
The Inductive Software Engineering Manifesto:
Principles for Industrial Data Mining∗

Tim Menzies
Lane Dept. of CS & EE,
West Virginia University

Morgantown, USA
tim@menzies.us

Christian Bird,
Thomas Zimmermann,

Wolfram Schulte
Microsoft Research,

Redmond, USA
cbird,tzimmer,schulte

@microsoft.com

Ekrem Kocaganeli
Lane Dept of CS & EE,
West Virginia University

Morgantown, USA
kocaguneli@gmail.com

ABSTRACT
The practices of industrial and academic data mining are very dif-
ferent. These differences have significant implications for (a) how
we manage industrial data mining projects; (b) the direction of aca-
demic studies in data mining; and (c) training programs for engi-
neers who seek to use data miners in an industrial setting.

General Terms
Measurement, Management

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management

Keywords
Industry, Inductive Engineering

1. INTRODUCTION
It is important for industrial practitioners to document their meth-

ods. Such documentation lets newcomers become more effective,
sooner. Accordingly, this article documents our principles of in-
dustrial inductive software engineering.

Engineering is the process of developing repeatable processes
that generate products to an acceptable standard within resource
constraints (e.g. time). Hence, inductive software engineering is
that branch of SE focusing on the delivery of data mining-based
software applications to users. In our view, the practices of indus-
trial inductive engineering are (a) significantly different to those of
academic data mining research; and that (b) those differences have
never really been clearly articulated (though lessons from individ-
ual case studies exist, e.g., Tosun et al. [37]). Hence, this article.

This paper is a result of a reflection on our applied data min-
ing work (e.g. for defect prediction [30, 32], social metrics [5],
∗This work was partially funded by the Qatar/West Virginia Uni-
versity research grant NPRP 09-12-5-2-470.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MALETS ’11, November 12, 2011, Lawrence, Kansas, USA

Copyright c©2011 ACM 978-1-4503-1022-2/11/11... $10.00

Inductive Software Engineering Manifesto

Users before algorithms
Plan for scale
Early feedback

Be open-minded
Do smart learning

Live with the data you have
Broad skill set, big toolkit

Figure 1: Manifesto, version 1.0.

effort estimation [26], test case generation [1], and others [2–4,
22, 40, 41]). In an initial informal stage, we maintained an infor-
mal list of observations and ideas based on discussions with re-
searchers, research visitors (mostly professors from universities)
and software engineering practitioners at Microsoft. Specifically,
we asked “what characterizes the difference between academic and
industrial data mining?”. The results of that informal analysis was
then formalized and systematized into the seven principles of Fig-
ure 1 and a dozen other tips.

This paper is structured as follows. We state our guiding princi-
ple: users before algorithms. This user-focus will lead to three ex-
tensions to traditional descriptions of applied data mining: user in-
volvement, cycle evolution, and early feedback. After that, we dis-
cuss some details of industrial inductive engineering. We conclude
with some notes on the implications of our work for project man-
agement, training, and research. We present both the principles of
our manifesto as well as tips (generalizations drawn from common-
alities among our individual experience) to aid those who choose to
follow these principles. Our aim is to describe approaches to suc-
cessful industrial data mining outcomes, but we hasten to add that
some of these principles may be true for academic data mining as
well.

Where possible, the arguments of this paper will be based in
terms of standard academic rhetoric. However, caveat emptor, much
of this paper draws from personnel experience and cannot be “proved”
in some formal sense. As argued at a recent panel on the relation-
ship between industry and academia at ICSE 2011 (see http://2011
.icse-conferences.org/content/research-industry-panel), it may be in-
appropriate to ask for such proofs on industrial perspectives. Like
Aranda et al. [24], we believe it useful to:

. . . push for a better dissemination of our results and
methods, making the argument that there is more to
science than trial runs and statistical significance, and
helping practitioners distinguish between good and bad
science, whatever its methods of choice. [24]

2. USER-FOCUSED DEVELOPMENT
The main difference we see between academic data mining re-

search and our industrial practices is that the former is focused on
algorithms and the latter is focused on users: By this term, we do
not mean the end-user of a product. Rather, we mean the commu-
nity providing the data and domain insights vital to a successful
project. Users provide the funding for the project and, typically,
need to see a value added benefit, very early in a project. Hence:

PRINCIPLE 1. Users before algorithms: Mining algo-
rithms are only useful in industry if users fund their use in
real-world applications.

