
Collecting a Heap of Shapes

Earl T. Barr1,2 Christian Bird3 Mark Marron3,4

1University College London, UK 2UC Davis, USA 3Microsoft Research, USA 4IMDEA Software, Spain
e.barr@ucl.ac.uk, {christian.bird, marron}@microsoft.com

ABSTRACT
The program heap is fundamentally a simple mathemati-
cal concept — a set of objects and a connectivity relation
on them. However, a large gap exists between the set of
heap structures that could be constructed and those that
programmers actually build. To understand this gap, we
empirically study heap structures and sharing relations in
large object-oriented programs. To scale and make sense of
real world heaps, any analysis must employ abstraction; our
abstraction groups sets of objects by role and the aliasing
present in pointer sets. We find that the heaps of real-world
programs are, in practice, fundamentally simple structures
that are largely constructed from a small number of simple
structures and sharing idioms, such as the sharing of im-
mutable or unique (e.g. singleton) objects. For instance, we
find that, under our abstraction, 53–75% of pointers build
tree structures and we classify all but 7–18% of aliasing
pointers. These results provide actionable information for
rethinking the design of annotation systems, memory allo-
cation/collection, and program analyses.

Categories and Subject Descriptors: D.2.4 [Software
Engineering] ; D.4.8 [Performance]: Measurements

General Terms: Measurement

Keywords: Dynamic Analysis, Heap Structure

1. INTRODUCTION
The program heap is fundamentally a simple mathemat-

ical concept consisting of a set of objects and a connec-
tivity relation on them. This clean formalism lends itself
well to the application of powerful deductive mathemati-
cal analyses. However, the formalisms — objects, pointers,
types, and fields — that define the program heap in mod-
ern object-oriented languages such as Java or C# are fun-
damentally under-constrained; a large gap exists between
the range of heap structures that are admissible under the
weak constraints imposed by the type system and the pos-
sibly much more limited set of structures that programmers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’13, July 15 – 20, 2013, Lugano, Switzerland
Copyright 13 ACM 978-1-4503-2159-4/13/07 ...$15.00.

build in practice. Previous work has explored this gap us-
ing ownership and dominator relations applied to heaps col-
lected from the commercial operation of large server-side
Java applications [27, 28]. In this work, we further fill in
this gap using HeapDbg [26], a Daikon-style dynamic invari-
ant discovery tool tailored for the program heap [11]. We
apply this tool to the DaCapo benchmarks [3], which encom-
pass object-oriented programs selected to be representative
of real client-side applications and , thus, their heap struc-
tures. The results of our empirical study of the DaCapo
programs, validated against a selection of C# programs, in-
dicate that, in practice, the heap is a fundamentally simple
structure that is largely constructed from a small number of
shapes and sharing idioms.

This result has substantial implications for programming
language research, particularly type and annotation systems,
memory management, and the design of static heap analy-
sis techniques. Work in these areas generally considers the
heap in an adversarial setting where the analysis, memory
management technique, or specification system must effec-
tively handle the entire range of complex heap structures
that could appear instead of focusing on simple heaps that
do appear in practice. For example, questions about the
prevalence of recursive heap structures and the extent of
aliasing between multiple data structures are central issues
in the design of a heap analysis. The results in this pa-
per on these questions have already guided the development
of a hybrid heap analysis that is both computationally ef-
ficient and precise in practice [24]. We believe our results
on sharing idioms can achieve similar success informing the
design of ownership type systems. Results on the frequency
of sharing of immutable objects and isolation have already
demonstrated great utility [13]. Our detailed results on im-
mutability/isolation, singletons and other global structures
also point to further advances in type and annotation sys-
tems; they indicate that lightweight annotations that cap-
ture simple sharing relations show promise. As a final ex-
ample, the results in this paper shed new light on the topic
of region based garbage-collection and allocation [6, 18, 22].
In particular, the results on both the number of regions and
how they are shared suggest possible avenues for the design
of collectors/allocators that operate on individual heap re-
gions. Thus, our results imply that a pessimistic view of the
heap frequently does not reflect the reality of how object-
oriented programs organize the heap and may artificially
limit the utility of systems built under this assumption.

A major consideration when studying heap structures is
the level of abstraction to employ. A natural idea is to study

how individual objects are connected and shared [16, 19, 21,
23]. We hypothesize that developers actually think primar-
ily in terms of the roles that objects play and the relations
between these roles rather than thinking in terms of individ-
ual objects. Further, we hypothesize that these relations are
encoded in where pointers to the objects that play each role
are stored, i.e. objects that play the same roles are stored to-
gether while objects that play different roles are segregated.
This study is built on an abstraction that allows us to study
heap structures, and their relations, in terms of roles.

The results in this paper show, with a high degree of sta-
tistical confidence, that for object-oriented programs: local
ownership (a variant of ownership [7, 23]) is an important
but not dominant organization concept (mean of 51% ±12%
of types), that aggregation is the dominant form of com-
position (mean of 85% ±12% of types), and that a small
set of developer-centric concepts organize all type sharing
(mean of 88% ±4% of types can be precisely categorized).
In particular, we show that the majority of sharing that
actually occurs can be categorized using a small number
of programming idioms, viz. contained (i.e. locally shared),
global, unique, and immutable objects.

This paper makes the following contributions:

• We use runtime sampling to measure and statistically
analyze the heaps produced by the DaCapo bench-
marks [3] and a selection of C# programs;
• We provide evidence that components, as described

in [26], usefully and closely correspond to the roles
that developers assign to objects; and
• We identify a small number of sharing patterns, which

are related to common programming idioms, such as
the sharing of unique and immutable objects, that de-
scribe the majority of sharing that occurs in practice.

Our results confirm some commonly held beliefs about the
heap — programmers avoid sharing and builtin containers
are preferred to custom implementations — and provide ac-
tionable information — strict ownership is not the dominant
form of organization and sharing generally occurs in a small
number of idiomatic ways — for rethinking the design of an-
notation systems, the allocation/collection of memory, and
the design of program analyses.

