially vulnerable, line of
code. This could cause a secu-
rity threat.

6 Shell script
(PS1)

Shell script
(PS1)

File 1 defines a function, File 2 calls it. The engineer made a change to the
function name and parameters in File 1, so they had to change how File 2 calls
the function. If this code were compiled rather than interpreted, the compiler
would have caught the error.

The scripts determine how the
service is deployed, and hence
this error would have caused de-
ployment to fail.

7 Style sheet
file (SCSS)

Flight defini-
tions file (C#)

An engineer made a web-design change in File 1, and wanted to flight it on
a small set of machines. File 2 contains definitions of “code switches” that
engineers can use to turn on the new design change.

Without an appropriate code
switch, engineers cannot turn
on the design change, and
hence, this would have caused
unnecessary deployment de-
lays of the new look.

8 Config file
maintaining
SKU infor-
mation of
machines in
a Data center
(XML)

File main-
taining rack
definitions
for the
data center
(XML)

Operators update File 1 when a new set of machines with a new SKU is intro-
duced to the data center. If the new machines are deployed, also need to update
File 2 which specifies which machines sit in each rack.

Several other functions use
these configuration files. Incor-
rect data center configuration
can cause faulty functioning of
the service and hence disrup-
tion.

Table 1: This table describes some real examples of correlated changes that engineers missed and Rex flagged in our deployments.
The Reason column captures why the two files are correlated. The last column describes what may have happened, had Rex not
flagged the issue and notified the engineer.

2.4 Testing

Example 1 shows that, when an engineer adds a new feature
to code, they should consider adding a new test for that feature
in a separate file that contains only tests. While this is fairly
common across multiple code-bases and services, each code-
base has its own organization structure for separating test code
from the main production code. Rex automatically detects
such structures without any manual input.

2.5 Scripting

Often, administrators use scripts to test and deploy services.
These scripts can have complex inter-dependencies which,
unlike compiled code, can go unchecked at commit-time. For
instance, in Example 6, an engineer changed function defini-
tion in one script and hence they had to change the way the

function was called in another script. Rex caught this issue,
while existing IDEs and compilers could not.

2.6 Miscellaneous

Apart from the categories we have mentioned so far, Rex also
flags somewhat rare cases of correlation which can have high
impact. In Example 5, File 2 maintains a list of line-numbers
of vulnerable code across different files in the code-base. The
idea is to maintain a record of all vulnerabilities that have
already been found and vetted by engineers. Thus, when an
engineer adds n lines of code to File 1, they also changed
the line number of the vulnerable code in File 1. Hence they
need to increment the line number in File 2 by n. While such
categories of correlations are rare, we notice multiple such
rare cases. This further confirms the value of using a learning-
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based approach.
Note that, for simplicity, the table shows examples that

involved only two files. In reality, change-rules can contain
more than two files. Moreover, the correlations for similar
tasks are very different for different services. Example 3 and
Example 7 in Section 2.1 talks about two different ways of
flighting a feature. Even within a service, the correlations are
dynamic and keep changing with time. We believe no existing
syntactic or semantic analysis techniques or heuristic based
model could have effectively and efficiently captured such
diverse and complex correlations.

3 Problem Overview

In this section, we define the problem that Rex solves, the
approach to it, and describe some limitations of the approach.
Finally, we lay out the challenges we faced as we designed
and deployed Rex.

3.1 Approach

Rex applies association rule mining on months of commit
logs to find correlated changes. Association rule mining is
fundamentally an exponential algorithm. Finding correlations
between individual configuration parameters and code con-
structs such as variables and functions will be prohibitively
expensive simply because of the sheer large numbers of such
constructs [28, 33, 35]. Hence to scale well, we decided to
mine change-rules at the file-level. While the approach is
coarse-grained and does not capture correlations perfectly, it
makes the solution practical to deploy at a large scale.

Rex learns change-rules in two steps: change-rule discov-
ery and change-rule refinement. In the discovery step, it uses
association rule mining to find sets of files that change to-
gether “frequently”. A set of parameters determine how fre-
quently the files need to change for Rex to learn the change-
rule. Section 4.2 provides more detail on this algorithm and
Section 4.5 shows how we tune its parameters to maintain
effectiveness through changing characteristics of the service.

After change-rule discovery, Rex runs the second step,
namely, change-rule refinement. The idea is to make each
change-rule, which is coarse-grained and at the file-level,
more precise. Rex analyzes the change in every file of the
change-rule to determine what types of changes are corre-
lated. Section 4.3 describes this procedure further. Finally,
Rex makes suggestions to engineers based on the learnt rules.