The user perspective is vital to inductive engineering. The space
of models that can be generated from any data set is very large1.
If we understand and apply user goals, then we can quickly focus
an inductive engineering project on the small set of most crucial
issues.

Other researchers have noted the importance of understanding
the user perspective. For example, Fenton builds defect models
from Bayes models as part of extensive user sessions [19]. In addi-
tion, Valerdi & Boehm build effort models via Delphi sessions that
combine human judgment with the output of data miners [6,38,39].
Based on that work, and our own experience, we assert that:

DEFINITION 1. Inductive Software Engineering: Un-
derstanding user goals to inductively generate the mod-
els that most matter to the user.

We offer the following heuristics to gauge the success of the user
interaction meetings. In a good meeting:

• The users keep interrupting to debate the implications of your
results. This shows that (a) you are explaining the results in
a way they understand; also (b) your results are commenting
on issues that concern them.

• The users bring senior management to the meetings.
• The users start listing more and more candidate data sources

that you could exploit.
• After the meeting, the users invite you back to their desks

inside their firewalls to show them how to perform certain
kinds of analysis.

When working with users, it is vital to make the best use of
their time. One issue with the user-modeling sessions conducted
by Fenton, Valerdi & Boehm is that they require extensive user in-
volvement. For example, Valerdi once recruited 40 experts to three
Delphi sessions, each of which ran for three hours. Assuming an 8
hour day, then that study took 3 ∗ 4 ∗ 40/8 = 60 days. Therefore,
in our work, we try to meet with users weekly for an hour or two.
In between meetings, our task is to conduct as much analysis as
possible to generate novel insights that interest the user.

3. THE STANDARD KDD CYCLE
We are now in a position to comment on the difference of this pa-

per to prior commentaries on how to organize industrial data min-
ing. Fayyad et al. [17] offer the classic definition of data mining, as
applied to real-world activities:

1And the space of models not supported by the data is much larger.
Hence, on some days, we believe that the real role of science in
general, or inductive engineering in particular, is to quickly retire
unfounded models before they can do any damage.

KDD (knowledge discovery in databases) is the non-
trivial process of identifying valid, novel, potentially
useful, and ultimately understandable patterns in data [17].

Figure 2 summarizes their approach. While we take issue with parts
of their proposal, many aspects are insightful and worthy of careful
study. For example, Figure 2 clearly shows data mining is just a
small part of the total process. Even just gaining permission to
access data can be a long process requiring extensive interaction
with business user groups. Copying large amounts of data from one
city to another can also consume a large amount of time. Once data
is accessed, then raw data typically requires extensive manipulation
before it is suitable for mining. This is:

TIP 1. Most of “data mining” is actually “data pre-
processing”: Before any learner can execute, much ef-
fort must be expended in selecting and accessing the
data to process, pre-processing, and transforming it
some learnable form.

Figure 2 also clearly illustrates the cyclic nature of inductive engi-
neering:

• Usually, finding one pattern prompts new questions such as
“why does that effect hold?” or “are we sure there is no bug
in step X of the method?”. Each such question refines the
goals of the data mining, which leads to another round of the
whole process.

• As mentioned above, in the initial stages of a project, engi-
neers try different methods to generate the feedback that let
users refine and mature the goals of the project.

• Real world data is highly “quirky” and inductive engineers
often try different methods before they discover how to find
patterns in the data.

The repetitive nature of inductive engineering implies:

PRINCIPLE 2. Plan for scale: In any industrial applica-
tion, the data mining method is repeated multiples time to either
answer an extra user question, make some enhancement and/or
bug fix to the method, or to deploy it to a different set of users.

This, in turn, has implications on tool choice:
TIP 2. Thou shall not click: For serious studies, to

ensure repeatability, the entire analysis should be au-
tomated using some high level scripting language; e.g.
R-script, Matlab, or Bash [33].

Figure 2 was highly insightful when it was published in 1996. In
2011, we would we augment it as follows:

A. User involvement;
B. Cycle evolution;
C. Early feedback.

We expand on these points, below.

3.1 User Involvement
We made the case above that successful inductive software en-

gineering projects require extensive user input. User input is not a
primary concern of Figure 2.