2. THEORY
Object-oriented programming provides two ways for a pro-

grammer to transform abstract concepts into classes: is-a
and has-a relations. In this work, we focus on the question
of how programmers use the has-a relation, i.e. encapsula-
tion and aggregation, to organize objects in object-oriented
programs. Simply stated, we ask “How do programmers or-
ganize the heaps of real world object-oriented programs?”

We hypothesize that developers often think of objects in
terms of the roles they play in programs. These roles implic-
itly aggregate objects into conceptually related sets, as when
a developer thinks of objects as a class or a collection of value
and expression nodes simply as an “abstract syntax tree”.
Thus, we utilize a role-based heap abstraction, which mirrors
the roles a programmer assigns to objects, based on the has-a
relation plus the standard notions of recursive data-structure
identification [8, 21, 27, 32], predecessors [2, 5, 8, 25, 33], and
grouping container contents [5, 9, 25].

Conceptual Components. In our formulation, objects
are structurally indistinguishable if they 1) are members of
the same spine [32] of a recursive structure or 2) have the
same type and are stored together. Informally, objects are
stored together when they are stored in the same container
or when they have the same type and share a predecessor.

These structural indistinguishability principles were first
formalized and realized in HeapDbg, the heap analysis tool
on which this empirical study is based [26]. Formally, the
HeapDbg abstraction models the state of a program heap
with an environment, mapping variables to addresses, and a
store, mapping addresses to objects. An instance of an envi-
ronment paired with a store is a heap. Given ProgramTypes,
the types a program uses, HeapDbg defines the set of con-
crete labels in the program, StorageLabels, as the set of all
member fields and array indices in the program. HeapDbg
then constructs a heap as the tuple (Env, σ,Ob) where

Env ∈ Environment = Vars⇀ Addresses

σ ∈ Store = Addresses→ Objects ∪ {null}
Objects = ProgramTypes× (StorageLabels⇀ Addresses)

Ob ∈ 2Objects.

Each object o ∈ Ob pairs the type of the object with a map
from the object’s field labels to addresses. HeapDbg assumes
that the objects in Ob and the variables in the environment
Env, as well as the values stored in them, are well-typed.
The usual notation o.l refers to the value of the field (or
array index) l in the object o.

A conceptual component C ⊆ Ob is a partition of the heap
objects, built by applying congruence closure to a formaliza-
tion of the structural indistinguishability principles. Using
conceptual components as nodes, we then build a storage-
shape [5] (or points-to) graph whose edges are sets of point-
ers between objects in conceptual components. HeapDbg ex-
tends this basic model with injectivity (non-aliasing) anno-
tations on the edges and shape annotations on the nodes [26].

Pointer Injectivity. We can view a set of pointers as a
function that maps one set of objects to another. A func-
tion is injective, or one-to-one, when it maps each distinct
element in its domain to a distinct element in its range. The
edges in the conceptual component graph abstract just such
sets of pointers. When the pointers an edge abstracts are
all pairwise unaliased, that edge is injective; otherwise, it
contains aliasing pointers and is non-injective.

In the heap (Env, σ,Ob), the set of non-null pointers from
C1 to C2 is P+(C1, C2, σ)⇔ {(o, l, σ(o.l)) | o ∈ C1∧σ(o.l) ∈
C2}. Since C2 is a partition of the concrete heap, it is
nonempty and does not contain null by definition, so σ(o.l) 6=
null. Given two distinct conceptual components C1 and C2

in the heap (Env, σ,Ob), the non-null pointers with the label
l from C1 to C2 are injective:

inj(C1, C2, l, σ)⇔ ∀(os, l, ot), (o′s, l, o′t) ∈ P+(C1, C2, σ) :

os 6= o′s ⇒ ot 6= o′t.

This definition of the injectivity of the pointer sets that form
edges in the graph of conceptual components elegantly gen-
eralizes to arrays. The key to this generalization is to replace
labels with indices, then require distinct indices to point to
distinct objects.

The notion of injectivity is very strong. It asserts an
absence of aliasing among a set of pointers, and perhaps
counter-intuitively, it holds for the vast majority of the non-

(a) A Concrete Heap.

(b) Corresponding Abstract Heap.

Figure 1: Running example.

null pointer sets HeapDbg identifies (Section 4). Thus, the
ability to model this precisely is crucial for precisely captur-
ing real world heap structures.

Shape. We characterize the shape of components using
standard graph theoretic notions of trees and directed-acyclic
graphs (dags), treating the objects as vertices in a graph and
non-null pointers as the (labeled) edge set. In this style of
definition, the set of graphs that are trees is a subset of the
set of graphs that are dags, and dags are a subset of general
graphs. For the conceptual component C

any(C) holds for any graph.
dag(C) holds if the subheap restricted to C is acyclic.
tree(C) holds if dag(C) holds and the subheap re-

stricted to C contains no pointers that create
cross edges, i.e. pointers to the same object.

none(C) holds if the edge set restricted to C is empty.

2.1 Illustrative Example
Figure 1 shows the output of HeapDbg; it illustrates how

we apply these principles to the concrete heap of a program
that manipulates arithmetic expression trees1. Figure 1(a)
shows a concrete heap snapshot HeapDbg computes on this
program. The expression nodes have l and r operand fields.
The local variable exp points to an expression tree consisting
of four interior binary expression objects and four leaves —
two Var and two Const objects. For efficiency, the program

1The code for this program can be downloaded from [17].

has interned all variable names into the env array to avoid
string comparison during expression evaluation.