3.2 Design Goals

Rex’s design is driven by two factors. First, it needs to be
generic: its techniques need to work well across file-types,
service-types, and programming languages. Second, it needs
to be effective: it should find subtle misconfigurations and

bugs which existing tools cannot catch. To achieve these
goals, our solution has the following characteristics:
No Manual Inputs: The main goal of Rex is to help engi-
neers find misconfigurations and bugs early, while minimally
intruding upon on their already busy schedule. We therefore
design it to work with existing systems and logs, and do not
require any additional logging or inputs from the engineers.
We believe this is one of the main reasons that Rex is being
adopted widely across our organization over multiple services.
Correlation, not causation: Rex flags correlations, and does
not detect causality because the cause of a specific set of
correlated changes may not be captured by any logs. For
instance, consider Example 2 in Table 1: changing one file
of component definitions does not cause the change in the
other. An engineer was extending the alerting infrastructure
to a larger number of components, and this caused the need
to change both files.

3.3 Scope
As with any machine learning-based approach, Rex is a best-
effort service. Sometimes it may miss suggesting required
changes (false-negatives) and conversely, it also suggests
changes when none are needed (false-positives). As we de-
scribe in Section 4, we tune Rex so that it catches as many
misconfigurations as possible even though this may come
at the cost of a higher number of false-positives. Take for
instance Example 5. We need to change File 2 only if the
line-number of a vulnerable code-snippet in File 1 changes.
It is fundamentally difficult for a generic technique to learn
the specific semantics of this particular correlation. Rather,
Rex suggests that the engineer change File 2 whenever they
change File 1, even if the line-numbers in File 1 do not change.
Such a suggestion will be a false-positive.

3.4 Challenges
Determining the right set of correlations has several chal-
lenges associated with it.
Imperfect Ground-truth: The largest challenge we faced as
we designed Rex was imperfect ground-truth. The reasons
for this are many. First, correlations are often subtle and do
not necessarily cause compile errors, deployment failures, or
immediate service downtime. Consider the issue in Table 1,
Example 1, where the engineer needs to add a test for a newly
added feature. This is not strictly necessary but definitely
recommended. However engineers are often hard-pressed to
commit and deploy fast and therefore may not add the test.
Hence the commit logs that Rex uses may not always see the
two files with the added feature and test changed together.
As a consequence, Rex may not learn the change-rule that
includes these two files.
Performance: Rex currently runs on 360 repositories, and its
adoption is increasing rapidly. Hence we need to ensure there
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Figure 1: Rex system design.

are no manual steps involved. Additionally, we need to ensure
that the rule mining algorithm does not become prohibitively
expensive.

4 System Design

In this section, we provide an overview of the different com-
ponents of Rex. We then describe each component in detail.

4.1 Design Overview

Figure 1 shows an overview of the Rex design. The Rex rule-
learning engine periodically learns change-rules that capture
which files change together and how. It uses several months
of commit logs to do this. For each commit, the commit log
contains information about which files changed, and how they
changed. Rex’s rule-learning engine runs two processes to
learn rules: change-rule discovery (Section 4.2) and change-
rule refinement (Section 4.3).

The Rex suggestion engine interfaces between the client
that uses Rex and the rule-learning engine. When an engineer
changes a file, the Rex client notifies the suggestion engine
of the change. The suggestion engine looks up applicable
change-rules to determine if the engineer may have missed
changing a correlated file. If so, the suggestion engine sug-
gests the additional file change back to the client. Our current
implementation of the Rex client is built for various source
control systems such as Git [29]. It adds suggestions as pull-
request comments, whenever required, after every commit in
a pull-request. More details on this are in Section 5.

When the Rex client provides the suggestion back to the
engineer, they either accept the suggestion by editing the sug-
gested file or not. Rex uses this behavior as feedback to the
rule-learning engine. Using this implicit feedback, Rex au-
tomatically tunes parameters used to learn the change-rules.
Section 4.5 provides more details on the tuning module and
why this is essential to scale Rex across hundreds of reposito-
ries. Very few engineers provide explicit feedback by replying
or resolving the comment and we do not use this because such
feedback is very limited and is inherently biased towards neg-
ative examples.

Figure 2: Some example rules from the change-rule discovery
step. Note that rules are not limited to only file pairs. Example
c) shows an example where two files are learned on the LHS.

4.2 Change-rule Discovery

In this section, we describe the first-step towards learning
rules, which is change-rule discovery. We use six months
of commit data for rule-mining. First, Rex prunes the com-
mit logs to exclude commits that are aggregates of smaller
commits caused by merging branches (squashed changes), or
porting a set of commits across branches. Since these commits
put together a set of smaller commits that may not have any
relation with each other, they do not capture true correlations
between files. Moreover, such large commits make mining
rules prohibitively expensive. Figure 2 shows some examples
of rules that Rex has learned.

