
1

Automatically Recommending Peer Reviewers in
Modern Code Review

Motahareh Bahrami Zanjani, Student Member, IEEE, Huzefa Kagdi, Member, IEEE,
and Christian Bird, Member, IEEE

Abstract— Code review is an important part of the software development process. Recently, many open source projects have begun
practicing code review through “modern” tools such as GitHub pull-requests and Gerrit. Many commercial software companies use similar
tools for code review internally. These tools enable the owner of a source code change to request individuals to participate in the review,
i.e., reviewers. However, this task comes with a challenge. Prior work has shown that the benefits of code review are dependent upon the
expertise of the reviewers involved. Thus, a common problem faced by authors of source code changes is that of identifying the best
reviewers for their source code change. To address this problem, we present an approach, namely cHRev , to automatically recommend
reviewers who are best suited to participate in a given review, based on their historical contributions as demonstrated in their prior
reviews. We evaluate the effectiveness of cHRev on three open source systems as well as a commercial codebase at Microsoft and
compare it to the state of the art in reviewer recommendation. We show that by leveraging the specific information in previously
completed reviews (i.e., quantification of review comments and their recency), we are able to improve dramatically on the performance of
prior approaches, which (limitedly) operate on generic review information (i.e., reviewers of similar source code file and path names) or
source code repository data. We also present the insights into why our approach cHRev outperforms the existing approaches.

Index Terms—Modern code review, reviewer recommendation, code change, Gerrit

F

1 INTRODUCTION

SOftware peer review, which is a manual inspection of
source code by other stakeholders besides its author, has

been in practice for several years [1], [2]. Recently, a number
of empirical studies about various facets of the modern
code review process have been reported in the literature [3],
[4], [5], [6], [7], [8], [9], [10], [11]. Deeply inspired by these
efforts, we focus our work on the critical topic of finding
the human reviewers who are most likely to contribute in
peer reviewing source code changes. Bacchelli et al. [12]
studied modern code review at Microsoft and found that if
reviewers have a prior knowledge of the context and code
under review, they complete the reviews more quickly and
provide more valuable feedback to the author. Thus, expertise
and knowledge have a direct effect on code review quality.
Rigby et al. [11] studied the broadcast based peer review on
OSS. They discovered that sometimes an author of a patch,
based on their confidence that they have a good working
knowledge of the code involved in the patch, prefers to use
an explicit review request or send an email message directly
to potential reviewers.

These studies demonstrate that a developer’s expertise
on a certain part of the source code is an important factor for
considering them as a potential reviewer. However, it is not
always easy to determine who has the most expertise given
a particular change for review, especially for newcomers
to a codebase or those changing parts of the code with
shared ownership by many people. Thus, authors of a change
and/or reviewer assigners are often confronted with the
question ”Who should review this change?” In the area of code
review, requests for help selecting the right reviewers are

• M. Bahrami Zanjani and H. Kagdi are with the Department of Electrical
Engineering and Computer Science, Wichita State University, Wichita,
Kansas 6760, USA.
Email: {mxbahramizanjani, huzefa.kagdi}@wichita.edu

• C. Bird is with the Microsoft Research, Redmond, WA, USA.
Email: cbird@microsoft.com

one of the most common asks from developers at Microsoft
(requests for a system providing help occur weekly on review
mailing lists). One developer recently shared his frustration:

”I made a one line change to Exchange in a part of the code
that I don’t typically work on and so of course I had to have it
reviewed. I added the dev who most recently changed the file and
he reviewed it, but then told me to be sure to add the owner and
told me who it was. So I added him and he told me to make sure
and have his lead review it as well. In the end, it took two weeks to
get my one line change in!.”

Finding the right reviewers does not often take two weeks;
however, this experience is emblematic of the need to find
appropriate reviewers in a timely manner for a code change.
Clearly, there is strong anecdotal and empirical evidence
from both OSS and commercial domains on the importance
of finding the most appropriate reviewers to sustain the code
review process effectively and efficiently [4], [12]. The value
of choosing the right reviewers to examine code is not new.
Selecting and assigning reviewers to a review process was
one of the managers’ responsibilities in traditional inspection,
which was done manually [13]. Unfortunately, there has been
little effort in building automatic approaches to recommend
the most suitable reviewers in modern (tool-based) code
review process, which includes the work of Xia et al. [14],
Thongtanunam et al. [15], and Balachandran [16]. Balachan-
dran termed the task of identifying the most appropriate
reviewers for a change as Reviewer Recommendation.

This paper presents an approach, namely cHRev, to
solve this problem automatically based on historical code
review information. In a nutshell, it favors code review
Histories over other types of past information to recommend
Reviewers; hence, the name cHRev. cHRev rests on two
key insights. The first is that reviewers are not necessarily
confined to developers who may have committed changes to
source code previously that is the subject of review again for

2

another change, e.g., for a bug fix or a feature implementation.
For example, there may be team members who own other
related features and/or source code modules or who do not
work on code directly that have the expertise to provide
quality code review feedback. The second is that expertise
changes over time and thus both the frequency and recency
must be accounted for to find the most appropriate reviewers.

In an effort to demonstrate the effectiveness of our
approach, we compare cHRev with REVFINDER [15], xFinder
[17], and RevCom. We show that cHRev outperforms all
these three approaches. REVFINDER is a recently proposed
technique that uses code review history to identify reviewers.
REVFINDER assigns an expertise score to reviewers based
on their number of past reviews on similar file names and
paths. Unlike cHRev, it does not consider the amount of
contributions (feedback comments and days) in each past
review and their temporal recency. xFinder is a developer
recommendation approach for source code, which is used
here for reviewer recommendation. To assess the potential
orthogonally between the code commits and reviews, we
devised a combined approach, namely RevCom, which is
based on the factors of cHRev and xFinder. .

Our paper makes the following noteworthy contributions
in recommending relevant reviewers for a given change:

1) We present cHRev that utilizes code review histories
for recommending reviewers for a code change.

2) We perform a comparative study of cHRev,
REVFINDER, xFinder, and RevCom.

3) We demonstrate the effectiveness of cHRev through
an empirical evaluation on one industrial (MS Office)
and three open source (Android Platform, Eclipse
Platform, and Mylyn) systems.

The rest of the paper is organized as follows: Section 2
presents background of modern code review and associated
terminology. Our approach is discussed in Section 3. The
empirical study on Android Platform, Eclipse Platform, Mylyn,
and MS Office, and its results are presented in Section 4.
Threats to validity are encountered in Section 5. Related
work is discussed in Section 6. Finally, our conclusions and
future work are stated in Section 7.

2 BACKGROUND ON MODERN CODE REVIEW

In this section, we define the key concepts involved in
the modern code review, which is driven by supporting
infrastructure and tools, e.g., Gerrit and CodeFlow.

Code Change: A code change is a set of modified source
code files submitted to fix a bug or add a new feature.

Review: A code review is a record of the interactions
between the owner of a change and reviewers of the change
including comments on the code and signoffs from reviewers.

Owner: An owner is the developer who makes the change
in the source code and submits it for review.

Reviewer: A reviewer on a particular review is a developer
who is assigned to and/or contributes to that review.

Review Comment: A review comment is textual feedback
written by a reviewer about the code change during the
review process. A review comment may be about the change

in general or may be explicitly tied to a particular part of the
change.

The lifecycle of a review is as follows: Initially a developer
(the owner) makes changes to the source code in response to a
bug report or feature request. Once complete, they submit the
code change for review. The owner may indicate the intended
reviewers, who are subsequently notified about the review
invitation. It should be noted that the invited reviewers do
not necessarily accept the invitation and contribute to the
review. Reviewers then inspect the change through the code
review tool (a web page in the case of Gerrit or a windows
application in the case of CodeFlow) and provide feedback
in the form of review comments to the owner. The code
change is typically depicted by showing the difference of the
code before and after the change. The owner may update
the change and submit the update to the review as a result
of such feedback. Eventually, a reviewer “signs-off” on the
review, once they believe the code change is of sufficient
quality to be checked into the code repository. If a change
never received sign-offs, it is abandoned. The number of sign-
offs required to check in a code change is typically dependent
on the team policy. Gerrit is a modern peer-review tool that
facilitates a traceable review process for git-based software
projects [3]. Developers make local changes in their private
git repositories and then submit these changes as a patch for
review [4]. Most Microsoft developers practice code review
using CodeFlow, an internal tool for reviewing code, which is
under active development and regularly used by more than
50,000 developers. CodeFlow is a collaborative code review
tool similar to other popular review tools such as Gerrit.

Code review is a quality assurance mechanism and
is required for checkin. Therefore, it is critical that it is
both effective (actually improves code changes and blocks
poor code from being checked into the repository) and
timely (does not act as a bottle-neck to by slowing down
changes). Prior research [12] has found that higher expertise
of reviewers leads to both.

3 THE PROPOSED cHRev APPROACH

The basic premise of our approach is that the reviewers who
reviewed the units of source code in the past are most likely
to best assist with reviewing it in the future. Our approach,
cHRev, takes a code change submitted for review and mines
the archives of reviews, i.e., review history, from the code
review system (e.g., Gerrit) to recommend a ranked list of
candidates for reviewing the given code change. It utilizes the
past code changes and their reviewers to form a quantifiable
model of the expertise of each reviewer in each source code
file. In a code change, the cardinality of source code files is
typically greater than 1. Therefore, the overall expertise of
each candidate reviewer for the given code change is derived
from a cumulative scoring function for all source code files
in it. Finally, a ranked list of top n (a tunable user parameter)
reviewers is recommended. To be specific, cHRev consists of
the following steps:

Step 1: Extract Source Code Under Review: Given a
code change under review for which reviewers are desired,
it extracts each source code file.

Step 2: Formulate Reviewer Expertise: For each source
code file in Step 1, it forms a reviewer expertise model based

3

on how many, who performed, and when reviews were
performed on it in the past. That is, we need to know the
contribution of each past reviewer over the total number of
reviews on it from the code-review history.