Figure 1(b) shows the graph of conceptual components
and relations between them as produced by the application
of the indistinguishability principles. To ease discussion,
we label each node graph with a unique id. The abstrac-
tion summarizes the concrete objects into four components,
which become nodes in the graph: 1) a node representing
all interior recursive objects in the expression tree (viz. Add,
Mult, Sub), 2) a node representing the two Var objects, 3) a
node representing the two Const objects, and 4) a node rep-
resenting the environment array. The recursive spine indis-
tinguishability principle groups the four expression objects
into node $1 in Figure 1(b). The container indistinguisha-
bility principle groups the two Var objects into node $2 and
the two Const into node $3. They are not abstracted into
a single component because their type distinguishes them.
Since no principle applies to the environment array env, it
acquires its own node $4. The edges represent sets of point-
ers and their associated field labels. The edges into node $2
are discussed in Ownership and Research Question 3.

2.2 Research Questions
Given the conceptual components, a natural question is

Research Question 1: What proportion of concep-
tual components are simple vs. recursive?

Here, a conceptual component is simple when it is a set,
without internal relations, and complex when it abstracts
objects that form structures such as trees or cyclic graphs.
Answering this question provides insight into the relative
importance of inductive vs. set based reasoning in shape
analysis tools [2, 9]. It also provides insight into the role
that recursive structures and container libraries play in the
design of programs; specifically, it answers the question “Are
simple recursive structures defined and used frequently or do
programmers tend to define a small number of application
specific recursive structures and otherwise avoid recursive
definitions in favor of builtin collections?”

Ownership Encapsulation is a fundamental concept in
OOP and has traditionally been expressed as a binary prop-
erty in terms of ownership [7], i.e. all paths from the root of
a system to an object must pass through that object’s owner.
This strict definition with transitivity leads to the same
issues as encountered in the classic const problem where
use of const in one location cascades into its required use
throughout a program. Here, we utilize the slightly weaker
notion of local ownership (similar to [23]). A set of pointers
that do not alias is injective, i.e. the set is a one-to-one map
of pointers to objects. A conceptual component is locally
owned if it has a single, injective in-edge. Informally, a sin-
gle pointer points to each of the objects in a locally owned
component, even if objects transitively reachable from one of
these objects may be shared. Under this definition, transi-
tive sharing does not obscure the fact that some data may be
encapsulated in a locally owned object. Figure 1(b) shows
that the concrete Const objects are always locally owned,
since they are contained in a single conceptual component
with a single (narrow), injective in-edge.

Questions about ownership, local ownership, and sharing
are fundamental throughout research in programming lan-
guage design [4, 7, 12], memory management [14, 15, 22],

and program analysis [2, 9, 23, 33]. Despite a number of
valuable studies [16, 19, 21, 23, 27, 30], the question of what
sharing is actually present in real-world programs and why
this sharing occurs is still an open question. In program-
ming language design, there is substantial interest in de-
veloping type or annotation systems that can express rich
sharing, encapsulation, and exposure properties relevant to
real-world programs. Sharing (non-sharing) information can
also improve both the layout and eventual collection of ob-
ject structures.

In this study, we hypothesize that ownership in object-
oriented programs is important but that a non-trivial amount
of sharing also occurs. Thus, we first want to understand
how common local ownership is.

Research Question 2: What proportion of objects
are locally owned?

Sharing. Sharing occurs when objects in different compo-
nents contain pointers to the same object or when multiple
objects in the same component contain pointers to the same
object. In the first case, the sharing likely involves objects of
multiple types or at least objects that play different roles in
the program; in the second case, the sharing likely involves
objects of a single type that all play the same roles.

Research Question 3: What proportion of sharing
occurs between objects in the same conceptual compo-
nent vs. across conceptual components?

In Figure 1(b), several expression objects point to the
same Var object; this aliasing (non-injectivity) is depicted
using wide, orange edges, if color is available. Multiple in-
coming edges to a node are cross edges. The node $2, which
abstracts the Var objects, exhibits both types of sharing and
therefore has cross edges: multiple objects within the tree
component expr alias Var objects with $2 and the environ-
ment array env also points to Var objects within $2.

To understand why sharing occurs, we examine the non-
injective and cross edges through the lens of common pro-
gramming idioms. Our first idiom is based on the notion
that a key role of many classes is to aggregate and provide
appropriate views of the contained data. This often requires
the resulting objects to store data in multiple ways. For ex-
ample a class may store the same objects in both a List and
a HashSet. Objects in such a class are shared but a single
class closely manages their sharing. We consider sharing to
be localized if, in all cases, a unique dominator recaptures
the shared objects within no more than two pointer deref-
erences; we call such recaptured objects contained objects.
Another common idiom is the use of objects, like singletons
(unique) or intern tables (global), which map objects, typ-
ically strings, to references which are then used in place of
the object for efficient storage or equality testing. The final
idiom we look at is the sharing of immutable objects such
as strings in C# and Java. When the objects are known
to be immutable, developers are much less concerned about
sharing them and often do so intentionally for performance
reasons. First, we classify sharing in terms of these idioms:

Research Question 4: What proportion of sharing
involves 1) contained, 2) global, 3) unique, or 3) im-
mutable objects?

We hypothesize that, in practice, these types of sharing
dominate the sharing in real-world programs, and ask:

Research Question 5: What proportion of sharing
relationships remain unclassified?

The answer to this question has direct implications for the
design of both annotation (or type) systems and static heap
analysis tools. If much of the heap remains unclassified, then
more expressive (and unappealing to practitioners) annota-
tions will be needed and static heap analysis tools must be
both deep and broad. If, on the other hand, our classifica-
tion scheme captures most of the sharing in the heap, we will
have shown that it is possible to relate idiomatic code designs
to the heap structures they produce and that, in practice,
programmers form and combine the components in a small
number of simple and often idiomatic ways. This means
that an annotation system or analysis tool that captures
these idioms will be able to precisely and compactly anno-
tate (analyze) the features that dominate real-world heaps.
Further, since these systems would be built on a small num-
ber of concepts and designed to reflect programmer intent,
they should be simple and intuitive for programmers to use
and relatively easy to implement in a static (or dynamic)
heap analysis tool.