Rex runs the rule mining algorithm considering each com-
mit as a transaction. First, it discovers frequent item-sets using
the FP-Growth algorithm [13]. A frequent item-set is a set
of files that change together very often. Mathematically, we
define a frequent item-set as F = { f1, . . . , fn} where files f1
through fn have changed together at least smin times. smin is
the minimum support defined for the model. The support of
the frequent item-set, sF, is defined as the number of times
files f1 through fn change together. Hence, sF ≥ smin.

Next, the algorithm generates change-rules from frequent
item-sets. From the frequent item-set F, Rex learns the rule
X =⇒ Y such that X⊂ F,Y⊂ F,X∩Y = φ,X∪Y = F.

The confidence of the rule is the number of times all the
files in F change together (support of file-set F) divided by
the number of times all the files in X change together (support
of file-set X). The rule’s confidence is therefore sX∪Y/sX.
Hence, the more often files in sets X and Y change together,
the higher the confidence of the rule. Rex learns a rule only if
it has confidence above a minimum confidence cmin.

4.3 Change-rule Refinement

In this Section, we describe the change-rule refinement pro-
cess. Currently our implementation supports configuration
files, but it can be extended to support code files as well. In
our description, we concentrate on xml files though the same
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Figure 3: Steps of change-rule refinement for a rule network_dc1.xml =⇒ network_dc2.xml. Three separate commits are
made to a single configuration file. Each one adds an XML attribute Network, but with different values. From each of these
three, Rex learns difference trees that codify the additions. All these difference trees are input to the anti-unification algorithm
which outputs a generalization for this type of addition.

techniques apply to other file-types such as json.

Consider the following examples which have arisen in our
deployments:

Ex 1. Network configuration: An engineer adds new
commands to a file NetConfig_dc1.xml that configure
racks in data center 1. These changes need to be ap-
plied to all data centers, and hence, the engineer has to
change similar configuration files for other data centers as
well, say NetConfig_dc2.xml. Rex should therefore sug-
gest these changes if the engineer does not make them.
However, in many cases, the engineer makes changes to
NetConfig_dc1.xml that apply only to data center 1 and
not to data center 2. For instance, they may add a new subnet
only to data center 1. In this case, Rex should not suggest
changing NetConfig_dc2.xml. Change-rule discovery alone
cannot differentiate these two scenarios.

Ex 2. Role-based access control: Several of our services
implement role-based access control. Engineers often define
a new role in a file RoleDefn.xml. When they do so, they
should also change RoleMembership.xml, which specifies
the users or groups that are associated with the new role.
However, if the engineer is only modifying an already exist-
ing role definition in RoleDefn.xml, they need not change
RoleMembership.xml.

These examples show that, in some cases, for a rule X =⇒
Y, Y changes only if X changes in a specific way. While for
code, compilers often catch such correlations and dependen-
cies, configuration files lack an equivalent safety net.

Change-rule refinement has two parts. First, given a config-
uration file xC, it learns all generalizations of additions, dele-
tions and modifications made to xC, where a generalization is
in the form of a regular expression. Next, for any change-rule
X =⇒ Y already learned by change-rule discovery where
xC ∈ X, it refines the rule further. We now describe these two
steps in detail.

4.3.1 Learning generalizations

Figure 3 shows an example of this. Rex creates a set of all
commits C that modify xC. For every commit in C, Rex com-
putes a syntactic difference between the old and new version
of xC. To do this, Rex constructs parse trees for both versions,
and then uses a novel differencing algorithm to compute the
difference between the two parse trees, which we call a differ-
ence tree. For example, in Figure 3, three changes were added
to xC in three different commits. Each change added an XML
node named network, but with varying attribute values. In
each case, Rex’s differencing algorithm outputs a difference
tree capturing the difference. The shaded vertices are XML
nodes, while the unshaded vertices are XML attributes.

Next, from the difference trees, Rex learns generaliza-
tions of the changes that happen to the configuration file.
To extract these generalizations, Rex uses the process of anti-
unification [15, 23]. The anti-unification algorithm learns reg-
ular expressions that are the most specific generalizations of
the difference trees. In each of the three changes shown in Fig-
ure 3, the xml attribute RackTypes has different values. The
xml attribute CommandConfig too has different text values.
Taking the three difference trees as input, the anti-unification
algorithm outputs the generalized difference tree, and thereby
the most specific generalization of the three changes.

While Figure 3 describes one example generalization,
a file xC may have many more such generalizations. Rex
learns all such generalizations of additions, deletions and
modifications to the configuration file xC. Say this set is
G(xC) = {g1,g2, . . . ,gn}.