Step 3: Score and Recommend Reviewers: Finally, the
cumulative contributions of the reviewer in Step 2 for all the
source code files in Step 1 are scored to arrive at a ranked
list of candidate reviewers. A user defined parameter m is
used to recommend the top m candidates from this list. The
choice of m can be guided by the organizational or project
practices or historical information on the typical number of
reviewers.

3.1 Formulating Reviewer Expertise Model

The review comments are a mechanism that reviewers use
to express their feedback and communicate with the owner
and other peer reviewers of a code change. That is, these
comments are a primary means for discussion and discourse
in modern peer code review. They can be considered a
manifestation of their expertise. Now, the question is how
these valuable source can be used to quantify the expertise
of reviewers. We use three metrics to quantify reviewers’
expertise from their contributed review comments.

One measure of a reviewer’s contribution is the total
number of review comments they contributed to previous
code changes. A particular reviewer who contributed a larger
number of review comments than another peer to specific
units of source code (i.e., files) can be considered more
knowledgeable on those parts. Although, this count measure
may capture valuable expertise information, it may not be
the only reflection of expertise. Depending on the complexity
and nature of each code change, different levels of effort may
be needed. We consider time as a proxy measure of effort,
which is typically used in other domains [18]. We consider
the smallest unit of work, i.e., effort, devoted by a reviewer to
be a workday. A reviewer’s workday is considered as a day
(calendar date) on which they contributed at least one review
comment (to at least one file) in a code change, because a
reviewer can have multiple review comments on a given
workday. A day on which no such review comments exist
is not considered a workday. Two reviewers are considered
to have made the same overall effort in reviewing changes
to the same source code file if they wrote all their review
comments (regardless of the variation in their counts) in
the same number of calendar (work) days. Accounting for
the frequency (review count) and effort (workday) may not
suffice, if they are not relevant to the submitted code change
under review. The third measure accounts for the recency of
the review comments. Recent review comments are given
a higher weight than the distant ones, i.e., it is an inverse
measure. Each of these three measures is normalized with
respect to the total contributions on each source code file.

Previously, these three measures were used and validated
in the context of commit history and developer recommenda-
tion, i.e., finding the developers who are most likely experts
in particular source code units and/or fixing a bug [17].
Therefore, using this foundation, we contextualized and
redefined them for the reviewer recommendation task, i.e., to
determine the reviewers who are more likely to be experts in
reviewing a specific source code file than others, i.e., reviewer-

expertise map. The reviewer-expertise map, RE, for the reviewer
r and file f is given by

RE(r,f) = 〈Cf ,Wf , Tf 〉 , where Cf is the number of review
comments contributed by the reviewer r for the file f. Wf

is the number of workdays of the reviewer r on which they
contributed review comments for the file f. Tf is the most
recent workday of the reviewer r with the file f. Similarly, the
file–review map, FR, represents the review contribution to the
file f and is given by

FR(f) = 〈C ′f ,W ′f , T ′f 〉 , where C ′f is the number of review
comments that are written for the file f. W ′f is the total
number of workdays on which review comments were
contributed for the file f. T ′f is the most recent workday
on which a review comment was contributed for the file f.

The contribution or expertise factor, termed xFactor, for
the reviewer r and the file f is computed using the ratios of
the reviewer-expertise and file–review maps. The contribution
factor, xFactor, is given below:

xFactor(r, f) =
RE(r,f)

FR(f)
(1)

xFactor(r, f) =


Cf

C′
f
+

Wf

W ′
f
+ 1
|Tf−T ′

f |
if |Tf − T ′f | 6= 0

Cf

C′
f
+

Wf

W ′
f
+ 1 if |Tf − T ′f | = 0

(2)
The xFactor score is computed for each of the source-code

files that exist in the code change. According to Equation 2,
the maximum value of xFactor can be three because we have
used three measures, each of which can have the maximum
contribution ratio of 1.

3.2 Scoring and Recommending reviewers

We now describe how the ranked-list of reviewers is obtained
from all of the scored reviewers of each source code file in the
code change. There is a one-to-many relationship between the
source code files and reviewers. That is, each file fi may have
multiple reviewers; however, it is not necessary for all of the
files to have the same number of reviewers. For example, the
file f1 could have two reviewers and the file f2 could have
three reviewers. The matrix Dr (see Equation 3) gives the
list of unique reviewers for each file fi. Drfi represents the
set of reviewers, with no duplication, for the file fi, where
1 ≤ i ≤ n and n is the number of unique files in patch. rij
is the jth reviewer in the file fi with l unique reviewers.

Dr =

 Drf1
Drf2..
..

Drfn

Drfi = { ri1 ri2 ... ril } (3)

Although, a single file does not have any duplicate re-
viewers, two files may have common reviewers. In Equation
4, Dru is the union of all unique reviewers from all files.

Dru =
⋃n

i=1Drfi (4)

Score(r) =
∑n

i=1 xFactori(r, fi) (5)

4

Each reviewer r for a file f has an xFactor score. To
obtain the likelihood of the reviewer r, i.e., Score(r), to
review the code change, we sum xFactor scores of the
unique files in which it appears (see Equation 5). The
Score(r) value is calculated for each unique reviewer r in
the set Dru.

In Equation 6, we have a set of candidate reviewers.
If the owner of the review occurs in this list, we remove
them, as recommending the owner as a reviewer makes
little sense because we want to recommend other peers. The
reviewers in this set are ranked based on their Score(r)
values. Once the reviewers are ranked in descending order
of their Score(r) values, we have a ranked list of candidate
reviewers. By using a cutoff value of m, we recommend the
top m candidate reviewers, i.e., with top m Score(r) values,
from the ranked list obtained from the set RF .

RF = {(r, Score(r)),∀r ∈ Dru} (6)

This step concludes cHRev and we have the top m candi-
date reviewers recommended for the given code change.

We considered a cumulative view of all the files in a
patch to recommend reviewers. Therefore, we lower the
probability of an empty recommendation because a code
change typically has multiple files; however, some files may
have not been reviewed in a very long time or added for the
very first time to the review process. As a result, there will not
be any recommendations at the file level. To overcome this
problem, we look for reviewers with review contributions
to a package that contains the file, and recommend them
instead. If no package-level reviewers can be identified,
we turn to the system-level reviewers as the final option.
Package here means the immediate directory that contains
the file, i.e., we consider the physical organization of source
code. The system means a collection of packages. It can be a
subsystem or a module (i.e., the top level directory). In this
way, we move from the lowest, most specific expertise level
(file) to the higher, broader levels of expertise (package then
system). According to this approach, we guarantee that our
tool always gives a recommendation, unless this is the first
ever file added to the system.

3.3 Implementation of cHRev

To extract the code review data from Android Platform, Eclipse
Platform, and Mylyn, we used the Gerrit JSON API and
queried their Gerrit servers1. We also engineered a review log,
which is akin to a version log from source code repositories.
Unfortunately, a review log is not readily available like
the version log. It was assembled from the code review
history available in Gerrit. Review log entries include the
dimensions: reviewer, date and path (e.g., files), involved in
review process. After assembling the review log from the
available code review history in Gerrit, the review log entries
are readily available in the form of XML and straightforward
XPath queries are formulated to compute the measures. The
measures Cf , Wf , and Tf are computed from the review
log. More specifically, the dimensions reviewer’s name, date,
and paths of the log entries are used in the computation.
The dimension date is used to derive workdays or calendar
days. The dimension reviewer’s name is used to derive

1https://gerrit-review.googlesource.com/Documentation/
rest-api.html

TABLE 1
The reviewers extracted with cHRev from each of the files related to

code change in the review # 33689.

Files Reviewers and their xFactor

. . . /TaskListFilteredTree.java Sam Davis: 3.00

. . . /CustomTaskListDecorationDrawer.java Frank Becker: 1.83, Sam Davis: 1.62,
Tomasz Zarna: 1.54

the reviewer information. The dimension path is used to
derive the file information. The measures C ′f , W ′f , and T ′f
are similarly computed. The expertise model and scoring
functions are implemented in Java.

3.4 A Motivating Example from Mylyn

Here, we demonstrate our approach cHRev using an example
from Mylyn. The goal is to show the inner workings of the
cHRev mechanisms and compare its results with three other
approaches. The first approach REVFINDER is based on
reviews. The second approach xFinder is based on commits.
The third approach RevCom is based a combination of
commits and reviews (see Section 4.2 for details). The review
of interest here is the review #33689: ”clean up workspace
warnings in tasks.ui”. Steffen Pingel is the owner and the code
change includes two files. Sam Davis and Tomasz Zarna are
the actual reviewers of review #33689 (highlighted in red
color with their names postfixed and an asterisk in Table 2).

In cHRev, we first obtained the set Dru from all of the
reviewers recommended for each file fi that exist in the
review #33689 (see Table 1). The set Dru consists of 3 unique
reviewers. A review log is created and all the reviews before
this example review have been considered in calculating the
expertise metrics and forming the model. Table 1 shows the
two related files to the review #33689, for each file fi there is
a set of recommended reviewers with their associated xFactor
values calculated by cHRev.