3.2 Cycle Evolution
Our experience is that while inductive software engineering is

cyclic, the cycles evolve as the project matures. For example, con-
sider the CRANE application developed by inductive engineers at

Figure 2: Fayyad et al.’s classic depiction of applying data miners. From [17].

Microsoft [13]. CRANE is a risk assessment and test prioritization
tool used at Microsoft that alerts developers if the next software
check-in might be problematic. CRANE makes its assessments us-
ing metrics collected from static analysis of source code, dynamic
analysis of tests running on the system, and field data. CRANE’s
development process only partially matches Figure 2. Instead, de-
velopment of CRANE required the following phases:

1. The scout phase: an initial rapid prototyping phase where
many methods were applied to the available data. In this
phase, experimental rigor is less important than exploring the
range of user hypotheses. The other goal of this phase is to
gain the interest of the users in the induction results.

2. The survey phase: After securing some interest and good will
amongst the user population, inductive engineers conducted
careful experiments focusing on the user goals found during
the scouting phase. Of these three phases, the survey phase
is closest to Figure 2.

3. The build phase: After the survey has found stable models
of interest to the users, a systems engineering phase begins
where the learned models are integrated into some turn-key
product that is suitable for deployment to a very wide user
base.

In terms of development effort, the specific details of CRANE’s
development schedule are proprietary. We have observed that for
greenfield applications which have not been developed previously:

• The development effort often takes weeks/ months/ years of
work for scout/ survey/ build (respectively).

• The team size doubles and then doubles again after the scout
and survey phases; e.g one scout, two surveyors, and four
builders (assisted by the analysis of the surveyors).

For product line applications (where the new effort is some exten-
sion to existing work), the above numbers can be greatly reduced
when the new effort reuses analysis or tools developed in previous
applications.

3.3 Early Feedback

The point of the initial scout phase is to get feedback, as early
as possible, from the users about appropriate directions for the
project. We are continually surprised at how much insight our users
gain even from our preliminary pre-processing results. For exam-
ple, as part of data pre-processing, Dougherty et al. recommend
discretization of continuous attributes [15]. Supervised discretiz-
ers hunt for divisions to numeric data where the class distributions
change the most. Discretization can determine which attributes are
ignorable. Figure 3 shows one data set where two of the attributes
do not split at all; i.e. the discretizer found no value in dividing
up certain columns. Such displays can be profoundly insightful to
users since it lets them ignore side issues and lets them focus on the
most important factors.

Note that discretizers run on log-linear time [18] and, hence,
can terminate even when more elaborate data miners fail. Other
pre-processors that can offer rapid feedback are linear-time feature
selection [23] or instance selection [35] tools. Hence, we recom-
mend:

PRINCIPLE 3. Early feedback: Continuous and early feed-
back from users, allows needed changes to be made as soon as
possible (e.g. when they find that assumptions don’t match the
users’ perception) and without wasting heavy up-front invest-
ment.

TIP 3. Simplicity first: Prior to conducting very
elaborate studies, try applying very simple tools to gain
rapid early feedback.

In our work we stress that feedback to the users can and must ap-
pear very early in a inductive engineering project. Users, we find,
find it very hard to express want they want from their data. This is
especially true if they have never mined it before. However, once
we start showing them results, their requirements rapidly mature as
initial results help them sharpen the focus of the inductive study.
Hence:

Figure 3: Results of discreting the diabetes data set from the UCI repository; see
http://repository.seasr.org/Datasets/UCI/arff/diabetes.arff. Black and gray denote two classes. Vertical bars denote the splits
found in eight independent variables. An ignorable column is one that cannot be divided to minimize class diversity. In this data,
two columns are ignorable.

PRINCIPLE 4. Be open-minded: It is unwise to enter into
an inductive study with fixed hypotheses or approaches partic-
ularly for data that has not been mined before. Don’t resist ex-
ploring additional avenues when a particular idea doesn’t work
out.

TIP 4. Data likes to surprise: Initial results often
changes the goals of a study when (e.g.) business plans
are based on issues that irrelevant to local data.

4. DETAILS
Having made our main point about the difference of our proposal

to the 1996 version of the KDD cycle, this section discusses some
details of inductive engineering.

4.1 Avoiding Bad Learning

PRINCIPLE 5. Do smart learning: Important outcomes
are riding on your conclusions. Make sure that you check and
validate them.

We stressed above that real-world inductive engineering requires
trying a range of methods on each data sets. One danger with try-
ing too many methods is “data dredging”; i.e. the the inappropriate
(sometimes deliberately so) use of data mining to uncover mislead-
ing relationships in data.