4.3.2 Refining Rules

Next, given a rule learned during change-rule discovery
X =⇒ Y, where xC ∈ X, Rex learns more fine-grained rules
of the form {X,(xC,gi)} =⇒ Y,gi ∈ G(xC). This rule says
that when all files in X change, Rex will suggest changing Y
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only if the change to file xC matches generalization gi.
This is done in the following way. Say the number of times

a change in file xC matches gi and all files in Y change is
n. Conversely, say the number of times a change in file xC
matches gi and files in Y do not change is ñ. If n/(n+ ñ)> t,
where t is a threshold we call the refinement threshold, Rex
refines the rule by adding the tuple (xC,gi) to the left-hand
side of the rule. This means that Rex now makes the sugges-
tion only if the change to xC matches the regular expression
gi. Thus, change-rule refinement cuts down on false-positive
suggestions. In all our deployments, we set t to 0.75.

Though our implementation of the differencing algorithm is
specific to configuration files, we can also extend this to code
files. The code differencing algorithm could learn syntactic
features such as “function added", “if-condition changed", etc.
We could refine rules for code using these features. Based on
a careful empirical study we conducted while going through
true-positives and false-positives that change-rule discovery
generated, we observed that a lot of issues with code files
are already addressed by compilers. So, we do not see many
false-positives for code files when the engineer has commited
changes, because in most cases, engineers commit changes
after compiling the code. This will become more clear in the
next section 4.4 where we describe how these rules are used.
Rex uses these rules to make recommendations for missing
files after an engineer has committed a change. Such a tool for
code files would be helpful for developers if the suggestions
are made at IDE (Integrated Development Environment) level.
We leave this for future-work.

4.4 Suggestion Engine

In this Section, we describe how the Rex suggestion engine
uses the rules learned by change-rule discovery and change-
rule refinement.

When an engineer commits a code or configuration change,
the Rex client calls the suggestion engine which determines
the set of rules that match the commit. If there is a match,
the suggestion engine checks if any of the files in Y are un-
changed by the commit. If it does find such a file, the sug-
gestion engine recommends that the files be changed. If the
engineer does indeed change the suggested files, the sugges-
tion is considered a true-positive. Else, the suggestion is a
false-positive. These numbers are used both for parameter
tuning (Section 4.5) and evaluation for Rex (Section 7).

4.5 Parameter Tuning

As we deployed Rex on more projects and services, we no-
ticed that the frequency and the nature of changes varied
widely, not just across projects and services, but also within
the same project at different times. Hence, once a day, Rex
uses the feedback from the suggestion engine to tune models.

Figure 4: Screenshot of a Rex pull-request comment. Sensitive
text has been masked.

Association rule mining has two main tunable parameters,
the minimum support smin and the minimum confidence cmin.
Rex tunes only smin and sets cmin to a constant, relatively
low value of 0.5. This is because while we want change-rule
discovery to learn a relatively large set of rules, perhaps some
with low confidence, we use change-rule refinement to make
the rules more precise.

We train various models by varying the value of smin. We do
not set smin to values less than 4, since that leads to too many
rules and slows down rule-mining. We then evaluate each
model on one month’s data and pick the best one using the
described approach. We apply the model after every commit1.
We measure the number of false-positives and true-positives.
In addition, we also compute false-negatives for a model. This
is the number of true-positives that the model with smin set to
4 found, but the current model did not. Hence, we compute
every model’s false-negatives relative to the model with the
lowest value of smin, which learns the largest number of rules.

From these numbers, we can compute precision, recall and
F1-score for each model. Finally, we pick the model with the
highest F1-score and deploy it.

5 Implementation

Rex is implemented using C# on top of the .NET framework
and deployed using a combination of services provided by
Microsoft Azure [19]. Rex is currently deployed on 360 repos-
itories across multiple Microsoft services. There are three
main components of Rex:
Data Ingestion and Loading: Using Azure DevOps [18]
and Github [11] APIs, batch jobs execute at predefined inter-
vals to ingest information about pull requests, commits, files,
diffs, etc. for each repository where Rex is enabled. All data
is stored using SQL databases. Currently, there is a one-to-
one mapping between a repository and a database. The SQL
database schema is normalized and allows for efficient query-
ing of commit and file data. Newly onboarded repositories
are back filled with 6 months of data.