Abstraction Hypothesis This work empirically explores
how developers translate informal design specifications into
class definitions. The following hypothesis underpins our
analysis: Conceptual components, defined using our indis-
tinguishability principles, accurately2 partition the heap. If
this hypothesis does not hold then we would expect the par-
titions to contain unrelated objects and the resulting mea-
surements of their properties to produce low information, in-
determinate values. However, the results in Section 4 show
very strong biases towards high accuracy properties. Thus,
we have confidence that the conceptual component parti-
tioning correctly identifies and abstracts the relevant parts
of the heap.

3. METHODOLOGY
This work explores what structures real world programs

build; in particular, we are interested in features that ex-
press developer intent, e.g. class invariants. This is why we
based this study on HeapDbg, a Daikon-style dynamic in-
variant discovery tool tailored for the program heap [17, 26].
As HeapDbg operates on .Net bytecode, we must first trans-
late Java programs into .Net bytecode using the ikvm com-
piler [20] before applying it.

HeapDbg extracts heap information, at program points
and from those parts of the heap that are involved in these
invariants. These points are typically the entry/exit of pub-
lic methods and, in the heap, all objects reachable from
method parameters and in-scope static fields. A heap snap-
shot is the set of locations reachable from static roots and the
parameters of the current method call. At the entry of every
public method, HeapDbg injects sampling code whose firing
computes, abstracts, and aggregates a heap snapshot. Since
extracting heap snapshots at each method call is impractical,
HeapDbg uses a per-method randomized approach with an
exponential backoff. When the current heap snapshot and

2Here, we use the definition of accuracy from measurement
theory, i.e. closeness of a measurement to the actual value.

previously taken snapshots differ with respect to the com-
ponents and the relations on these components, HeapDbg
samples frequently; when no new information is discovered,
it reduces the sampling rate. On smaller runs, we compared
the results obtained by sampling uniformly at random with
the results from the exponential backoff approach and found
that the uniform sampling approach produced results that
were no more useful.

To compute the likely pre/post invariant heap states for
each method in the analyzed program, our profiler 1) copies
the current heap state, 2) computes the corresponding con-
ceptual component graph, 3) compares this graph with the
previously seen graphs to update the sample rates, and 4) if
it is new, adds the graph to the accumulated set.

3.1 Measurement
A program may use some of its classes quite heavily; for

example, instances of a point class usually dominate the
heap of a raytracer implementation. If we weighted our mea-
surements by object frequency, our results would be heavily
biased toward the features of such classes, which tend to
be simple. To avoid this bias, we ignore object (and class
use) frequency by discarding component graphs that are sub-
graphs of a larger, previously seen component graph. For
each program, HeapDbg therefore produces a set of struc-
turally distinct snapshots. Our analysis generates labeled
graphs, over which checking for subgraphs is quadratic in
the worst case [26]. In Figure 1(b), we discard the graph
computed for the Const objects since it is a subgraph of the
graph computed for the Add class. Finally, we take the set of
component graphs produced by the runtime sampling and
compute the measurements presented in Section 4.

We measure properties both in terms of both nodes/edges
(for designing a static analysis) and types/fields (for con-
structing an annotation system). Our sampling method-
ology ensures that each retained snapshot is distinct. To
compute a ratio for a single program, we compute the ratio
of all nodes/edges that have a given property over the to-
tal number of nodes/edges across all the distinct snapshots
that HeapDbg retained from an analysis run. For types, we
report the ratio of the number of types to the total number
of instantiated types. Depending on the property, its satis-
faction may require any or all of the nodes that contain a
given type to satisfy it. All of our properties obey a linear
order: for edge category, tree � cross � back and, for shar-
ing, injective � non-injective. We use the convention that
the property of a type/field is the least upperbound of all
nodes/edges of that type/field. In Figure 1(b), the r field is
associated with 2 edges, a TreeEdge and a CrossEdge; thus
under our construction, r is a CrossField.

Many of our research questions turn on whether two sam-
ple sets are drawn from different populations. To answer
these question, we first checked that our data was normal
via a Kolmogorov-Smirnov test [10] and then performed a
t-test using the standard threshold of p ≤ 0.05 for statis-
tical significance. When we report a confidence interval on
the average of a measure across all of the programs, we sum
the measurements, computed as described above, for each
program and divide by the number of programs. This un-
weighted average prevents a program with a disproportion-
ately large heap from biasing the results. To avoid repetitive
graphs, we do not show figures for all the statistical analyses
we performed, as many questions are similar.

4. EVALUATION
HeapDbg, on which this study rests, was developed for use

with .Net bytecode to understand memory usage and shar-
ing problems in C# programs. Unfortunately, the C# pro-
grams that we initially considered for this study presented
two problems. First, many of these programs are unfamiliar
to the larger research community and some are proprietary.
Second, since these programs have not been used in previous
studies, it would have been prohibitively difficult to mean-
ingfully compare our results with existing work on program
optimization, analysis, specification, etc. Since we wanted to
study programs both familiar and available to a broad seg-
ment of the research community so that our results could be
meaningfully compared with previous work, we partially re-
worked HeapDbg to analyze programs from the well-known
DaCapo [3] suite.

The DaCapo suite is designed to be representative of real-
istic program workloads with an emphasis on client-side ap-
plications. Its authors selected programs and representative,
real-world inputs to span a range of application domains, in-
cluding text searching, database work, XML document pro-
cessing, program analysis, etc. As a result, the DaCapo suite
exhibits many different heap structures and code behaviors.
To perform our study, we translated ten programs from the
DaCapo suite into .Net bytcode using the ikvm compiler [20]
(we only omit DaCapo programs that ikvm was unable to
compile) and ran them on the DaCapo suite’s default inputs.