For each of the 3 unique reviewers, the Score value is
calculated according to Equation 5. Table 2 shows the top
four Score values and the corresponding reviewers, i.e.,
m = 4 for four approaches: cHRev, REVFINDER, xFinder, and
RevCom. Score values for REVFINDER have been calculated
in different way (see section 4.2). Sam Davis has the highest
score in the set RF (a value of 4.62 in the first column) for
cHRev, so he is the first recommended reviewer. For the
remaining reviewers, the value of the function Score is less
than Sam Davis’s score, so they all have a rank greater than 1.
REVFINDER recommended one of the reviewers at rank 4
and two of the recommended reviewers by REVFINDER do
not exist in the recommendation list by cHRev. xFinder did
not recommend any of correct reviewers in the golden set.
One of the recommended reviewers by xFinder does not exist
in the recommendation list by cHRev. RevCom recommended
the reviewers but with different (worse) ranking. Clearly, the
best result belongs to cHRev because it recommended Sam
Davis and Tomasz Zarna with ranks 1 and 3. Based on the
degree of file name and path similarity which is determined
by string comparison techniques for REVFINDER, Sebastien
Dubois has the highest score related to the string similarity
score. After investigating the review history and commit
history, we ascertained that Sam Davis and Tomasz Zarna did
not have any commits on those two files before the creation
date of review #33689. Hence, xFinder could not recommend
them as candidate reviewers. The most contribution for those

5

two files according to the commit history belongs to Steffen
Pingel (owner) and Frank Becker. One can ask the question if
the most contribution belongs to Frank Becker then probably
he is the best candidate to review the code based on the
findings of previous work [17]. Even considering this point,
Table 2 shows that cHRev recommends Frank Becker at rank 2
and REVFINDER recommends him at rank 3. Sam Davis and
Tomasz Zarna had acted as reviewers in Mylyn, hence cHRev
picked them.

TABLE 2
Top four reviewers recommended to review the review #33689 with their

associated ranks and score by cHRev , REVFINDER, xFinder , and
RevCom.

cHRev REVFINDER xFinder RevCom
Reviewer Score Rank Score Rank Score Rank Score Rank

Sam Davis* 4.62 1 33.31 4 - - 4.62 2
Frank Becker 1.83 2 37.29 3 3.0 1 4.83 1
Tomasz Zarna* 1.54 3 - - - - 1.54 3
Caitlin Matthew - - - - 0.50 2 0.50 4
Sebastien Dubois - - 63.80 1 - - - -
Miles Parker - - 55.51 2 - - - -

4 CASE STUDY

The purpose of this study was to investigate how well our
cHRev approach recommends correct reviewers to review a
given code change and compare with available alternatives: a
code review based REVFINDER, a commit based xFinder and
a combined RevCom based on commits and reviews. Next,
we present the details of the study design, its execution, and
observed results.

4.1 Design

We conducted a case study to empirically assess our approach
according to the design and reporting guidelines presented in
[19]. The case of our study is the event of assigning reviewers
to code changes in closed and open source systems. The
units of analysis are the code changes considered from four
systems. Therefore, this study would allow us to compare
code reviews and commits with respect to the reviewer
recommendation task. We addressed the following research
questions:

RQ1: What is the accuracy of cHRev in recommending
reviewers on real software systems across closed and open
source projects?

RQ2: How do the accuracies of cHRev (trained from the
code review history), REVFINDER (also, trained from the
code review history, albeit differently), xFinder (trained from
the commit history), and RevCom (trained from a combina-
tion of the code review and commit histories) compare in
recommending code reviewers?

Guided by the Goal-Question-Metric (GQM) method,
the main goal of the first part of our study is to assess
the effectiveness of our approach, i.e., asking how accurate
are the reviewers recommendations when applied to the
change requests of real systems across domains? The main
focus of the quantitative analysis is on addressing different
viewpoints, i.e., theory triangulation, of recommendation
accuracy. We collected a fixed datasets, i.e., code changes,
from the software review archives found in modern peer
review systems. We used a data triangulation approach to
include a variety of factors from closed and open source

subject systems. These systems represent different main
implementation languages (e.g., C/C++ and Java), sizes,
review systems, and development environments. We used
four metrics (precision, recall, F-score, and MRR) to cover
different perspectives of accuracy.

4.2 Compared Approaches: REVFINDER, xFinder and
RevCom

REVFINDER is a recently reported code-review based review
recommendation approach. Its model is based on finding
reviewers of source files with similar names and paths to
those submitted in a given code change. The degree of
file name and path similarity is determined with string
comparison techniques and the reviewers are scored with
the string similarity score. REVFINDER was shown to
perform better than Balachandran’s REVIEWBOT [16]. We
also compare with a previous approach, namely xFinder,
for developer recommendation that uses past commits on
source code. These recommendations are used for reviewer
recommendation for the source code submitted for change
review. xFinder builds the developer expertise based on the
number of commits, and their number of workdays and
recency. xFinder subsumes the default reviewer recommender
in Gerrit2. xFinder was shown to be competitive with other
developer recommendation approaches [20]. To assess the
potential orthogonally between the commits and review, we
devised a combined approach, namely RevCom, which is
based on the factors of cHRev and xFinder. RevCom considers
three metrics from reviews and another three from commits.
The presence of orthogonality between different sources have
been leveraged in several other software engineering tasks
previously [21], which served as an inspiration to emulate
the combination for the reviewer recommendation task.

4.3 Subject Systems and Evaluation Datasets

Our evaluation datasets were derived from three open and
one closed source systems.

4.3.1 Open Source: Android Platform, Eclipse Platform, and
Mylyn

Android contains 7 years of code review related to different
sub projects. In this study we considered the code review
history of Android Platform3 sub project between February 7,
2015 and March 26, 2015. During the defined period, there
were a total of 2,052 source code changes and 2680 code
reviews that include at least one source file. We considered
this period of history because it contains a similar number
of code reviews used in the evaluation of REVFINDER on
Android. Reviewers provided 23181 review comments. We
considered the author of the commit (and not the committer)
for xFinder.

Eclipse contains six different sub projects. In this study,
we consider Eclipse Platform, because it has the largest code
review history available in comparison with the other sub
projects4. Its code review history in Gerrit is available from

2https://gerrit-review.googlesource.com/#/admin/projects/
plugins/reviewers-by-blame

3https://android-review.googlesource.com/#/q/platform
4https://git.eclipse.org/r/#/q/platform,n,z

6

March 2013. We considered the history between March 5,
2013 (the first day of a code review history in Gerrit) and
November 28, 2014. The Eclipse Platform project consists of
1854 code reviews uploaded in Gerrit repository, each of
which includes at least one Java file. After removing the
noise (e.g., automatically submitted comments by tools such
as Hudson) a total of 10506 review comments are written in
Eclipse Platform. The Eclipse Platform project consists of 3155
commits in the commit history (during the defined period),
each commit contains a change to at least one Java file.

Mylyn contains about 2 years of code review data in Gerrit
and is an Eclipse Foundation project. Its commit history in
the git repository is available from June 2005. Its code review
history in Gerrit is available from March 2012. We considered
the history between March 2, 2012 (the first day of a code
review history in Gerrit) and November 28, 2014. The Mylyn
project consists of 1589 code reviews uploaded in Gerrit, each
of which includes at least one Java file 5. Similar to Eclipse
Platform, noisy review comments were discarded. A total
of 10157 review comments were written in Mylyn. Mylyn
consists of 1838 commits in the commit history (during the
defined period), each commit contains a change to at least
one Java file.

4.3.2 Closed Source: MS Office

We also evaluated all approaches on activity from one
milestone development cycle on one of the main devel-
opment branches of MS Office. We gathered source code
repository data from CODEMINE [22] our development
analytics database and code review data from CodeFlow
Analytics [23], an internal data collection system for code
reviews across Microsoft. It is common for automated sys-
tems to make source code changes (e.g., updating copyright
dates in headers) in MS Office. In addition, some teams at
Microsoft use automated “Review Bots” in reviews similar
to VMWare [16]. We remove such code change authors and
reviewers from the data as the rules for their inclusion are
automatic and they do not represent humans that a reviewer
could assign a review to. After cleansing the data, there were
a total of 2,651 source code changes that include at least one
source file (C# or C++) and 1,886 code reviews. Reviewers
provided 10,746 review comments in 845 of the reviews.

Table 3 gives the test benchmarks for all the four systems
considered in our study. It consists of code changes and
reviewers who contributed to review those code changes.
That is, a reviewer who provided at least one comment
on the code change is considered a true positive. Note
that in tools, such as Gerrit, the patch author can pick the
potential reviewers; however, there is no guarantee that all
(or any) of them would actually contributed. Thus, we do
not consider such names as a gold set, and only consider the
ones who actually contribute regardless of whether they were
originally picked by the patch author or not. To investigate
the difference between the lists of assigned reviewers by the
owner and the list of participated reviewers, we calculated
the Jaccard similarity between these two lists of reviewers
for all the three open source projects used in our study. The
average Jaccard similarity values for Android Platform, Eclipse
Platform, and Mylyn are 0.58, 0.80, and 0.85 respectively. These

5https://git.eclipse.org/r/#/q/mylyn,n,z

values indicate that the two lists are not identical and are
quite dissimilar.

The only code change information we use, is the files in
the code change. The goal of the compared recommendation
techniques is to predict reviewers for each of these code
changes from the previous commits and/or reviews in the
history periods considered for each subject system. Note
that we only considered the original version of the code
change. Including files from other subsequent revisions of the
original version (e.g., to address the review feedback) would
be forward looking information with a limited (or no) value
in predicting reviewers. Therefore, our benchmark is a set
of code changes, each code change includes several unique
files. After a manual investigation of reviews in the open
source systems in our study, we found that there are several
code changes that included only test files. We also found that
these code changes did not receive any review comments,
whereby indicating that they did not need to be reviewed. We
discarded them from our benchmarks. Furthermore, there
were code changes that contained a mix of source code
and test files. On manual examination, we found that code
changes with a majority of source code files were reviewed.
To provide a conservative bound, we included such mixed
cases in our benchmark.

4.4 Evaluation Protocol for cHRev

The source code changes from Gerrit and CodeFlow are used
for evaluation purposes. Our general evaluation procedure
consists of the following steps:

Step 1: Select a test code change from the code review
history that is resolved and its actual reviewers are known
(Described in section 4.3).

Step 2: Select completed code reviews from the review
system before the test code change was submitted but not
yet reviewed.

Step 3: Use cHRev to collect a ranked list of reviewers
from Step 2.