Certainly, if data is tortured enough, it will reveal bogus re-
sults [12]. On the other hand, sometimes it is appropriate to con-
duct a “fishing expedition”, just to see what patterns might exist.
However, when fishing for patterns, it is wise to maintain a healthy
scepticism about the generated conclusions. In this regard, rule-
learners like RIPPER [11] and INDUCT [20] are interesting since
they check the rules against randomly generated alternatives (and if
the probability of a rule is not better than that of random selection,
it is deleted). Such tests are not standard in other tools and so we
recommend the following:

TIP 5. Check the variance: Before asserting that
result A is better than result B, repeat the analysis for
multiple subsets of the data and perform some statisti-
cal tests to check that any performance differences are
not just statistical noise2

TIP 6. Check the stability: Given any conclusion,
see if it holds if the analysis is repeated using (say)
10*90% random samples of data.

The lower the support for the conclusion, the less likely that it will
hold across multiple sub-samples. Hence:

TIP 7. Check the support: Try to avoid conclusions
based on a very small percent of the data.

One trick for increasing conclusion support is to “chunk up” nu-
meric ranges into a few bins3, thus preventing the learner from
building models using very small numeric ranges.

4.2 Data and Hypothesis Collection
While the last 3 rules are useful, they do not necessarily prevent

data dredging. Making wrong conclusions from observations is a
problem for any inductive process. In fact, humans can get induc-
tion just as wrong as an automated algorithm. WIKIPEDIA lists 96
known human cognitive biases4. As documented by Simons and
Chabris [36], the effects of these biases can be quite startling.

Since all inductive agents (be they human or artificial) can make
inductive errors, we must employ some methods to minimize the
frequency of those errors. The standard solution is use some initial
requirements gathering stage where the goals of the learning are
defined in a careful and reflective way, as discussed in:
2Caution: standard tests such ANOVA and t-tests make Gaussian
assumptions that do not hold in many domains. Consider the use
of non-parametric tests such as Wilcoxon or Mann-Whitney, Fried-
man/Nemenyi.
3 e.g. divide them at the 33 and 66-th percentile change, or use
some supervised discretizer [18].
4 38 decision making biases; 30 biases in probability; 18 social
biases; and 10 memory biases. See http://en.wikipedia.
org/wiki/List_of_cognitive_biases.

http://en.wikipedia.org/wiki/List_of_cognitive_biases
http://en.wikipedia.org/wiki/List_of_cognitive_biases

• Basili’s Goal-Question-Metric [29] approach;
• Easterbrook et al.’s notes on empirical SE [16].

The intent of this solution is to prevent spurious conclusions by (a)
carefully controlling data collection and by (b) focusing the inves-
tigation on a very small space of hypotheses. Where possible:

TIP 8. If you can, control data collection: The Goal-
Question-Metric approach suggests putting specific data
collection measures in place early to address a goal.

The opportunity to use the above tip is rare in practice, and you
should take advantage of it when it comes. But one note of caution:

TIP 9. Be smart about data collecting and clean-
ing.: Keep in mind that collecting data comes at a cost
(for example, related to hardware, runtime, and/or op-
erations) and should not negatively affect the users’
system (avoid runtime overhead). It is thus infeasible
to collect all possible data. Collect data that has high
return on investment, i.e., many insights for relatively
little cost.

In the usual case, you cannot control data collection. For example,
when Menzies worked at NASA, he had to mine information col-
lected from layers of sub-contractors and sub-sub-contractors. Any
communication to data owners had to be mediated by up to a dozen
account managers, all of whom had much higher priority tasks to
perform. Hence, we caution that usually you must:

PRINCIPLE 6. Live with the data you have: You go min-
ing with the data you have—not the data you might want or
wish to have at a later time.

That is, the task of the inductive engineering is to make the most
of the data at hand, and not wait for some promised future data set
that might never arrive. Since we may not have control over how
data is collected, it is wise to cleanse the data prior to learning:

TIP 10. Rinse before use: Before learning from a
data set, conduct instance or feature selection studies
to see what spurious data can be removed. Many tool
kits include feature selection tools (e.g. WEKA). As
to instance selection, try clustering the data and rea-
soning from just a small percentage of the data from
each cluster. Data cleaning has a cost too, and it is
highly unlikely that you can afford perfect data. Most
data mining approaches can handle a limited amount
of noise.