1Our evaluations are GIT-specific, so we apply Rex after every commit
to a pull-request. This approach extends to other version control systems as
well.
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Learning: For each repository, every day a new model is
learned. Currently, Rex uses the FP-growth algorithm [13] to
learn association rules from the six months of commit history
in a repository. Rex also analyzes xml files more deeply us-
ing XmlDiffAndPatch [10] in order to perform change-rule
refinement using the anti-unification algorithm [15, 23]. The
learned model and metadata about the model is saved in the
respective database for the repository; thus, resulting in a
repository-local model.
Decorator: The pull-request decorator performs the function-
ality of the suggestion engine. It subscribes to events in each
repository using APIs. For each pull-request that is created
or updated, the decorator mines details on the fly, performs
inferencing of the pull-request using the latest model stored
in the repository database and creates systematic comments
in the pull-request for all valid and new Rex suggestions.

6 Deployment

Deploying Rex is easy: an administrator of a repository only
needs to provide a URL of their repositories. Repo admins
need not provide any inputs to Rex, they need not configure
it, and hence the effort to on-board a repository is minimal.
We started deploying Rex with one repository in October
2018. Since then, its adoption has steadily grown. Rex is now
deployed on 360 repositories for services such as Exchange
Online, OneDrive, Azure, Dynamics CRM, and Skype.

No. Metrics Min Max
1 Total No. of Files 26 99235
2 % of Config Files in Repository 16% 100%
3 Avg.No. of Pull-Requests Per-day 1 279
4 No. of Engineers 3 2885

Table 2: Characteristics of repositories on which Rex runs.

Deployments are on very different types of repositories.
Table 2 summarizes the characteristics of the 360 repositories
that Rex is deployed on. The characteristics vary widely: we
host one of the largest git repositories in the world, while
we also host small, relatively inactive repositories. Row 2
captures that our repositories have varying amount of code
and configuration. Some repositories hold only configuration
information, while others hold mostly code.

6.1 Lessons
In this section, we will outline some lessons and insights we
have gathered from these varied deployments. We believe
these insights hold in general for tools such as MUVI [16],
DeepBugs [20], EnCore [35] and Getafix [24] which use
machine learning to flag bugs and misconfigurations.
1. We should distinguish between model precision vs deploy-
ment precision. No ML-based tool is perfect, and hence the

best way to evaluate it is by observing its precision, which is
the ratio of the number of true-positives to the total number of
suggestions made. In our implementation, a Rex suggestion
is a true-positive if, after it is made on a pull-request, the engi-
neer adds the suggested change within the same pull-request.

For bug and misconfiguration-detection tools, one needs to
compute two types of precision: model precision and deploy-
ment precision. Model precision is the ratio of true-positives
to total suggestions that the model makes on test data as op-
posed to a real deployment. Rex uses the last six months of
commit logs as test data. The deployment precision is the
ratio of the true positives actually observed in deployment to
the total number of suggestions shown to engineers.

Invariably, deployment precision is significantly lower than
the model precision. This is because Rex provides suggestions
only when the engineer makes a Git pull-request. This is after
the engineer has had an opportunity to weed out bugs and mis-
configuration through subsequent commits made after some
unit-testing and reviewing. For instance, say Rex predicts cor-
relations in 100 cases, of which 90 are correct (true-positives)
and 10 are incorrect (false-positives). The model precision is
thus quite high, i.e. 90%. In actual deployment though, say
engineers remember to make the right changes in 88 of the
90 cases Rex discovered. Hence rex shows suggestions only
in the 2 remaining cases. On the other hand, Rex does make
the same 10 false-positive suggestions. Thus the deployment
precision for Rex is 2/(10+ 2) = 16.7%. The deployment
precision may seem low, but it is important to note that the
suggestions made by Rex are for less obvious correlations
which the engineer is unaware of.
2. Flagging high-impact misses offsets the effect of low de-
ployment precision. In the example shown above, the 2 useful
suggestions made by Rex in deployment could actually avert
severe service disruption. By interviewing several engineers
we found that Rex is indeed flagging such issues, and as a
result, the engineers consider the low deployment precision ac-
ceptable. Therefore when we deploy Rex afresh for a project,
we ensure that engineers understand this trade-off and yet
appreciate the utility. Also, for this reason, we tune Rex not
just for high precision but also for high recall relative to the
baseline model, as described in Section 4.5.
Engineers want suggestion interpretability: Engineers like
to know why Rex makes a particular suggestion. Therefore,
along with every suggestion, we also provide an explanation
which shows the past commits from which Rex learned the
rule. If an engineer would like to understand the reason for a
Rex suggestion, they can view this explanation.

7 Evaluation

Rex has been in deployment for about a year now and has so
far found 4926 true-positive suggestions across 360 reposito-
ries, many of which have helped avoid severe service outages.
In this section, we evaluate Rex. The questions we ask are:
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1. How does change-rule discovery perform?

2. What value does change-rule refinement add over
change-rule discovery?

3. How useful is the parameter-tuning process?

4. What is the performance overhead of Rex?

7.1 Rex Precision
In this section, we evaluate both model precision and de-
ployment precision as we explained in Section 6.1. We first
evaluate change-rule discovery.