Step 4: Compare the results of Step 3 with the baseline.
The reviewers who reviewed the test code change are
considered the baseline.

Step 5: Repeat the above steps for N test code changes in
the established benchmark.

Step 6: Compute precision, recall, F-score, and MRR
metrics from Steps 4 and 5.

REVFINDER, RevCom, and xFinder are evaluated with the
same protocol except that RevCom, and xFinder form their
expertise models with the inclusion of past commits. xFinder
uses past commits instead of past reviews, and RevCom uses
a combination of past commits and reviews.

4.5 Accuracy Metrics and Hypothesis Testing

To investigate the research question RQ1, we evaluated
the accuracy of cHRev, REVFINDER, xFinder, and RevCom
for all of the code changes in our benchmark using the
precision, recall, Mean Reciprocal Rank (MRR), and F-score
(derived from precision and recall) metrics, which were used
previously [20], [24], [25]. For each code change p, in a set
of code changes P of size n, from the benchmark of each

7

subject system and m number of recommended reviewers,
the formula for precision@m, recall@m, and F-score@m are
given below:

precision@m =
| RR(p) ∩AR(p) |
| RR(p) |

(7)

recall@m =
| RR(p) ∩AR(p) |
| AR(p) |

(8)

F−score@m = 2.
precision@m.recall@m

precision@m+ recall@m
(9)

where RR(p) and AR(p) are the recommended reviewers
and the actual reviewers who contributed in the review
process of the code change p respectively. This metric
is computed for recommendation lists of reviewers with
different sizes (e.g., m = 1, m = 2, m = 3, and m = 5
reviewers).

Table 3 shows the frequency distribution of reviewers
for each subject software system in our benchmark6. 69% of
code changes for Android Platform, 76% of code changes for
Eclipse Platform, 71% of code changes for Mylyn, and 64% of
code changes for MS Office are reviewed by a single (and
not necessarily the same) reviewer. In such a scenario, each
increment to m in pursuit of a correct reviewer could add to
the proportion of false positives. A complimentary measure
is also needed to assess the potential effort in addressing
noise (false positives). We focused on evaluating the ranked
positions of the correct reviewers for each code change for
each benchmark from a cumulative perspective regardless
of the cutoff point m. Mean Reciprocal Rank (MRR) is one
such measure that can be used for evaluating any process
that produces a list of possible responses to a sample of
queries, ordered by probability of correctness. The reciprocal
rank of a query response is the multiplicative inverse of the
rank of the first correct answer. Intuitively, the lower the
value (between 0 and 1), the farther down the list, examining
incorrect responses along the way, one needs to search to
find a correct response.

MRR =
1

| n |

|n|∑
i=1

1

ranki
(10)

Here, the reciprocal rank for a query (code change) is the
reciprocal of the position of the correct reviewer in the
returned ranked list of reviewers (ranki) and n is the total
number of code changes in our benchmark. When the correct
reviewer for a code change is not recommended at all,
we consider its inverse rank to be a zero. When there are
multiple correct reviewers, we consider the highest/first
ranked position. The higher the value of MRR, the better it
speaks of the potential effort spent in noise. For example, the
MRR value of 0.5 suggests that the average correct answer is
found at the second rank.

Further, we define the following null hypotheses for our
study for both closed and open source domains to assess the
statistical validity of the results (the alternative hypotheses
can be easily derived from the respective null hypotheses):

6http://serl.cs.wichita.edu/svn/projects/CodeReview/
CodeReview/trunk/Data

TABLE 3
Evaluation benchmarks and the distribution of reviewers per review

(code change)

System Frequency distribution Total Reviews
1 # 2 # 3 # 4 # 5 # 6

Mylyn 113 33 12 1 1 0 160
Eclipse Platform 98 24 7 0 0 0 129
Android Platform 105 30 15 3 0 0 153
MS Office 538 219 66 16 6 0 845

H-1: There is no SSD between the precision@m, recall@m,
F-score@m, and MRR values of cHRev and REVFINDER.

H-2: There is no SSD between the precision@m, recall@m,
F-score@m, and MRR values of cHRev and xFinder.

H-3: There is no SSD between the precision@m, recall@m,
F-score@m, and MRR values of cHRev and RevCom.

H-4: There is no SSD between the precision@m, recall@m,
F-score@m, and MRR values of RevCom and xFinder.

We applied the One Way ANOVA test to assess the
statistically significant difference (SSD) with α = 0.05
between the results of precision, recall and MRR values of
the compared approaches. For MRR, we considered the ranks
of correct answers of the approaches for each code change
(data point). The purpose of the test is to assess whether
the distribution of one of the two samples is stochastically
greater than the other.

4.6 Results

The number of recommended reviewers is the only user
defined parameter for our approach. As can be seen from
Table 3, the maximum number of reviewers in both closed
and open source systems is bounded by five in the bench-
marks. Therefore, the experiment was run for m = 1, m = 2,
m = 3, and m = 5, where m is the number of recommended
reviewers to provide the realistic view of the performance.

To answer the research RQ1, we consult Table 4. The
highest precision is for the lowest value of m and the highest
recall is for the highest value of m. The decrease or increase
in precision and recall with increase in the value of m is
gradual (and no drastic changes were noted). Note that
while computing recall for lower values of m (e.g., RR(p)=1
for m=1), we considered all the correct reviewers for a patch
(e.g., AR(p)=3). Therefore, the recall at such values could
be lower despite making all the correct recommendations.
Furthermore, the accuracy performance of cHRev is consistent
across closed (MS Office) and open source (Android Platform,
Eclipse Platform, and Mylyn) systems. With regard to MRR
values, we consult Table 6. cHRev gives the value of greater
than 0.5 for all the four systems. That is, on average a
maximum of two recommendations need to be examined
to get the first correct reviewer. These results indicate the
stability of cHRev across systems with different sizes, test
sets, and domains.

RQ1 cHRev makes accurate reviewer recommendations in
terms of precision and recall. On average, less than two
recommendations are needed to find the first correct reviewer
in both closed and open source systems.

To investigate the research question RQ2, we computed
the metric gain of cHRev (i.e., X equals to precision, recall,

8

TABLE 4
Average of precision, recall, and F-score @1, 2, 3 and 5 values of the approaches cHRev , REVFINDER, xFinder , and RevCom measured on the

benchmarks.

System Precision@m Recall@m F-score@m
m cHRev REVFINDER xFinder RevCom cHRev REVFINDER xFinder RevCom cHRev REVFINDER xFinder RevCom

Mylyn

1 0.59 0.36 0.43 0.55 0.48 0.26 0.34 0.45 0.53 0.30 0.38 50
2 0.50 0.27 0.43 0.50 0.64 0.37 0.45 0.66 0.56 0.31 0.44 0.57
3 0.48 0.23 0.40 0.48 0.81 0.47 0.48 0.81 0.60 0.31 0.44 0.60
5 0.41 0.19 0.39 0.41 0.87 0.67 0.56 0.87 0.56 0.30 0.46 0.56

Eclipse Platform

1 0.44 0.44 0.28 0.43 0.38 0.36 0.25 0.36 0.41 0.40 0.26 0.39
2 0.40 0.33 0.30 0.38 0.61 0.55 0.46 0.60 0.48 0.41 0.36 0.47
3 0.37 0.27 0.26 0.34 0.76 0.67 0.5 0.72 0.50 0.38 0.34 0.46
5 0.31 0.20 0.24 0.28 0.82 0.75 0.62 0.80 0.45 0.32 0.35 0.41

Android Platform

1 0.50 0.34 0.23 0.48 0.27 0.18 0.19 0.26 0.35 0.24 0.21 0.34
2 0.41 0.29 0.17 0.39 0.42 0.31 0.28 0.41 0.41 0.30 0.21 0.40
3 0.35 0.25 0.14 0.34 0.50 0.39 0.31 0.49 0.41 0.30 0.19 0.40
5 0.30 0.22 0.11 0.28 0.61 0.48 0.37 0.60 0.40 0.30 0.17 0.38

MS Office

1 0.59 0.38 0.23 0.57 0.42 0.25 0.16 0.40 0.49 0.30 0.19 0.47
2 0.47 0.33 0.18 0.46 0.60 0.43 0.23 0.60 0.53 0.37 0.20 0.52
3 0.37 0.26 0.16 0.37 0.68 0.51 0.27 0.68 0.48 0.34 0.20 0.48
5 0.29 0.22 0.13 0.28 0.75 0.72 0.29 0.75 0.42 0.34 0.18 0.41

TABLE 5
Average of precision, recall, and F-score gains @1, 2, 3 and 5 values of the approaches cHRev , REVFINDER, xFinder , and RevCom measured on

the benchmarks.