Note that a standard result is that given a table of data, 80 to 90%
of the rows and all but the square root of the number of columns
can be deleted before comprising the performance of the learned
model [9, 23, 26, 27].

As to controlling the space of hypotheses to be explored, we have
often found that

TIP 11. Helmuth von Moltke’s rule: Few hypothe-
ses survive first contact with the data.

Even if the users are most concerned about X,Y , the data may be
silent on X , only comment on some modified form of Y ′, but con-
tain significant insights about Z (something the users have never
considered before). This is particularly true for data that has not
been mined before.

For example, it is clear that product complexity is a critical fac-
tor in determining the development cost of software. But this criti-
cal factor is an irrelevancy in the NASA93 data set from http://

promisedata.org/repository/data/nasa93/nasa93.
arff where 83% of all the data is labeled “high complexity” [10].
Experiences like the above tell that until we “lift the lid” and look at
the actual data, we need to take a respectful, but doubtful, approach
to all domain hypothesis offered by the users.

4.3 Tool Choice
Researchers have the luxury of working on a single algorithm

(perhaps for many years). Industrial inductive engineers, on the
other hand, may try multiple algorithms each day, to generate some
novel and insightful feedback to the users. Hence:

PRINCIPLE 7. Broad skill set, big toolkit: Successful in-
ductive engineers routinely try multiple inductive technologies.

To handle the wide range of possible goals of different goals,
an inductive engineer should be ready to deploy a wide range of
tools. For example, Figure 4 comes from a a survey of the decision
making requirements of hundreds of Microsoft developers [7].

past present future
exploration trends alerts forecasting

(find)
analysis summarization overlays goals

(explain)
experimentation modeling benchmarking simulation

(what-if)

Figure 4: Nine kinds of decision making needs found in a sam-
ple of industrial practitioners. From [7].

Note that no single data miner supports all parts of Figure 4:

• Regression methods, or data stream miners [21], could detect
and track trends.

• Anomaly detectors [8] or contrast set learners [31, 34] can
alert users that old models need to be changed.

• A supervised discretization algorithm can offer an summa-
rization of how each variable effects the domain.

• For more detailed modeling, learn models showing the inter-
actions between multiple variables in the data.

• Suppose a separate Naive Bayes classifier is built for each
cluster in the data [28]. The statistics collected in this way
can generate forecasts for what to expect if the business moves
into a particular cluster.

• Suppose the clusters from the last point are grouped into a
dendrogram (a hierarchical cluster tree). Summaries of the
data could be generated by examining all the examples that
fall into any node of the dendogram:

– An overlay (describing the current state of the data)
would just be a display of (e.g.) the mean and variance
of the class variable in each node.

– A comparisons against benchmark data would just be
a display of the delta between acceptable standard re-
sults and the mean performance score.

– To understand how close the data comes to desired goals,
display the delta between stated goals and the perfor-
mance score mean.

• Finally, in this framework, simulation is just pushing what-if
queries into the models learned via data mining, and seeing
what effects they generate.

http://promisedata.org/repository/data/nasa93/nasa93.arff
http://promisedata.org/repository/data/nasa93/nasa93.arff
http://promisedata.org/repository/data/nasa93/nasa93.arff

Note that the set of useful inductive technologies is large and con-
stantly changing. To have access to the cutting edge of data mining
tools:

TIP 12. Big ecology: Use tools supported by a large
ecosystem of developers who are constantly building
new learners and fixing old ones; e.g. R, WEKA, MAT-
LAB.

5. IMPLICATIONS

5.1 Implications for Project Management
We listed above our preferred approach to data mining appli-

cations: scout (initial tentative conclusions); survey (more careful
explorations); then build (standard scale-up). Our experience tells
us that scouting, surveying, and building takes weeks, months, and
years (respectively).

5.2 Implications for Training
The current set of data mining/ machine learning/ pattern recog-

nition classes are excellent at training academic data miners. That
said, it would be useful to augment those classes with inductive
engineering project work (either as part of those classes or as a
capstone project or as a separate inductive inductive engineering
class). Such projects could structure their training around the scout
and survey stage. For example, at Menzies’ WVU graduate data
mining classes, students spend 7 weeks learning basic tools. This
is followed by a three week scout project where each week, they
are required to report back to the class something profound in their
data. To meet such a tight schedule, they will by necessity have to
cut corners as they race to generate preliminary results. One deliv-
erable of that scout project is a list of all the short cuts they made
in their analysis. This becomes a specification of a final five week
survey project where they repeat their entire analysis, much slower,
much more thoroughly.