Shapes Here, we explore what sorts of heap structures
conceptual components contain. For this purpose, we de-
fine the following predicates on the conceptual components.
Given the abstract heap graph G = (N,E), the conceptual
component n ∈ N has shape

Atomic iff Shape(n) = none, i.e., there are no pointers be-
tween any of the objects in n.

Linear iff Shape(n) = tree ∨ Shape(n) = dag3.
Cyclic iff ∃ an SCC of the objects in n.

To clarify these examples, consider Figure 1. It contains
three nodes with atomic shape — the nodes representing the
Const, Var, and Var[] objects — and three corresponding
atomic shape types. It contains one node whose shape is
linear, the node with the self edges (labeled tree(l, r)) that
represents the Add, Mult, and Sub objects. Since this node
represents multiple types, there are three linear shape types.
No nodes in Figure 1 have self-edges labeled any, so it has
no cyclic nodes or types.

Armed with these predicates, we can measure the pro-
portion of components of each shape, and answer RQ1:
What proportion of conceptual components are simple vs.
recursive? Figure 2 shows the ratios of compositional data
structures (Atomic), simple recursive data structures such
as trees or dags (Linear), and more complex cyclic struc-
tures (Cyclic). We measure these ratios both in terms of the
number of types that appear — at any time — in a recur-
sive structure and the number of nodes that have the given
shape. In our analysis, a type inherits its graph theoretic
properties from the components in which it participates; for
instance, the degree of a type is the maximum degree of all
components in which it participates.

As can be seen, atomic shapes dominate the other, more
complex components. To assess the significance of this find-

3Linear does not reduce to Shape(n) = dag, since trees are
undirected and a dag may contain an undirected cycle.

an
tlr

av
ro
ra

ch
ar
t

fo
p h2

lu
in
de
x

lu
se
ar
ch

pm
d

su
nf
lo
w

xa
la
n

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Percentage of types whose shape is cyclic
�, linear �, or atomic �.

ing, we compared the proportions of atomic shapes to linear
and cyclic shapes with a two sample t-test. Our sample size
of ten projects is fairly small for inferential analysis, but
still allows for significant results if the differences are ex-
treme with low variance. Such is the case for our type shape
analysis where we found that atomic shapes dominate to a
statistically significant degree (p� 0.01), with a 95% confi-
dence interval for the proportion of shapes that are atomic
of 85%±12%. Turning to comparing the proportion of cyclic
to linear shapes, a t-test shows that cyclic shapes occur more
often than linear shapes to a statistically significant degree
(p = 0.03).

When we analyze the ratios of shapes per component,
atomic shapes again dominate all other shapes to a large
degree (p � 0.01, not shown). In fact, the confidence in-
terval for the proportion of atomic shapes over conceptual
components is 98.5%±1%. In contrast to type shapes, nei-
ther cyclic nor linear shapes over components were more
prevalent than the other to a statistically significant degree
(p > 0.05). In short, the answer to RQ1 is that simple,
conceptual components dominate recursive components: for
types, the proportion of atomic shapes is 85%±12%; for
components, 98.5%±1%.

Although the use of recursive structures in the program is
limited to a few components, these components can involve a
large number of types (e.g., antlr, pmd, and xalan). This result
is not surprising as object-oriented programming languages
1) often provide extensive container libraries which are used
in lieu of custom list and tree structures and 2) support
for is-a relations that allow an application to closely model
underlying problem domain relations in the data structures,
as seen in the abstract syntax tree in pmd.

Graph Structure and Ownership Ownership is a struc-
tural property of graphs. Let d+ : N → N denote the in-
degree, including self edges, of a node. To explore ownership,
we first classify the edge e ∈ E that ends at nt as

Internal iff e is a self edge.
External iff e is not a self edge.
Injective iff e is external and Inj(e), i.e., e contains no alias-

ing concrete pointers, where Inj is defined in Section 2.
TreeEdge iff e is external and d+(nt) = 1.
CrossEdge iff e is external and d+(nt) > 1.
BackEdge iff e is an external edge a DFS from the program

root set would label e a back edge.

Figure 1, our running example, contains only one internal
edge, the self-edge on the expression tree exp and, since

this edge represents pointers in the l and r fields of Exp, it
contains two Internal fields. It contains four external edges:
the three outgoing edges from exp and the edge representing
the pointers in the Var[]. However, since the l and r fields
also appear as Internal fields, there is only one external field.
It contains four Injective edges, the local exp variable edge,
the static field env, the edge representing the pointers stored
in the environment array that refer to Var objects and the
pointers in the expression tree that refer to constant objects.
Since these edges represent pointers stored in the r and []

fields, the example contains two injective fields. It contains
three TreeEdges — the local exp variable edge, the static
field env, and the r edge pointing to the Const objects.

Defined using these predicates, the node n is locally owned
when its in-edge e is Injective and a TreeEdge. When a
conceptual component is locally owned, a unique pointer
points to each of the objects in it. In Figure 1, two nodes
— of type Var[] and Const — are locally owned. Since the
edge with the r label ending at $3, the node containing the
Const objects, is injective and is $3’s only in-edge r locally
owns, or is the local owner of, $3.

Figure 3 shows the distributions, via violin plots4, of in-
degree over the components and the types in them. While
the number of components and types with in-degree k de-
creases fairly rapidly as k increases, a nontrivial number of
components (types) with high in-degree occur. One reason is
large recursive structures, with many types in the recursive
structure, that have many in-edges to them. Thus, even
though the in-degree of the individual objects is low, the
overall in-degree of the structure of which they are mem-
bers is high. A second contributing factor is large numbers
of unique objects. The high portion of in-degree 2 types in
Figure 3(a) is a result of this kind of structure. One out-
lier program, fop, has a large number of unique type objects
that are also stored in dictionaries. Figure 3(a) provides
initial insight into the value and limitations of using local
ownership to describe heap structures in real programs.

To understand how much ownership (Section 2) exists that
researchers (and eventually practitioners) can expect to ex-
ploit to improve program analysis or to build annotation
systems, we examine its prevalence to answer RQ2: What
proportion of objects are locally owned?