System Precision Recall F-score

GainPcHRev- GainPRevCom- GainRcHRev- GainRRevCom- GainFcHRev- GainFRevCom-
m REVFINDER% xFinder% RevCom% xFinder% REVFINDER% xFinder% RevCom% xFinder% REVFINDER% xFinder% RevCom% xFinder%

Mylyn

1 63.88 37.21 7.27 27.90 84.61 41.18 6.66 32.25 76.66 39.47 6 31.57
2 85.18 16.28 0 16.28 72.97 42.22 -3.03 46.66 80.64 27.27 -1.78 29.54
3 108.69 20.00 0 20.00 72.34 68.75 0 68.75 93.54 36.36 0 36.36
5 115.78 5.13 0 5.13 29.85 55.35 0 55.35 86.66 21.73 0 21.73

Eclipse Platform

1 0 57.14 2.32 53.57 5.55 52.00 5.55 44.00 2.5 57.69 5.12 50.00
2 21.21 33.33 5.26 26.66 10.90 32.61 1.66 30.43 17.07 33.33 2.12 30.55
3 37.03 42.31 8.82 30.76 13.43 52.00 5.55 44.00 31.57 47.05 8.69 35.29
5 55 29.17 10.71 16.66 9.33 32.26 2.5 29.03 40.62 28.57 9.75 17.14

Android Platform

1 47.05 117.39 4.16 108.69 50.00 42.10 3.84 36.84 45.83 66.67 2.94 .61.90
2 41.37 141.17 5.12 129.41 35.48 50.00 2.43 46.42 36.67 95.24 2.50 90.48
3 40.00 150.00 2.94 142.85 28.20 61.29 2.04 58.66 36.67 115.79 2.50 110.53
5 36.36 172.72 7.14 154.54 27.08 64.86 1.66 62.16 33.33 135.29 5.26 123.53

MS Office

1 55.26 156.52 3.51 147.83 68.00 162.5 5 150.00 63.33 157.89 4.26 147.37
2 42.42 161.11 2.17 155.55 39.53 160.87 0 160.87 43.24 165.00 1.92 160.00
3 42.30 131.25 0 131.25 33.33 151.85 0 151.85 41.18 140.00 0.00 140.00
5 31.81 123.07 3.57 115.38 4.16 158.62 0 158.62 23.53 133.33 2.44 127.78

TABLE 6
Mean Reciprocal Rank of the approaches cHRev , REVFINDER, xFinder , and RevCom measured on the benchmarks.

System MRR GaincHRev- GainRevCom-
cHRev REVFINDER xFinder RevCom REVFINDER% xFinder% RevCom% xFinder%

Mylyn 0.72 0.52 0.51 0.71 38.46 41.18 1.40 39.20
Eclipse 0.63 0.58 0.46 0.62 8.62 36.96 1.61 34.78
Android 0.65 0.49 0.35 0.63 32.65 85.71 3.17 80.00
MS Office 0.70 0.56 0.29 0.69 25.00 141.37 1.44 137.93

F-score, or MRR) over another compared approach (i.e.,
Y equals to REVFINDER, xFinder, or RevCom) using the
following formula:

GainX@mcHRev−Y = X@mcHRev−X@mY

X@mY
× 100

(11)
Tables 5 and 6 show the precision, recall, F-score, and

MRR gain values. Clearly, cHRev outperforms REVFINDER
across precision, recall, F-socre, and MRR values in all the
four systems. cHRev records positive gains with statisti-
cal significance (with p-values<0.05) in all cases, except
precision@m = 1, recall@m = 1, and F-score@m = 1 for
Eclipse Platform (see Tables 7 and 8). In these exceptional
cases, both were statistically equivalent. The gains in Eclipse
Platform are generally lower than those in Android Platform,
Mylyn, and MS Office. We only considered a single compo-
nent of Eclipse Platform and was the smallest dataset in our
evaluation. The methodology of REVFINDER should have
favored such a dataset because the file names in a single

component are typically similar (and thus, the reviewers).
However, our cHRev approach was able to perform better
than REVFINDER in even such a favorable setting. Therefore,
these results suggest that the amount of comments, workdays
need to make them, and their recency contribute to higher
accuracy than simply looking at similar file names and paths.
Therefore, we find support to reject Hypothesis H-1 in favor
of cHRev.

Clearly, cHRev outperforms xFinder across precision,
recall, F-score, and MRR values in all the four systems. It
is remarkable to note that the precision and recall gains
of cHRev over xFinder on MS Office (well over 100%) are
substantially better than those achieved on Android Platform,
Eclipse Platform, and Mylyn (well below 100%). This fact
suggests that cHRev could offer a much better solution in the
commercial domain. All the precision and recall gains for
different values of m (with the exception of Mylyn precision
at m=5), and MRR gains are statistically significant (i.e.,
p-values<0.05). The only case of Mylyn where there is no
statistically significant gain happens at the largest value of m,

9

TABLE 7
p-values from applying one way ANOVA on Precision@m and Recall@m values for each subject system.

System m Precision p-value Recall p-value

cHRev- RevCom- cHRev- RevCom-
REVFINDER xFinder RevCom xFinder REVFINDER xFinder RevCom xFinder

Mylyn

1 < 0.01 < 0.01 ≤ 0.4 < 0.01 < 0.01 < 0.01 ≤ 0.8 < 0.01
2 < 0.01 < 0.01 ≤ 0.9 < 0.01 < 0.01 ≡ 0.00 ≤ 0.9 ≡ 0.00
3 ≡ 0.00 < 0.01 ≤ 0.9 < 0.01 ≡ 0.00 ≡ 0.00 ≤ 1 ≡ 0.00
5 ≡ 0.00 ≤ 0.7 ≤ 0.9 ≤ 0.7 ≡ 0.00 ≡ 0.00 ≤ 1 ≡ 0.00

Eclipse Platform

1 ≤ 0.1 < 0.01 ≤ 0.8 < 0.01 ≤ 0.4 < 0.02 ≤ 0.7 < 0.04
2 < 0.02 < 0.01 ≤ 0.5 < 0.03 < 0.04 < 0.01 ≤ 0.9 < 0.01
3 < 0.02 < 0.01 ≤ 0.3 < 0.01 < 0.03 ≡ 0.00 ≤ 0.4 < 0.01
5 ≡ 0.00 < 0.04 ≤ 0.3 < 0.03 < 0.02 ≡ 0.00 ≤ 0.9 ≡ 0.00

Android Platform

1 < 0.01 < 0.01 ≤ 0.8 < 0.01 < 0.03 < 0.01 ≤ 0.9 < 0.01
2 < 0.01 < 0.01 ≤ 0.7 < 0.01 < 0.02 ≡ 0.00 ≤ 0.9 ≡ 0.00
3 < 0.01 ≡ 0.00 ≤ 0.7 ≡ 0.00 < 0.01 ≡ 0.00 ≤ 0.9 ≡ 0.00
5 < 0.01 ≡ 0.00 ≤ 0.7 ≡ 0.00 < 0.01 ≡ 0.00 ≤ 0.9 ≡ 0.00

MS Office

1 < 0.01 ≡ 0.00 ≤ 0.7 ≡ 0.00 < 0.01 ≡ 0.00 ≤ 0.7 ≡ 0.00
2 < 0.02 ≡ 0.00 ≤ 0.8 ≡ 0.00 < 0.02 ≡ 0.00 ≤ 0.9 ≡ 0.00
3 < 0.02 ≡ 0.00 ≤ 0.9 ≡ 0.00 < 0.02 ≡ 0.00 ≤ 0.9 ≡ 0.00
5 < 0.03 ≡ 0.00 ≤ 0.9 ≡ 0.00 ≤ 0.04 ≡ 0.00 ≤ 0.9 ≡ 0.00

TABLE 8
p-values from applying one way ANOVA on MRR values for each subject

system.

System MRR p-value

cHRev- RevCom-
REVFINDER xFinder RevCom xFinder

Mylyn < 0.01 ≡ 0.00 ≤ 0.7 ≡ 0.00
Eclipse < 0.04 < 0.01 ≤ 0.9 < 0.01
Android ≡ 0.00 ≡ 0.00 ≤ 0.7 ≡ 0.00
MS Office < 0.01 ≡ 0.00 ≤ 0.9 ≡ 0.00

where precision was the lowest in both approaches. Nonethe-
less, cHRev is no worse than xFinder in this exceptional case.
Therefore, we find support to reject Hypothesis H-2 in favor
of cHRev. Note that the same cannot be said about the gains
of REVFINDER over xFinder. REVFINDER did not register a
single positive precision or recall gain over xFinder in Mylyn,
which was the largest considered open source dataset.

In case of the comparison between cHRev and RevCom,
a negative gain would indicate RevCom doing better than
cHRev and a positive gain would indicate cHRev doing
better than RevCom. Clearly, the gains (with the exception
of Mylyn recall and F-score at m=2) are positive. Contrary
(and perhaps surprisingly) to many successful results from
various combined approaches in other tasks studies, the
combination of reviews and commits was not very effective.
In fact, our results indicate that a combined approach could
be detrimental (i.e., could lead to a drop in precision and
recall). The statistical testing showed that the gains are
not significant (p-values >0.05). Nonetheless, the results
show that the combined approach RevCom is no better than
our approach cHRev. Therefore, we find support to accept
Hypothesis H-3 in favor of cHRev.

Concerned with the potential drop in precision and recall,
we continued our investigation of the research question
RQ2. We did a similar analysis to compute the gains of
RevCom over xFinder to ascertain that the combination would
be more effective than xFinder. On a successful note, we
found that all the gains are statistically significant (with the
exception of Mylyn precision at m=5). Therefore, RevCom
outperforms xFinder. It is worth noting, however, that the
gains of RevCom over xFinder could be lower than those of

cHRev over xFinder. This behavior can be seen in the precision
and recall results of Android Platform, Eclipse Platform, and
MS Office. Our results suggest to exercise caution about
treating the combination and review based recommenders
to be identical in performance. Overall, we find support to
reject Hypothesis H-4.

RQ2: cHRev performs much better than REVFINDER which
is based on reviewers of files with similar names and paths
and xFinder which relies on source code repository data, and
cHRev is statistically equivalent to RevCom which requires
both past reviews and commits.

4.7 Discussion

Here we discuss a few points that would help in our under-
standing of the rationale behind the improved performance
with using reviews in cHRev. The reasons could be attributed
to two-fold aspects.

First, unlike REVFINDER, cHRev includes the number
of individual days that a reviewer provided feedback and
also the time since the most recent review on each file. Both
techniques use the number of past reviews on a changed
file under current review to model expertise; however cHRev
also uses the number of comments in each review, the
number of days that a reviewer has made comments on
a file under review (sometimes multiple workdays for one
review) because prolonged examination of a source code
file could indicate the increased level of expertise. Further,
research has shown that expertise in an area of code dwindles
with time [26] and thus we incorporate recency, the amount
of time since the last review of a file by a potential reviewer,
into our approach. Moreover, cHRev was able to recommend
reviewers in an overwhelming majority of the cases at the
file level.