Table 3 shows the model and deployment precision for change-
rule discovery for 7 repositories across 4 services: OneDrive,
Azure, Exchange Online and Dynamics CRM. The model
was trained on 6 months of commit data and tested on 6 sub-
sequent months of test data. We find that the model precision
varies between 66.09% and 82.11%. The deployment preci-
sion varies between 6.84% and 16.74%. Notice that a higher
model precision does not necessarily imply a higher deploy-
ment precision. Consider Azure1 and OneDrive1. Though
they both have relatively high model precisions, OneDrive1
has a high deployment precision (16.74%) whereas Azure1’s
deployment precision is only 6.84%. We believe this variabil-
ity is due to various reasons specific to the repository, such
as the complexity of the repository, the nature of the configu-
ration and the learned rules, etc. Our user study in Section 8
explains this to some extent. We now compare precision for
change-rule discovery with and without change-rule refine-
ment (CRR). We use the same train-test split used to evaluate
change-rule discovery. We run this experiment only for con-
figuration files written in xml, config, csproj, proj, resx
and wxs formats since our differencing algorithm supports
them. We do not consider code files. Hence, the deployment
precision numbers vary slightly from the results in Table 3.

Table 4 shows the performance of Rex, with and without
change-rule refinement, for 6 repositories. In each case, while
model precision does improve, the deployment precision im-
proves significantly. For Exchange3, which had a very low
deployment precision of 5.03%, the deployment precision
with change-rule refinement increased to 18.00%, an increase
of about 250%.

7.2 Parameter Tuning
In this section, we justify the importance of tuning the mini-
mum support smin for change-rule discovery both across repos-
itories and also within a single repository.
Tuning across repositories:

The repositories that Rex is deployed on are extremely
varied and dynamic, with the number of pull-requests varying

Figure 5: Tuned smin vs repository size

between 1 to 279 per-day. Figure 5 plots, for every repository,
the tuned value of minimum support smin against the size
of the repository at a given point of time. The size of the
repository is the number of files in the repository. While there
is a clear correlation of 0.56 between repository size and smin,
the repository size by itself does not clearly tell us what the
value of smin should be. For instance, for size 700, depending
on the repository, smin varies from 4 to 23. This implies that
we need to tune smin for each individual repository.
Tuning within a repository: Even within a repository, char-
acteristics change over time. Figures 6a- 6d show the variation
of smin with time for four repositories. This variation can be
due to multiple reasons. First, decreased commit rates require
Rex to lower smin so that a healthy suggestion rate is main-
tained, even though precision may drop. Second, engineers
may add new files to the repository in which case the smin
may need to be lowered to learn rules specific to these files.

To understand this fluctuation better, Figures 6e- 6h plot
precision, recall and F1-score for one run of the parameter-
tuning algorithm for four repositories. Note that the recall
here refers to the recall based on the number of true-positive
suggestions made by the baseline model with smin = 4. The
graph shows values of precision, recall and F1-score normal-
ized by the respective values for the baseline model (smin = 4).
As expected, for all four repositories, as support increases, the
model learns fewer rules, and there is a drop in recall. Surpris-
ingly though, as smin increases, precision increases predictably
only for Repository 4, and to some extent for Repository 2.
Repositories 1 and 3 see some local increases in precision,
but overall, it follows a downward-trend.

On analysis of these repositories, we found that majority of
true-positives in this case were generated by the rules having
low smin. On increasing smin, we do not retain these rules
and thus the number of true-positives drop significantly. Even
though there is drop in false-positives with the increase in smin,
the drop in true-positives is significant to bring the precision
value down. This unpredictability in behavior motivates the
need to perform regular tuning of Rex models.
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Repository
Model Metrics Deployment Metrics

Total True Positives False Positives Precision Total True Positives False Positives Precision
Exchange1 1869 1342 527 71.80% 519 50 469 9.63%
Exchange2 5216 3659 1557 70.15% 1318 146 1172 11.08%
Exchange3 3634 2635 999 72.51% 932 66 866 7.08%

Azure1 1062 872 190 82.11% 190 13 177 6.84%
OneDrive1 840 672 168 80.00% 221 37 184 16.74%
OneDrive2 367 277 90 75.48% 108 20 88 18.52%

DynamicsCRM1 1666 1101 565 66.09% 490 59 431 12.04%

Table 3: Model and Deployment Precision for Change-Rule Discovery

Repository
Model Metrics Deployment Metrics

Precision Precision Improvement Precision Precision Improvement
(Without CRR) (With CRR) (Without CRR) (With CRR)