We stressed above the need to present results to users, to gain
their feedback. Since communication is such an essential skill for
an inductive engineer, we recommend that student training also in-
cludes written report generation as well as presenting that material
in a briefing.

Another requirement we would add to training programs is the
need to teach the scripting skills needed to automate some data
mining analysis.

5.3 Implications for Academic Research
From the above, we can isolate research themes that might most

benefit industrial data mining:

• Analysis patterns of inductive engineers: Skilled engineers
make better use of the data miners than novices. It would be
useful to document the patterns of the expert users and the
anti-patterns of the novices.

• Design patterns for data miners: The tool kits we use con-
stantly change. It would be useful to be able to easily and
quickly maintain and extend them.

• Optimizations of learning algorithms: To better support the
“scout” phase, it would be preferable to have faster, more
scalable learners.

• Anomaly detectors: It would be useful to have automatic de-
tectors that alert us when the models learned from scouting
or surveying need revisions and/or updating.

• Business-aware learners: It would be useful to be able to
quickly adjust the biases of our learners towards the user bi-
ases. For preliminary notes on that kind of work, see the
WHICH learner described in [32].

• Instead of viewing data mining as a “one-shot” process, we
characterize it as incremental exploration, with the assistance
of the user. Research on the following areas would assist
such an exploration:

– Visualization: To support scouting, it would be use-
ful to have better visualizations of data and the learned
models. Such learned models are very useful when of-
fering insights to users.

– Anytime learning: An anytime algorithm can offer, at
any time, a working result. Also, at any future time,
it can offer a better result. Anytime learners would be
useful for incremental exploration.

– Active learning: Active learning assumes that some ex-
amples are more informative than the others when build-
ing a learner [14, 25]. It can be defined as a learning
process, where a learner is given a data set without la-
bels and some oracle can label the instances upon re-
quest. Ideally, the learner discovers as few labels as
possible by choosing the most informative instances
that are most beneficial for the learning process. Ac-
tive learning would reduce the time required by users
involved in the incremental exploration.

6. CONCLUSION
This article has listed our conclusions from decades of combined

work into data mining. We hope it has demonstrated that, in the
field of inductive software engineering, there are important gener-
alities which we can, and should, share. Such a pooling of knowl-
edge is essential to maturing an engineering profession since that
knowledge:

• Defines certification criteria for new inductive engineers;
• Improves our ability to recruit new hires to a site performing

inductive engineering (since we will have a clearer under-
standing of the skill set we need to hire);

• Allow training organizations (universities and private con-
sultancy companies) to create better, more industry relevant,
training programs.

We look forward to a rapid evolution of this manifesto as more
inductive engineers (a) discuss their methods and (b) find common
themes in their work.

7. REFERENCES
[1] J. H. Andrews, T. Menzies, and F. C. Li. Genetic algorithms

for randomized unit testing. IEEE Transactions on Software
Engineering, March 2010. Available from
http://menzies.us/pdf/10nighthawk.pdf.

[2] E. Barr, C. Bird, E. Hyatt, T. Menzies, and G. Robles. On the
shoulders of giants. In FoSER 2010, November 2010.
Available from
http://menzies.us/pdf/10giants.pdf.

[3] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and
A. Swaminathan. Mining email social networks. In
Proceedings of the 2006 international workshop on Mining
software repositories, MSR ’06, pages 137–143, 2006.

[4] C. Bird, B. Murphy, N. Nagappan, and T. Zimmermann.
Empirical software engineering at microsoft research. In
Proceedings of the ACM 2011 conference on Computer
supported cooperative work, CSCW ’11, pages 143–150,
2011.

http://menzies.us/pdf/10nighthawk.pdf
http://menzies.us/pdf/10giants.pdf

[5] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy.
Does distributed development affect software quality?: an
empirical case study of windows vista. Commun. ACM,
52:85–93, August 2009.

[6] B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K. Clark,
B. Steece, A. W. Brown, S. Chulani, and C. Abts. Software
Cost Estimation with Cocomo II. Prentice Hall, 2000.