Second, for all of the projects studied, we found many
cases where reviewers provided quality feedback despite
the fact that they had never made changes to the files or
directories under review. We manually investigated reasons
why these people might have the expertise to provide such
feedback as reviewers.

10

The Broader Community: In Android Platform, Mylyn,
and Eclipse Platform there are a limited number of people
with permissions to make code changes, but a larger group
that contributes patches, participates in bug reporting, or
provide feedback on future design plans. Because they are
still involved in the project in a technical way, they have
expertise that is useful for reviewing changes.

Project Leaders: In all of the projects that we examined
there are project leaders (known as “development leads”
at Microsoft) who are experienced developers and have
intimate knowledge of the different systems within the
project. They often act as reviewers and provide feedback
about changes even though they had never changed the
actual files under review.

Testers and Managers: In MS Office, we observed that
testers and program managers participated in reviews quite
often. While these people do not work on shipping code, their
job responsibilities require that they take an active interest
in changes. Testers must write tests that exercise the code
under review and program managers manage dependencies
and interfaces between various systems in the code.

Developers of Related Code: Source code files do not
exist in a vacuum. Most source code depends on and is
depended on by other parts of the system. The associated
developers have an interest in such changes. We observed
many cases in which the change to a piece of code is reviewed
by developers that work in related code (e.g., code that has a
dependency on the changed code). This occurred in all four
projects studied.

Developers of Unaccepted Contributions: Given the
nature of OSS, there are often multiple attempts at resolving
a given change request. For example, multiple (a few incom-
plete or incorrect) fixes are attempted by perhaps multiple
developers. In the end, only a complete and correct resolution
is accepted and/or merged into the source code repository
(i.e., the main development trunk or branch). Of course, the
commit history only records the final outcome (i.e., only
the things committed). Gousios et al. [27] observed that
in GitHub some issues receive multiple pull-requests with
solutions, but not all are accepted and merged. Our results
show that past experiences (including failures) are important
ingredients in shaping reviewer expertise.

In all of the cases described above, the source code
repository does not capture activity reflective of the expertise
of various team members. These people do participate in
code reviews either as reviewers (most cases) or as authors
of changes that are never accepted, but which are examined
by the community. Thus, there are traces of their expertise in
the review history. This is not surprising, as Rigby et al. [4]
found that project participants in both industrial and OSS
contexts are exposed to more source code through review
than through making changes to the code (exposed to 44%
to 150% more files on average). All of these observations
support the conclusion that relying on the commit history
of a source code repository carries the threat of missing
potential reviewers that have valuable expertise. Similarly
the number of developers who authored commits and the
number of reviewers who participated in review process
reveal the difference between the provided information from
commit history and review history. We calculated the The
Jaccard similarity between the list of reviewers from the

review history and the list of developers from the commit
history to explore their differences. The Jaccard values for
Android Platform, Eclipse Platform, and Mylyn are 0.55, 0.45,
and 0.67 respectively. These values show that these two lists
are quite dissimilar.

During our study, we noted that the impact of using
review data over commit data was more pronounced in MS
Office. This is most likely due to the way that responsibility
of code is handled at Microsoft. Bird et al. [28] found that
strong ownership practices are employed at Microsoft. As a
result, it is quite common that the owner of a particular piece
of code may be the only one to have touched it in a long
time and in some cases ever. In these cases, commit history
is unlikely to provide much help in identifying a reviewer.
However, expertise as exhibited in prior reviews from mem-
bers falling into the groups discussed above are captured
by cHRev, leading to improved recommendations. The fact
that cHRev outperformed xFinder in our study reveals that
considering only the code ownership (code commits) will
provide a suboptimal solution for recommending reviewers.
Additionally, cHRev outperformed RevCom, which indicates
that combining the code ownership and review features
may not necessarily improve the accuracy of recommending
reviewers.

5 THREATS TO VALIDITY

We will now discuss the internal, construct, and external
threats to validity of the results of our empirical study.

Considering Review Comments for Entire Patch: We
only considered the review comments that were written
for the entire code change because it was the case in our
subject systems. For Android Platform, Eclipse Platform, and
Mylyn projects, most review comments are for the entire
code change and the number of in-line comments is low in
comparison (20% in-line comments). We did not do a precise
mapping of these comments to individual files. This fact
may have given less relevant and more irrelevant weights
to certain files. We plan to study systems with inline review
comments in the future.

Verifying or Reviewing the Code: In Gerrit code review
system, reviewers can get two different roles: reviewing the
code or verifying the code. Verification is generally related to
running the test cases. We did not separate reviewers based
on their roles. It is possible that separating the reviewers
based on their role could affect the results.

Correctness of Reviewer Recommendations: We consid-
ered a gold-set to be reviewers who contributed in reviews
to a given code change and not those reviewers who are
assigned to review the code change. We considered reviewers
who contributed at least a comment and assigned reviewers
because not all (or any) of the assigned reviewers may
eventually participate in the review process. We do not know
that these reviewers were the best nor other reviewers were
equally capable (but did not contribute due to issues such
as workload and schedule). However, creating a gold set
accounting for such factors is a challenging issue. Recently
different metrics for recommender systems were defined
such as diversity [29]. We plan to incorporate this metric in
the future work.

11

Reviewer Identity Mismatch: Although we carefully
examined the available sources of information to match the
different identities of the same reviewer, it is possible that
we missed or mismatched a few cases. There are several
cases which developer’s IDs are different in git and Gerrit
repositories.

Incongruent History: Although, a common period was
considered for extracting the review and commit datasets,
the number of commit transactions is higher than the number
of review transactions. There are several cases in which the
code change was directly merged into the git repository
without going through the review process. For the open
source projects commits were available before the reviews.
It is possible that these datasets are not reflective of the
optimum results.

Single Period of History: We considered one period
of history for each system (see Section 4.3 for the specific
reasons); however, we do not claim that our results would
hold equally well for other chosen periods of history. A
different history period might produce different results in
terms of their relative performance.

Generalization: Although we investigated both closed
and open source systems, we do not claim that our results
would generalize to every software system in these domains.

6 RELATED WORK

There has been much investigation in the various aspects of
modern code review. We briefly discuss a few representative
efforts from this investigation. The reviewer recommendation
task has not been examined much in the literature yet.

6.1 Code Review

Previous studies in code review area can be classified
according to several empirical studies describing the different
features of modern code review process, predicting the
outcome of code review, influence of code review on the
code quality, optimizing the effort of reviewers, and several
tools which support the code review process. We focus our
discussion of related code review research to work that
considers code reviewers as a primary subject.

6.1.1 Empirical studies on code review

While a very rigid Fagan code inspection process may
have been appropriate the mid-70s, a significant amount
of time and effort is required to collate review material,
and coordinate its distribution and review [13]. In contrast
contemporary or modern code review encompasses a series
of less rigid practices [9], [30], [31]. These lightweight
practices allow peer review to be adopted to fit the needs of
the development team. Peer code review, a manual inspection
of source code by developers other than the author is
recognized as a valuable tool for reducing software defects
and improving the quality of software projects. Peer review
is seen as an important quality assurance mechanism in
both industrial development and open source software (OSS)
community. Rigby et al. [10] examined two peer review
techniques: review-then-commit and commit-then-review
used by Apache server project. The frequency of reviews,
the level of participation in reviews, and the size of artifacts

under review are a few factors that they have measured
in their studies. Modern code review often leave out the
team meeting and reduce the number of people involved in
the review process to two. Wood et al. [32] found that the
optimal number of reviewers should be two. Rigby et al. [4]
compared three types of peer review methods: traditional
inspection, OSS email-based peer review, and lightweight
tool supported review. Despite differences among projects,
many of the characteristics of the review process have
independently converged to similar values. which indicates
general principles of code review practice.

Software peer review has proven to be a successful
technique in open source software development. In contrast
to industry, where reviews are typically assigned to specific
individuals, changes are broadcast to hundreds of potentially
interested stakeholders. Rigby et al. [11] describe an empirical
study to investigate the mechanisms and behaviors that
developers use to find code changes they are competent to
review. Bacchelli et al. [12] conducted an empirical study
across diverse teams at Microsoft to empirically explore
the motivations, challenges and outcome of tool-based code
reviews. Baysal et al. [8] studied the patch lifecycle of the
Mozilla Firefox project. Their study shows that patches
from casual developers should receive extra care to ensure
software quality and encourage future contributions. Porter
et al. [33] studied effect of the variance among elements
of the software inspection process, such as team size and
the number and sequencing of session, on the inspection
effectiveness.

6.1.2 Predicting the outcome of code review

There are several studies that evaluate the influence of differ-
ent factors on the output of code review (e.g., code review
response time and outcome). Baysal et al. [5] described an
empirical study of code review process for WEbKit and
their result provides that non-technical factors such as bug
priority and patch writer experience can have a significant
impact on the code review outcome. Weissgerber et al. [6]
performed data mining on email archives of two open source
projects to study patch contributions. They found that smaller
patches have a higher chance of being accepted than larger
ones. Jiang et al. [7] found that patch acceptance is affected
by the developer experience, patch maturity, and priori
subsystem churn, whereas, the reviewing time is impacted by
the submission time, the number of affected subsystems, and
the number of suggested reviewers and developer experience.
Jeong et al. [34] examined the review process in two Mozilla
projects and presented approaches for suggesting reviewers
of OSS patches and predicting whether such patches would
be accepted.

6.1.3 Influence of code review on the code quality

McIntosh et al. [3], [35] studied the effect of code reviews on
quality by mining the code review and change repositories
of open source projects. They report that the percentage of
reviewed changes a code component underwent correlates
inversely to its chance of being involved in post-release fixes.
Beller et al. [36] studied the types of defects fixed in modern
code review repositories. Kemerer et al. [37] show that code
review reduce the amount of defects in student projects. With
the available data they were also able to study the impact of

12

review rate on the inspection performance. They found high
review rates (i.e., a high number of reviewed LOC/hour) to
be associated with a decrease in inspections effectiveness.