Consider the components and types with in-degree 1. If
their in-edge is injective, then we know a single pointer
points to each object in the component or type. The frac-
tion for types is around 51% on average (confidence interval
39%–63%), showing that local ownership is the organizing
principle for many parts of the heap. However, the fact that
the remaining 37%–61% of the types in the program have
references to them stored in multiple locations shows that
the principle of local ownership does not dominate real world
heap structures. We see higher ratios of in-degree 1 with a
confidence interval of 42%–66% for the components.

Figure 4 shows the percentage of fields (edges) in the
heaps that are involved in the internal structure of a concep-
tual component and represent pointers that are always local
owner pointers. Edges are created from each snapshot; their
origin is a concrete field in their source conceptual compo-
nent. Here, we classify a field as a lattice join on the pointer
classifications of the edges in which the field participates.

4A violin plot is similar to a box plot in that it compares
distributions, but gives a more detailed view of the shape of
the distribution.

(a) In-degree distribution per type. (b) In-degree distribution per component.

Figure 3: In-degree distributions (log-scale).

an
tlr

av
ro
ra

ch
ar
t

fo
p h2

lu
in
de
x

lu
se
ar
ch

pm
d

su
nf
lo
w

xa
la
n

0.0

0.2

0.4

0.6

0.8

1.0

(a) Property per field.

an
tlr

av
ro
ra

ch
ar
t

fo
p h2

lu
in
de
x

lu
se
ar
ch

pm
d

su
nf
lo
w

xa
la
n

0.0

0.2

0.4

0.6

0.8

1.0

(b) Property per component edge.

Figure 4: Percentage of pointers that are internal �, nonnull �, or owners �.

For instance, there are two edges labeled ’r’ in our running
example, Figure 1. One edge is a tree edge and the other is
a cross edge; because cross subsumes tree, we classify ’r’ as
a cross field. From these figures, we see that overall most of
the connectivity in the program is through pointers (fields)
between conceptual components instead of within a single
component. Figure 4(a) shows that on average 50% of the
fields in the program always contain pointers that locally
own their target object.

Thus, our answer to RQ2 is that local ownership, both in
terms of fields and edges as well as types and components,
is an important but not dominant organizing principle for
data structures in object oriented programs. For fields, the
calculated confidence interval on the true mean based on our
ten project sample is 39%–63%. This ratio translates almost
equivalently into the ratio of edges that represent these types
of pointers, a mean of 51% with a confidence interval on the
true mean of 36%–66%.

Sharing The non-dominance of ownership brings us to
the issue of why and how sharing occurs in practice. Our
component graphs represent sharing in two ways: either a
node has an in-edge that is non-injective or it has multi-
ple in-edges. To capture some of the most common sharing
idioms we classify a conceptual component n ∈ N as

Immutable iff ∀τ ∈ Type(n), τ is immutable.
System iff ∀τ ∈ Type(n), τ is a builtin.
Unique iff |Type(n)| = 1 and ∃ a static field with a pointer

to n and ∀n′ ∈ N − {n},Type(n) ∩ Type(n′) = ∅.
Global iff |Type(n)| = 1 and ∃ a static field that holds a

pointer to a container object that holds pointers to n
and ∀n′ ∈ N − {n},Type(n) ∩ Type(n′) = ∅.

In Figure 1, none of the nodes contain immutable types
so there are no immutable nodes. It contains one system
type and one system node, the node representing the Var[].
The example contains no unique objects (thus no unique
nodes or types). In Figure 1, the component containing
the Var objects is globally shared, it only represents Var

objects stored in an array to which the static field env refers.
Thus, the example contains one globally shared node and
one globally shared type.

When the edge e = (ns, nt) ∈ E is external and ¬Inj(e)
(i.e. non-injective), it can be further classified as

NonInjectiveToImmutable iff nt is immutable.
NonInjectiveToUnique iff nt is unique.
NonInjectiveToGlobal iff nt is globally shared.

Figure 1 does not contain any immutable or unique com-
ponents, so it has no edges (or fields) that interfere only on
immutable or unique objects. The Var component is glob-
ally shared, so the example contains a non-injective edge,
the l edge. Thus, we have one NonInjGlobal edge and one
NonInjGlobal field.

Figure 5 classifies the injectivity of field and component
edge pointers. This figure shows the ratio of fields and edges
that always contain injective pointers to those fields and
edges that at some point contain a non-injective pointers.
In the non-injective case, it further classifies the sharing in
terms of what is shared: immutable, unique, global, or oth-
erwise unclassified objects. These figures show that most
fields and edges are injective and, when they are not, it is
frequently because they are sharing an immutable object.
These two cases cover approximately 90% of all fields (with
a confidence interval of 87%–96%) and 95% of all edges (con-

an
tlr

av
ro

ra

ch
ar

t

fo
p h2

lu
in

de
x

lu
se

ar
ch

pm
d

su
nf

lo
w

xa
la

n

0.0

0.2

0.4

0.6

0.8

1.0
Unclassified
Globally Shared
Singleton
Immutable
Injective

(a) Injectivity per field.

an
tlr

av
ro

ra

ch
ar

t

fo
p h2

lu
in

de
x

lu
se

ar
ch

pm
d

su
nf

lo
w

xa
la

n

0.0

0.2

0.4

0.6

0.8

1.0
Unclassified
Globally Shared
Singleton
Immutable
Injective

(b) Injectivity per component edge.

Figure 5: The percentage of field and edge pointers that are injective or non-injective, where the non-injective
pointers are further subclassified into those that point at immutable, unique, global, or unclassified objects.

fidence interval of 90%–99%). The addition of unique and
global objects pushes these numbers up a few percent.