[7] R. P. L. Buse and T. Zimmermann. Information needs for
software development analytics. MSR-TR-2011-8, 2011.

[8] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection:
A survey. ACM Comput. Surv., 41:15:1–15:58, July 2009.

[9] C. Chang. Finding prototypes for nearest neighbor classifiers.
IEEE Trans. on Computers, pages 1179–1185, 1974.

[10] Z. Chen, T. Menzies, and D. Port. Feature subset selection
can improve software cost estimation. In PROMISE’05,
2005. Available from
http://menzies.us/pdf/05/fsscocomo.pdf.

[11] W. Cohen. Fast effective rule induction. In ICML’95, pages
115–123, 1995. Available on-line from
http://www.cs.cmu.edu/~wcohen/
postscript/ml-95-ripper.ps.

[12] R. Courtney and D. Gustafson. Shotgun correlations in
software measures. Software Engineering Journal, 8(1):5
–13, jan 1993.

[13] J. Czerwonka, R. Das, N. Nagappan, A. Tarvo, and
A. Teterev. Crane: Failure prediction, change analysis and
test prioritization in practice – experiences from windows. In
Software Testing, Verification and Validation (ICST), 2011
IEEE Fourth International Conference on, pages 357 –366,
march 2011.

[14] S. Dasgupta and D. Hsu. Hierarchical sampling for active
learning. Proceedings of the 25th international conference
on Machine learning - ICML ’08, pages 208–215, 2008.

[15] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and
unsupervised discretization of continuous features. In
International Conference on Machine Learning, pages
194–202, 1995. Available from http://www.cs.pdx.
edu/~timm/dm/dougherty95supervised.pdf.

[16] S. Easterbrook, J. Singer, M. Storey, and D. Damian.
Selecting empirical methods for software engineering
research. In F. Shull and J. Singer, editors, Guide to
Advanced Empirical Software Engineering. Springer, 2007.

[17] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data
mining to knowledge discovery in databases. AI Magazine,
pages 37–54, Fall 1996.

[18] U. M. Fayyad and I. H. Irani. Multi-interval discretization of
continuous-valued attributes for classification learning. In
Proceedings of the Thirteenth International Joint Conference
on Artificial Intelligence, pages 1022–1027, 1993.

[19] N. Fenton, M. Neil, W. Marsh, P. Hearty, L. Radlinski, and
P. Krause. Project data incorporating qualitative factors for
improved software defect prediction. In PROMISE’09, 2007.
Available from http://promisedata.org/pdf/
mpls2007FentonNeilMarshHeartyRadlinskiKrause.
pdf.

[20] B. Gaines and P. Compton. Induction of ripple down rules. In
Proceedings, Australian AI ’92, pages 349–354. World
Scientific, 1992.

[21] J. Gama and C. Pinto. Discretization from data streams:
applications to histograms and data mining. In SAC ’06:
Proceedings of the 2006 ACM symposium on Applied
computing, pages 662–667, New York, NY, USA, 2006.

ACM Press. Available from http://www.liacc.up.
pt/~jgama/IWKDDS/Papers/p6.pdf.

[22] G. Gay, T. Menzies, M. Davies, and K. Gundy-Burlet.
Automatically finding the control variables for complex
system behavior. Automated Software Engineering, 4,
December 2010. Available from
http://menzies.us/pdf/10tar34.pdf.

[23] M. Hall and G. Holmes. Benchmarking attribute selection
techniques for discrete class data mining. IEEE Transactions
On Knowledge And Data Engineering, 15(6):1437– 1447,
2003. Available from http://www.cs.waikato.ac.
nz/~mhall/HallHolmesTKDE.pdf.

[24] M.-A. S. Jorge Aranda, D. Damian, M. Petre, and G. Wilson.
How do practitioners perceive software engineering
research?

[25] M. Kääriäinen. Active learning in the non-realizable case.
Algorithmic Learning Theory, 2006.

[26] E. Kocaguneli, T. Menzies, A. Bener, and J. Keung.
Exploiting the essential assumptions of analogy-based effort
estimation. IEEE Transactions on Software Engineering,
2011 (preprint). Available from
http://menzies.us/pdf/11teak.pdf.

[27] R. Kohavi and G. H. John. Wrappers for feature subset
selection. Artificial Intelligence, 97(1-2):273–324, 1997.