6.1.4 Tool support for code review

Kim et al. [38] developed a tool called LSdiff to help reviewers
inspect program differences. LSdiff covers the limitations of
program differencing tools by inferring systematic structural
differences into logic rules. Zhang et al. [39] developed a tool
called CRITICS, an Eclipse plug-in that assists developers in
inspecting systematic changes. There are several researched
tools to help support other aspects of modern code review.
Modern code review is often supported by tools, preferably
integrated into the development environment (IDE) [40].
One of these integrated IDE tools is ReviewClipse [41] and
another is Mylyn Reviews [42]. A popular review tool is OSS
Gerrit [43], offering web-based reviewing for projects using
Git [44]. A number of other review tools: CodeFlow [12],
Microsoft code review tool; Phabricator is Facebook’s open-
sourced tool [45]; Mondrian, a tool that Google uses for its
closed-source projects [46]. With the advent of open source
code review tools such as Gerrit along with projects that
use them, code review data is now available for collection
and analysis. Mukadam et al. [47] extracted Android peer
review data from Gerrit and provide the data for future
empirical software engineering questions. Gonzlez et al.
[48] presented an approach to retrieve and analyze the
information produced by Gerrit based on a previously
designed tool called Bicho.

6.1.5 Reviewer Recommendation

There are only three approaches reported for reviewer
recommendations. Balachandran [16] proposed a GIT blame
like line oriented approach. Recently, Thongtanunam et al.
[15] proposed an approach, namely REVFINDER, which is
based on the past reviews of files with similar names and
paths. They showed that REVFINDER outperformed Bal-
achandran’s approach on open source systems. REVFINDER
finds past reviews with files whose paths and names are
similar (based on string comparison) to the ones in the
patch under review. It assigns all the reviewers from each
such past review the same (string comparison) score. All the
reviewers are ranked based on the sum of their scores. It
does not look into other attributes of the past contributions
of the reviews (e.g., how much and when) and is limited
to whether a reviewer contributed or not. In summary,
REVFINDER’s expertise model favors breadth or generality of
review contributions. In parallel to our work, Xia et al. [14]
proposed another approach for reviewer recommendation,
namely TIE. The intuition of TIE is that the same reviewers
are likely to review changes containing similar terms (words)
and reviewers are likely to review changes to the same files or
files in similar locations. TIE outperformed REVFINDER on
open source systems. Similar to REVFINDER, TIE approach
just look into the similarity of patch description and file
path. Unlike them, cHRev does not need textual information
from code changes. Furthermore, TIE does not account
for attributes such as the amount of comments and their
recency). Furthermore, our empirical evaluation included the
closed-source domain and comparison with a closely related
methodology of developer recommendation.

6.1.6 Key difference between REVFINDER and our cHRev
approach

cHRev looks at the specific contribution of each reviewer in
past reviews on the code under review. This contribution is
quantified using the numbers of feedback comments and
days, and their recency. In summary, cHRev’s expertise
model favors depth or specificity of review contributions.
The implication of the breadth and depth difference on the
performance is that REVFINDER may end up with too many
generic recommendations of package/subsystem owners (or
gatekeepers) at the expense of too few specific contributors,
including developers and leads who focus on a narrower
code base. Our results on commercial and open source
systems suggest that the depth analysis of past reviews leads
to improved accuracy of recommendations.

6.2 Developer Recommendation

The task of automatically assigning issues or change requests
(e.g., bug fixes or new feature) to the developer(s) who are
most likely to resolve them has been studied under the
umbrella of issue triaging. A number of approaches exit
in the literature [24], [25], [49], [50], [51], [52], [53], [54],
[55]. Approaches for developer recommendation typically
operate on software repositories (e.g., models trained from
past bugs/issues or source-code changes), the source-code
authorship, or their combinations.

While similar to developer recommendation, reviewer
recommendation is in a different domain. The developer
recommendation task is in domain of resolving a bug and
the reviewer recommendation is in domain of reviewing
a change. Issue triage is a crucial activity in addressing
change requests in an effective manner (e.g., within time,
priority, and quality factors). One simple way to view the
difference is that the developer recommendation occurs
(developers/owners to resolve the change request) before the
reviewer recommendation (reviewers to review the changed
code to address the change request). Our results from both
open and closed source domains show that commit history is
insufficient for gauging the needed reviewers. It is necessary
to utilize past code reviews to find the appropriate reviewers
accurately.

7 CONCLUSIONS AND FUTURE WORK

We presented an approach cHRev to automatically recom-
mend peer reviewers in modern code review. An empirical
study on one commercial and three open source systems
showed that our approach provides improved precision and
recall over the state of the art competitor. Our results show
the added value of analyzing specific information available
from previously completed reviews (i.e., quantification of
review comments and their recency) for peer reviewer
recommendations. We also observed that a developer rec-
ommendation approach based on past source code commits
was inadequate in effectively supporting this task. However,
our experience from this investigation shows that the general
principles of frequency, workdays, and recency from such
a developer recommendation approach are transformative.
That is, these measures when computed on past code reviews
instead of commits are very effective for the task of reviewer
recommendation.

13

In the future, we plan to include the textual analysis
of review comments and additional measures of reviewers’
contributions and impact (e.g., the specific code elements
and their complexity, and the nature of issues identified and
addressed) in our approach.

REFERENCES

[1] A. F. Ackerman, L. S. Buchwald, and F. H. Lewski, “Software
inspections: An effective verification process,” IEEE Softw.,
vol. 6, no. 3, pp. 31–36, May 1989. [Online]. Available:
http://dx.doi.org/10.1109/52.28121

[2] A. F. Ackerman, P. J. Fowler, and R. G. Ebenau, “Software
inspections and the industrial production of software,” in
Proc. Of a Symposium on Software Validation: Inspection-
testing-verification-alternatives. New York, NY, USA: Elsevier
North-Holland, Inc., 1984, pp. 13–40. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3541.3543

[3] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact
of code review coverage and code review participation on software
quality: A case study of the qt, vtk, and itk projects,” in Proceedings
of the 11th Working Conference on Mining Software Repositories,
ser. MSR 2014. New York, NY, USA: ACM, 2014, pp. 192–201.
[Online]. Available: http://doi.acm.org/10.1145/2597073.2597076

[4] P. C. Rigby and C. Bird, “Convergent software peer review
practices,” in Proceedings of the the joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering (ESEC/FSE). ACM, 2013.

[5] O. Baysal, O. Kononenko, R. Holmes, and M. Godfrey, “The
influence of non-technical factors on code review,” in Reverse
Engineering (WCRE), 2013 20th Working Conference on, Oct 2013,
pp. 122–131.

[6] P. Weissgerber, D. Neu, and S. Diehl, “Small patches
get in!” in Proceedings of the 2008 International Working
Conference on Mining Software Repositories, ser. MSR ’08. New
York, NY, USA: ACM, 2008, pp. 67–76. [Online]. Available:
http://doi.acm.org/10.1145/1370750.1370767

[7] Y. Jiang, B. Adams, and D. German, “Will my patch make it?
and how fast? case study on the linux kernel,” in Mining Software
Repositories (MSR), 2013 10th IEEE Working Conference on, May 2013,
pp. 101–110.

[8] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey, “The
secret life of patches: A firefox case study,” in Proceedings of the
2012 19th Working Conference on Reverse Engineering, ser. WCRE ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 447–455.
[Online]. Available: http://dx.doi.org/10.1109/WCRE.2012.54

[9] P. Rigby, B. Cleary, F. Painchaud, M. Storey, and D. German,
“Contemporary peer review in action: Lessons from open source
development,” Software, IEEE, vol. 29, no. 6, pp. 56–61, Nov 2012.

[10] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software
peer review practices: A case study of the apache server,” in
Proceedings of the 30th International Conference on Software Engineering,
ser. ICSE ’08. New York, NY, USA: ACM, 2008, pp. 541–550.
[Online]. Available: http://doi.acm.org/10.1145/1368088.1368162

[11] P. C. Rigby and M.-A. Storey, “Understanding broadcast based
peer review on open source software projects,” in Proceedings of the
33rd International Conference on Software Engineering, ser. ICSE ’11.
New York, NY, USA: ACM, 2011, pp. 541–550. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1985867

[12] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 35th International
Conference on Software Engineering, 2013.

[13] M. E. Fagan, “Design and code inspections to reduce errors in
program development,” IBM Systems Journal, vol. 38, no. 2.3, pp.
258–287, 1999.

[14] Y. Tian, M. Nagappan, D. Lo, and A. Hassan, “Who should
review this change?: Putting text and file location analyses together
for more accurate recommendations,” in Proceedings of the 31st
IEEE International Conference on Software Maintenance and Evolution,
ICSME 2015, September 2015.

[15] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida,
H. Iida, and K. ichi Matsumoto, “Who should review my code? a
file location-based code-reviewer recommendation approach for
modern code review,” in the 22nd IEEE International Conference on
Software Analysis, Evolution, and Reengineering (SANER), 2015, pp.
141–150.

[16] V. Balachandran, “Reducing human effort and improving quality
in peer code reviews using automatic static analysis and reviewer
recommendation,” in Proceedings of the 2013 International Conference
on Software Engineering. IEEE Press, 2013, pp. 931–940.

[17] H. Kagdi, M. Hammad, and J. Maletic, “Who can help me with
this source code change?” in Software Maintenance, 2008. ICSM 2008.
IEEE International Conference on, Sept 2008, pp. 157–166.