We now turn to how multiple nodes and edges (type and
field definitions) combine into larger structures on the heap.
The first measure we examine looks at the prevalence of tree,
cross, and back edges (Defined in Figure 4). We then use
programming idioms to further breakdown the cross edges.
Table 1 again shows field- and edge- centric classifications
in the conceptual component graphs of each program. The
far right columns shows the confidence interval for the mean
proportion of the occurrence of each category in our sam-
ple. In most cases (with avrora as a clear exception), tree
edges account for a slim majority of the fields (edges) in
the heaps; in fact, a t-test indicates that tree offsets are the
most common category of edge to a statistically significant
degree (p < 0.05). Further these results show that cross
edges appear quite frequently and dominate back edges to a
statistically significant degree (p < 0.05).

We are now in a position to answer RQ3: What pro-
portion of sharing occurs between objects in the same con-
ceptual component vs. across conceptual components?. The
non-dominance of local ownership in Figure 4 means that
sharing is occurring regularly — the 95% confidence inter-
val of the true mean of sharing is 37%–61% for fields and
34%–63% for edges. Tree edges dominate both the edge and
field views of pointers. The only way a tree field or edge can
exhibit sharing is through non-injectivity because tree edges
are, by our definition, the only in-edge to their target. Thus,
the high degree of injectivity in Figure 5 indicates that the
sharing that we have observed is mostly due to components
whose in-degree is greater than one, viz. either because of
incoming cross or back edges. Therefore, most of the shar-
ing we observe spans different conceptual components, as
the prevalence of cross edges, the two rows marked † in Ta-
ble 1, makes clear. Thus, we compute the raw count of cross
fields (edges) over the raw count of shared fields (edges) to
answer RQ3. Of all sharing, 77%-87% (the confidence inter-
val for field) and 67%–77% (edge) occur between objects in
different conceptual components while only 18%–42% (field)
and 12%–28% (edge) occur between objects in the same con-
ceptual component. A t-test indicates that sharing occurs
more frequently between objects in the different conceptual
components to a statistically significant degree (p < 0.05).

Although most of our benchmarks use back pointers spar-
ingly (10% or less in most cases), antlr and avrora in partic-

ular make extensive use of them. Some standard idioms we
observed in the code include implicit this pointers in inner
class definitions, the observer pattern, and parent pointer
idioms. Unfortunately, our abstraction currently does not
capture the must-alias semantics needed to precisely cate-
gorize these back-pointers. Thus, we leave further investiga-
tion of back pointers to future work.

Classified Sharing Having answered RQ3, we turn to
RQ4: What proportion of sharing involves 1) contained 2)
global, 3) unique, or 4) immutable objects? To answer this
question, we introduce additional edge predicates. The cross
edge e ∈ E that ends at node nt is

CrossToImmutable iff nt is immutable.
CrossToUnique iff nt is unique.
CrossToGlobal iff nt is globally shared.
CrossToContained iff ∃nd ∈ N s.t. nd dominates nt and

the longest acyclic path from nd to nt has two or fewer
edges, i.e. the sharing is highly localized.

Intuitively, cross edges represent aliasing in the abstract
graph, as opposed to aliasing (non-injectivity) in the pointer
set abstracted into a single abstract edge. Figure 1 has one
TreeField, the static field env; the r field is not a tree field
since its label also appears on non-tree edges. It has three
CrossEdges all ending at Var. Thus, it contains three Cross-
Fields in the heap — the l, r fields as well as the [] field
from the array. It contains a globally shared node, Var, and
the cross edges that end at this node, viz. the l, r edges
from the expression tree, and the [] edge from the Var[].
Thus, we have three CrossToGlobal edges and, since all the
other edges labeled with l, r, or [] are either TreeEdges
or are internal tree edges, we have three CrossGlobal fields.
Our example does not contain any back edges, immutable
or unique nodes, so it does not illustrate the BackEdge,
CrossImmutable, or CrossUnique features.

Table 1 shows a classification of cross edges based on their
involvement in programmatic idioms, again as a function of
both field declarations and edges in the conceptual com-
ponent graph. We did not collect statistics on back edges
and leave their further investigation for future work. Thus,
our answer to RQ3 is restricted to cross fields and edges
because they are the most general, i.e. when a field partic-
ipates in both a cross and a tree edge, its classification is
cross. Pointers to immutable objects account for the largest
fraction of cross edges, as the rows designated with ? make
clear. Indeed, Figure 5 shows that immutable objects are a

Table 1: Sharing classification per field and per component edge. The per field and per edge columns sum
to 100%. The cross field and cross rows groupings further categorize the cross edges using the properties
defined in Table 4; their columns do not always sum to their cross row entry marked † because the sharing
categories are not disjoint. The ’*’ designates a category that occurs more frequently than the categories
below it (within a grouping) to a statistically significant degree.

Classification antlr avrora chart fop h2 luindex lusearch pmd sunflow xalan Confidence Interval

Per Field
Tree 56% 25% 63% 56% 52% 59% 69% 73% 83% 59% 49%–71%*

Cross† 25% 24% 31% 36% 29% 38% 29% 25% 16% 27% 24%–32%*
Back 19% 51% 6% 8% 2% 3% 2% 17% 12% 14% 2%–23%

Per Edge
Tree 62% 42% 66% 48% 55% 61% 80% 81% 88% 63% 53%–75%*

Cross† 26% 38% 31% 51% 32% 38% 19% 18% 12% 28% 21%–37%*
Back 11% 20% 3% 1% 13% 1% 1% 1% 0% 9% 1%–11%

Cross Field

Contained 2% 3% 10% 6% 3% 11% 7% 6% 8% 4% 4%–8%
Global 0% 0% 0% 3% 0% 1% 0% 0% 0% 0% 0%–1%
Unique 0% 0% 3% 1% 0% 7% 0% 0% 0% 0% 0%–3%
Immutable? 21% 5% 5% 10% 12% 11% 9% 16% 1% 14% 6%–15%
Unclassified 4% 17% 16% 16% 15% 14% 13% 4% 8% 10% 8%–15%