Exchange1 71.80% 85.76% 19.44% 10.86% 20.51% 88.93%
Exchange2 70.15% 83.94% 19.66% 10.23% 18.18% 77.69%
Exchange3 73.37% 75.00% 3.43% 5.04% 18.00% 250.42%

Azure1 82.11% 91.25% 11.14% 8.00% 15.38% 90.00%
OneDrive2 75.48% 78.36% 3.69% 37.50% 100% 166.67%

DynamicsCRM1 66.09% 89.64% 35.64% 40.00% 58.33% 45.83%

Table 4: Improvement in Model and Deployment precision with Change-rule refinement(CRR) over Change-rule discovery

7.3 Performance

The suggestion engine is relatively quick, taking approxi-
mately 2 seconds to evaluate a pull-request and make a sug-
gestion. In this section, we explore the time it takes to perform
the tuning operation across all repositories. This is the most
expensive step in the Rex pipeline since it involves multiple
runs of the association rule mining algorithm.

Figure 7 shows the tuning time against the size of the
repository. Note that both axes are on a logarithmic scale.
The largest repository with about 100000 files also takes 370
seconds to tune the model. The two red points in the graph
are outliers. They take significantly longer to tune than the
other repositories of similar size as the average number of
files in each commit is more than other repositories and so
each round of association rule mining takes longer.

8 User Study

To understand the relevance of Rex, we performed an exten-
sive user study by sending emails to 328 engineers working
across 5 of the repositories on which Rex is deployed. The
user study was conducted in three phases:

Phase 1: When we manually examined Rex’s suggestions
in deployment, we noticed that often, users did not accept
some suggestions even though they seemed useful. We there-
fore asked 30 engineers from 3 teams to subjectively comment
on the utility of Rex’s suggestions. From their responses, we
categorized the suggestions into three categories:

1. Accepted: Some suggestions clearly point out file-changes
that are absolutely required and if not acted upon, will lead to
bugs/build failures/service disruption. Example 6 in Table 1
shows an example . If the engineer alters a function signature
in a script, then they also have to change the way they call
the function from another script. Else, service deployment
will fail. Engineers usually act on such suggestions. These
are what constitute Rex true-positives.

2. Relevant but not accepted: These are suggestions that engi-
neers find useful but do not act upon. For instance, some rules
capture the association of test files with core functional code
(Example 1 in Table 1). When an engineer makes changes to
code by adding a new feature, Rex often recommends editing
the test file. While the suggestion makes the engineer con-
sider it, they may not do so, either because the test will delay
deployment, or because they decide to add it later. Another
example is Example 5 where Rex will make the suggestion,
but is unable to infer that the suggestion is valid only if the
line-number of the offending code changes. It is up to the engi-
neer to decide if they have indeed changed the line-number of
the offending code, and if not, they will not act on the sugges-
tion. However it is still useful since it brought the engineer’s
attention to the issue.

3. Irrelevant:These suggestions are not relevant to the en-
gineers and thus are not acted upon. For instance, when an
engineer is working on a new project, they modify the project
configuration file very often, mostly adding new references.
Rex therefore learns a lot of spurious change-rules that asso-
ciate code files with the configuration file. With time, the engi-
neer stops adding reference files, and hence, most suggestions
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Figure 6: For four repositories, the top row shows how smin varies with time. For each repository, the bottom row shows the
precision, recall and F1-score as a function of smin. The black square on the F1-score plot shows the maximum F1-score.

Figure 7: Tuning time vs repository size

based on this change-rule are irrelevant. Since Rex retunes its
model regularly, it does eventually drop this change-rule.

Phase 2: Rex true-positives or suggestions that were ac-
cepted can be easily estimated by tracking files that got
changed in the later iterations of the pull-request. False-
positives, on the other hand may either be relevant or irrele-
vant. To understand what fraction of false-positives may still
be relevant, we sent emails to 263 engineers who had not ac-
cepted Rex’s suggestions. We asked them to categorize Rex’s
suggestion they saw into one of four categories:

1. The recommendation was relevant but you could not act
upon it for some reason.

2. The recommendation was relevant in general but not in
this case. Yet, it helped to think through the suggestion.

3. The recommendation was relevant in general but not in
this case. You’d rather not have seen the suggestion.

4. The recommendation was not relevant at all.

We received a total of 156 responses. 99 engineers selected
the first or second option, i.e., they found the suggestions rele-
vant, i.e. in 99 out of 156 cases, even though Rex’s suggestion
was a false-positive, it was still useful to the engineer.