[18] R. Robbes and D. Röthlisberger, “Using developer interaction
data to compare expertise metrics,” in Proceedings of the 10th
Working Conference on Mining Software Repositories, ser. MSR ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 297–300. [Online].
Available: http://dl.acm.org/citation.cfm?id=2487085.2487141

[19] P. Runeson and M. Hst, “Guidelines for conducting and reporting
case study research in software engineering,” Empirical Software
Engineering, vol. 14, no. 2, pp. 131–164, 2009. [Online]. Available:
http://dx.doi.org/10.1007/s10664-008-9102-8

[20] M. Linares-Vasquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers,
and D. Poshyvanyk, “Triaging incoming change requests: Bug or
commit history, or code authorship?” in proceedings of 28th IEEE
International Conference on Software Maintenance (ICSM), 2012, 2012,
pp. 451–460.

[21] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, “Integrated
impact analysis for managing software changes,” in Proceedings of
the 2012 International Conference on Software Engineering, ser. ICSE
2012. Piscataway, NJ, USA: IEEE Press, 2012, pp. 430–440. [Online].
Available: http://dl.acm.org/citation.cfm?id=2337223.2337274

[22] J. Czerwonka, N. Nagappan, W. Schulte, and B. Murphy,
“CODEMINE: building a software development data analytics
platform at microsoft,” IEEE Software, vol. 30, no. 4, pp. 64–71,
2013. [Online]. Available: http://doi.ieeecomputersociety.org/10.
1109/MS.2013.68

[23] C. Bird, T. Carnahan, and M. Greiler, “Lessons learned
from deploying a code review analytics platform,” Microsoft
Research, http://research.microsoft.com/apps/pubs/default.aspx?
id=241497, Tech. Rep. MSR-TR-2015-22 (Under submission
to MSR 2015), February 2015. [Online]. Available: http:
//research.microsoft.com/apps/pubs/default.aspx?id=241497

[24] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?”
in proceedings of 28th ACM International Conference on Software
Engineering, ser. ICSE ’06, 2006, pp. 361–370. [Online]. Available:
http://doi.acm.org/10.1145/1134285.1134336

[25] X. Xia, D. Lo, X. Wang, and B. Zhou, “Accurate developer
recommendation for bug resolution,” in Proceedings of the 20th
Working Conference on Reverse Engineering (WCRE), Oct 2013, pp.
72–81.

[26] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill, “A
degree-of-knowledge model to capture source code familiarity,”
in Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ser. ICSE ’10. New
York, NY, USA: ACM, 2010, pp. 385–394. [Online]. Available:
http://doi.acm.org/10.1145/1806799.1806856

[27] G. Gousios, M. Pinzger, and A. van Deursen, “An exploratory study
of the pull-based software development model.” in ICSE, 2014, pp.
345–355.

[28] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t
Touch My Code! Examining the Effects of Ownership on Software
Quality,” in Proceedings of the the eighth joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering. ACM, 2011.

[29] C. Yu, L. Lakshmanan, and S. Amer-Yahia, “It takes variety
to make a world: Diversification in recommender systems,” in
Proceedings of the 12th International Conference on Extending Database
Technology: Advances in Database Technology, ser. EDBT ’09. New
York, NY, USA: ACM, 2009, pp. 368–378. [Online]. Available:
http://doi.acm.org/10.1145/1516360.1516404

[30] S. Kollanus and J. Koskinen, “Survey of software inspection
research,” The Open Software Engineering Journal, vol. 3, pp. 15–
34, 2009.

[31] J. Cohen, Best Kept Secrets of Peer Code Review. Austin, TX, USA:
Smart Bear Inc, 2006.

[32] M. Wood, M. Roper, A. Brooks, and J. Miller, “Comparing
and combining software defect detection techniques: A
replicated empirical study,” SIGSOFT Softw. Eng. Notes,
vol. 22, no. 6, pp. 262–277, Nov. 1997. [Online]. Available:
http://doi.acm.org/10.1145/267896.267915

[33] A. Porter, H. Siy, A. Mockus, and L. Votta, “Understanding
the sources of variation in software inspections,” ACM Trans.
Softw. Eng. Methodol., vol. 7, no. 1, pp. 41–79, Jan. 1998. [Online].
Available: http://doi.acm.org/10.1145/268411.268421

14

[34] G. Jeong, S. Kim, T. Zimmermann, and K. Yi, “Improving code re-
view by predicting reviewers and acceptance of patches,” Research
on Software Analysis for Error-free Computing Center, Tech. Rep.
ROSAEC MEMO 2009-006, September 2009.

[35] R. Morales, S. McIntosh, and F. Khomh, “Do code review practices
impact design quality? a case study of the qt, vtk, and itk projects,”
in Proc. of the 22nd Int’l Conf. on Software Analysis, Evolution, and
Reengineering (SANER), 2015, pp. 171–180.

[36] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern
code reviews in open-source projects: Which problems do
they fix?” in Proceedings of the 11th Working Conference on
Mining Software Repositories, ser. MSR 2014. New York,
NY, USA: ACM, 2014, pp. 202–211. [Online]. Available:
http://doi.acm.org/10.1145/2597073.2597082

[37] C. Kemerer and M. Paulk, “The impact of design and code reviews
on software quality: An empirical study based on psp data,”
Software Engineering, IEEE Transactions on, vol. 35, no. 4, pp. 534–550,
July 2009.

[38] M. Kim and D. Notkin, “Discovering and representing systematic
code changes,” in Proceedings of the 31st International Conference
on Software Engineering, ser. ICSE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 309–319. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2009.5070531

[39] T. Zhang, M. Song, and M. Kim, “Critics: An interactive code
review tool for searching and inspecting systematic changes,” in
Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2014. New
York, NY, USA: ACM, 2014, pp. 755–758. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2661675

[40] L.-T. Cheng, C. R. de Souza, S. Hupfer, J. Patterson,
and S. Ross, “Building collaboration into ides,” Queue,
vol. 1, no. 9, pp. 40–50, Dec. 2003. [Online]. Available:
http://doi.acm.org/10.1145/966789.966803

[41] M. Bernhart, A. Mauczka, and T. Grechenig, “Adopting code
reviews for agile software development,” in Agile Conference
(AGILE), 2010, Aug 2010, pp. 44–47.

[42] “Mylyn reviews,” https://projects.eclipse.org/projects/mylyn.
reviews, accessed: 2014-12-08.

[43] “Gerrit,” https://code.google.com/p/gerrit/, accessed: 2014-12-08.
[44] L. Milanesio, Learning Gerrit Code Review. Packt Publishing Ltd,

2013.
[45] “Phabricator,” http://phabricator.org/, accessed: 2014-12-08.
[46] “Google mondrian: web-based code review and storage,” http://

www.niallkennedy.com/blog/2006/11/google-mondrian.html, ac-
cessed: 2014-12-08.

[47] M. Mukadam, C. Bird, and P. C. Rigby, “Gerrit software code
review data from android,” in Proceedings of the International Working
Conference on Mining Software Repositories (Data Track). IEEE, 2013.

[48] J. M. Gonzlez-Barahona, D. Izquierdo-Cortazar, G. Robles, and
A. del Castillo, “Analyzing gerrit code review parameters with
bicho,” ECEASST, pp. –1–1, 2014.

[49] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage
with bug tossing graphs,” in proceedings of the the 7th Joint Meeting
of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering, ser.
ESEC/FSE ’09. New York, NY, USA: ACM, 2009, pp. 111–120.
[Online]. Available: http://doi.acm.org/10.1145/1595696.1595715

[50] J. Anvik and G. Murphy, “Determining implementation expertise
from bug reports,” in proceedings of fourth International Workshop on
Mining Software Repositories (MSR), 2007 ICSE Workshops MSR ’07,
2007, pp. 2–2.

[51] D. Cubranic, “Automatic bug triage using text categorization,” in
In SEKE 2004: Proceedings of the Sixteenth International Conference on
Software Engineering & Knowledge Engineering. KSI Press, 2004, pp.
92–97.

[52] O. Baysal, M. Godfrey, and R. Cohen, “A bug you like: A framework
for automated assignment of bugs,” in Program Comprehension, 2009.
ICPC ’09. IEEE 17th International Conference on, May 2009, pp. 297–
298.

[53] J. Anvik, “Automating bug report assignment,” in Proceedings of the
28th International Conference on Software Engineering, ser. ICSE ’06.
New York, NY, USA: ACM, 2006, pp. 937–940. [Online]. Available:
http://doi.acm.org/10.1145/1134285.1134457

[54] J. Anvik and G. C. Murphy, “Reducing the effort of bug report
triage: Recommenders for development-oriented decisions,” ACM
Trans. Softw. Eng. Methodol., vol. 20, no. 3, pp. 10:1–10:35, Aug. 2011.
[Online]. Available: http://doi.acm.org/10.1145/2000791.2000794

[55] M. Zanjani, H. Kagdi, and C. Bird, “Using developer-interaction
trails to triage change requests,” in Mining Software Repositories

(MSR), 2015 IEEE/ACM 12th Working Conference on, May 2015, pp.
88–98.

Motahareh Bahrami Zanjani is a Ph.D. student
and a member of the Software Engineering Re-
search Laboratory (SERL) in the Department of
Electrical Engineering and Computer Science at
Wichita State University. She received her BSc
and MSc degrees from Islamic Azad University,
Iran in 2006 and 2010, respectively. Her research
interests are in software maintenance and evolu-
tion.

Huzefa Kagdi is an Assistant Professor in the
Department of Electrical Engineering and Com-
puter Science at Wichita State University. His
research interests are in software engineering
with emphasis on software maintenance and
evolution, empirical software engineering, pro-
gram comprehension, and software analytics. He
received his Ph.D. in Computer Science from
Kent State University, USA.

Christian Bird is a researcher in the Empir-
ical Software Engineering group at Microsoft
Research. He focuses on using qualitative and
quantitative methods to both understand and help
software teams. Christian received his Bachelor’s
degree from Brigham Young University and his
Ph.D. from U.C. Davis. He lives in Redmond,
Washington with his wife and three children.