[28] R. Kohavi, D. Sommerfield, and J. Dougherty. Data minining
using mlc++: A machine learning library in c++. In Tools
with AI 1996, 1996.

[29] Y. Mashiko and V. R. Basili. Using the gqm paradigm to
investigate influential factors for software process
improvement. Journal of Systems and Software, 36:17–32,
1997.

[30] T. Menzies, J. Greenwald, and A. Frank. Data mining static
code attributes to learn defect predictors. IEEE Transactions
on Software Engineering, January 2007. Available from
http://menzies.us/pdf/06learnPredict.pdf.

[31] T. Menzies and Y. Hu. Data mining for very busy people. In
IEEE Computer, November 2003. Available from
http://menzies.us/pdf/03tar2.pdf.

[32] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and
A. Bener. Defect prediction from static code features:
Current results, limitations, new approaches. Automated
Software Engineering, 4, December 2010. Available from
http://menzies.us/pdf/10which.pdf.

[33] A. Nelson, T. Menzies, and G. Gay. Sharing experiments
using open-source software. Softw. Pract. Exper.,
41:283–305, March 2011.

[34] P. K. Novak, N. Lavrač, and G. I. Webb. Supervised
descriptive rule discovery: A unifying survey of contrast set,
emerging pattern and subgroup mining. J. Mach. Learn. Res.,
10:377–403, June 2009.

[35] J. A. Olvera-López, J. A. Carrasco-Ochoa, J. F.
Martínez-Trinidad, and J. Kittler. A review of instance
selection methods. Artif. Intell. Rev., 34:133–143, August
2010.

[36] D. Simons and C. Chabris. Gorillas in our midst: Sustained
inattentional blindless for dynamic events perception.
Perception, 28:1059–1074, 1999.

[37] A. Tosun, B. Turhan, and A. Bener. Practical considerations
in deploying ai for defect prediction: a case study within the
turkish telecommunication industry. In Proceedings of the
5th International Conference on Predictor Models in
Software Engineering, page 11. ACM, 2009.

http://menzies.us/pdf/05/fsscocomo.pdf
http://www.cs.cmu.edu/~wcohen/postscript/ml-95-ripper.ps
http://www.cs.cmu.edu/~wcohen/postscript/ml-95-ripper.ps
http://www.cs.pdx.edu/~timm/dm/dougherty95supervised.pdf
http://www.cs.pdx.edu/~timm/dm/dougherty95supervised.pdf
http://promisedata.org/pdf/mpls2007FentonNeilMarshHeartyRadlinskiKrause.pdf
http://promisedata.org/pdf/mpls2007FentonNeilMarshHeartyRadlinskiKrause.pdf
http://promisedata.org/pdf/mpls2007FentonNeilMarshHeartyRadlinskiKrause.pdf
http://www.liacc.up.pt/~jgama/IWKDDS/Papers/p6.pdf
http://www.liacc.up.pt/~jgama/IWKDDS/Papers/p6.pdf
http://menzies.us/pdf/10tar34.pdf
http://www.cs.waikato.ac.nz/~mhall/HallHolmesTKDE.pdf
http://www.cs.waikato.ac.nz/~mhall/HallHolmesTKDE.pdf
http://menzies.us/pdf/11teak.pdf
http://menzies.us/pdf/06learnPredict.pdf
http://menzies.us/pdf/03tar2.pdf
http://menzies.us/pdf/10which.pdf

[38] R. Valerdi. Convergence of expert opinion via the wideband
delphi method: An application in cost estimation models. In
Incose International Symposium, Denver, USA, 2011.
Available from http://goo.gl/Zo9HT.

[39] R. Valerdi, C. Miller, and G. Thomas. Systems engineering
cost estimation by consensus. In 17th International
Conference on Systems Engineering, September 2004.

[40] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and
B. Murphy. Cross-project defect prediction. In
ESEC/FSE’09, August 2009.

[41] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just,
A. SchrÃűter, and C. Weiss. What makes a good bug report?
IEEE Transactions on Software Engineering, 36(5):618–643,
September 2010.

	Introduction
	User-Focused Development
	The Standard KDD Cycle
	User Involvement
	Cycle Evolution
	Early Feedback

	Details
	Avoiding Bad Learning
	Data and Hypothesis Collection
	Tool Choice

	Implications
	Implications for Project Management
	Implications for Training
	Implications for Academic Research

	Conclusion
	References