Phase 3 : We also used feedback from users to understand
the impact of Rex suggestions that were accepted. What if
Rex had not made those suggestions and the engineer did
not make the correlated changes? To understand this, we sent
emails to 65 engineers who had accepted Rex suggestions
(true-positives). We provided them with the following options:

1. The recommendation was relevant and had the file not
been edited, it could have (broken the build)/(led to ser-
vice disruption)/(introduced a bug). [High Impact]

2. The recommendation was good to have but the impact
of not editing the suggested file would be low. [Low
Impact/Good to have]

We received a total of 16 responses. 7 engineers chose
option 1. We quote some of their comments here:

“In fact without the suggested change, the code would not
have worked."

“If the file is not edited, the build would have failed."
“The suggestion was valid and saved later service disrup-

tions and time"
9 engineers found the suggestion having low impact but

without that change, code quality would have been impacted
negatively. Some of the responses from engineers include :
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“It was good to have edited the additional files for consis-
tency, but it would not have caused any live site impact"

“Even though the build/tests would have been successful,
it was a good-to-have suggestion. Adding these files helped
unit test the code changes."

From this user study, we infer that Rex is making many
more relevant suggestions than the hit rate suggests. Rex
is also catching a good number of high-impact suggestions
which, if not accepted, would have caused breaks in the build
pipeline of the service or even service disruption.

9 Related Work

Rex takes inspiration from two categories of previous work:
configuration management in large systems, and code de-
pendency analysis in empirical software engineering. In this
section, we describe related-work in these areas.

9.1 Configuration Management
Previous work has explored automated bug and misconfig-
uration detection using both black-box [16, 24, 30, 31] and
white-box techniques [34, 35]. It has also shown how detect-
ing misconfigurations early can help bring down the cost of
service disruptions significantly [34].

EnCore [34] uses pre-defined or user-specified templates
to detect misconfigurations, which allows it to detect more
fine-grained correlations between individual configuration
parameters. Through interviews with practitioners, we found
that requiring manual inputs posed a severe impediment to
adoption. Hence we designed Rex to not require any manual
inputs, and to automatically learn templates (generalizations)
using change-rule refinement. As a consequence, Rex may
not detect rules at as fine a granularity as EnCore.

An orthogonal body of work [14, 25, 28] targets the prob-
lem by proposing tool-suites that make it easier for engineers
to manage and validate configuration across large services.
Facebook’s holistic configuration [28] also illustrates the ef-
fort required to detect misconfigurations, by using automated
canary testing for changed configurations, and using user-
defined invariants to drive configuration changes. However,
none of these specifically target the problem of correlated
configurations explicitly.

9.2 Code Suggestions
Previous work has explored the idea of providing sugges-
tions to engineers to change certain parts of code based on
the changes they have already made. Some efforts rely on
detecting structural dependencies in code based on program
analysis to suggest related components [16, 21, 36]. Others
determine couplings between classes in managed code using
several semantic and logical techniques [6]. This body of
work studies how code dependencies and couplings influence

a software engineer’s view of related changes. However, they
are mostly analyses and learnings, and in most cases, have not
been extended to design and deployment of a generic tool that
detects such couplings and suggests changes to engineers.

Most related in this space to Rex is work that infers trans-
actions using association rule mining on code version histo-
ries [37]. The authors have developed a tool that uses asso-
ciation rule mining to suggest related code changes within
an IDE. However, they do not follow it up with inductive
generalization/anti-unification which was necessary to reduce
the false-recommendations. To speed up the mining process,
the consequent of a rule is constrained to have single entity.
Hence the rules detected by the tool will be a subset of the
rules Rex learns. They mine rules on the fly, each rule tak-
ing a few seconds which does not scale well for large-scale
deployments. Rex is a more generic technique and has been
deployed widely across different services.

MUVI [16] uses frequent itemset mining to find correlated
variable accesses in code. If the programmer does not access
all correlated variables together, or does not guard them with
the same lock, MUVI flags a potential bug. Getafix [23] uses
code change analysis to guide testing and to find bugs re-
lated to certain properties, such as a missing null-check. Both
MUVI and Getafix are designed to discover very specific
kinds of bugs, such as multiple access correlations in the case
of MUVI and null dereferencing in the case of Getafix. The
goal of Rex is to be generic and applicable to a wide range
of scenarios across multiple service deployments. We believe
that such tools could work very well alongside Rex.

10 Conclusion

This paper presents Rex, a widely deployed and scalable ser-
vice that performs correlated change analysis using change-
rule discovery and change-rule refinement to identify devel-
opment gaps in code changes being proposed by engineers.
Many lessons have been learned during the development and
deployment of Rex, which have been outlined and presented
in this paper. Most significantly, engineers are always looking
for more tools and services to help their process, and Rex fits
into their workflow naturally and effectively. Rex has had sig-
nificant impact in avoiding bad deployments, service outages,
build breaks, and buggy commits.
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