Cross Edge

Contained 0% 6% 4% 2% 2% 10% 2% 2% 8% 3% 2%–6%
Global 0% 0% 0% 1% 0% 5% 0% 0% 0% 0% 0%–2%
Unique 0% 0% 1% 2% 0% 2% 0% 0% 0% 0% 0%–6%
Immutable? 17% 8% 6% 24% 12% 12% 7% 12% 1% 17% 7%–16%
Unclassified 9% 28% 21% 5% 19% 16% 9% 5% 4% 9% 7%–18%

major source of the cross edge sharing that occurs in prac-
tice (confidence interval 6%–15% of fields and 7%–16% of the
edges). The “Contained” category shows that our relatively
simple definition of localized sharing captures contained ob-
jects and shows that they form an important structure in
these programs, accounting for 4%–8% on a field basis and
2%–6% of the edges. Finally, unique and globally shared ob-
jects are the least frequent, comprising 0%–4% (field) and
0%–8% (edge). Thus, our answer to RQ4 is, of all sharing,
immutable objects account for the majority of sharing (via
a t-test with p < 0.05), with unique, global, and contained
objects representing a smaller amount of the sharing.

Unclassified Sharing Combined, our answers to RQ3
and RQ4 conclusively show that, although the sharing rela-
tions in the heap can be arbitrarily complex in theory, they
are overwhelmingly simple in practice and can be mapped
back to common development idioms. The fact that our
sampling methodology is biased against frequently instan-
tiated classes, which tend to be simple, further strengthens
this result. One simple threat to this result is if our ab-
straction failed to classify a large percentage of sharing re-
lationships, so we conclude with RQ5: What proportion of
sharing relationships remain unclassified? In short, RQ5
is a measure of the effectiveness of our abstraction. For in-
stance, good classification coverage is necessary to use these
results as a basis for designing annotations to express the
simple structures that our results indicate dominate heaps.

When we consider how much sharing information our cur-
rent categorization scheme captures in Table 1, we see that
our abstraction captures at least 72% of fields and in many
cases, over 90% of the sharing relations of fields. The con-
fidence interval for the mean proportion of relations that
our approach leaves unclassified is 8%–15%. For edges, the
breakdown is more variable but the mean proportion of un-
classified edges is only 7%–18%. Further, our analysis is
unaware of user-defined immutable types or the sharing of
a unique or global object not captured by our current mea-
surements, so some portion of the sharing we report as un-
categorized is actually simple and well-behaved. While fur-
ther study is warranted to investigate other common sharing

patterns, this study demonstrates that a surprisingly large
percentage of the heap in real world programs exhibits rel-
atively simple structure.

Conceptual Component Accuracy Our results rest on
accurately identifying a programmer’s intended groupings
of heap objects. We used the structural indistinguishability
principles from Section 2 to approximate these grouping as
equivalence classes of heap objects. Thus, our results rest on
the abstraction hypothesis: conceptual components, defined
using our indistinguishability principles, accurately partition
the heap. Our abstraction could fail in two ways: it could
generate conceptual components that lose structural infor-
mation or it could generate components that do not reflect
programmer intent.

If our abstraction lost structural information, we posit
that our results would be much noisier, because it would
tend to group together unrelated objects. However, this is
not the case: our results contain strong signal for each of the
reported measures, the measurements correlate with widely
used program analysis concepts such as aliasing and shape
and they are ordered in terms of their information content.
For example the tree measurement contains more informa-
tion than a dag measurement — i.e. it is a more restrictive
property as tree(n)⇒ dag(n). Also, in most of our reported
measures, the simpler (from a programmer standpoint) out-
come dominates the other outcomes to a statistically signifi-
cant degree. For example, the injective result dominates the
lower information content non-injective result even though
in a uniformly generated random partitioning we would ex-
pect the non-injective result to be more frequent. Finally,
we note that we can precisely describe most of the remain-
ing sharing with a small set of categories motivated by pro-
gramming idioms. This fact provides strong evidence that
our abstraction is accurately capturing features of the heaps
that real-world programs build.

It is possible that, although the computed conceptual com-
ponents effectively capture actual heap structures, these struc-
tures do not correspond to how a developer thinks about
a program’s heap. Although further study is needed, we
present two reasons to believe that our indistinguishability

principles do capture developer intent. First, HeapDbg, the
tool that realizes the heap abstraction on which this study
rests, has successfully been used to identify and fix memory
issues in the DaCapo benchmarks, as well as in production
software [26]. For instance, DaCapo’s chart creates a large
array of XYCord objects each of which consists of two boxed
doubles; HeapDbg’s visualization made this memory bloat
obvious. Developers also reported that the HeapDbg tool
was useful for program understanding and that it generally
grouped objects into components in the expected ways. For
instance, a Microsoft developer said “I found simply scan-
ning around the structure graph to be very interesting and
found a number of places where it did not match my un-
derstanding of the code. However, on further investigation
most of these mismatches were due to bugs in the program
which were causing unintended sharing.”

The combination of quantitative evidence presented above
and the qualitative developer experience with HeapDbg both
support our hypothesis that our abstraction accurately cap-
tures roles and sharing in heap structures.

Threats to Validity We have used inferential statistical
tests and analysis such as t-tests and confidence intervals to
make conclusions about a large set of Java programs based
on observations from a smaller set. A potential threat to
external validity for any study is that the sample examined
is not representative of the larger population and thus the
results do not generalize.

To mitigate this threat, we have chosen to examine a
benchmark that has been independently selected as a repre-
sentative set of open source, client-side Java programs and
which has been used in a large number number of prior
studies. Although we do not include the full set of Da-
Capo benchmarks (due to limitations in ikvm) the set we
do analyze contains programs covering maximal, minimal,
and median values of the principal component studies done
in [3] and the ownership/uniqueness properties in [23]. Thus,
we believe the set we use covers the behaviors in the suite.

A potential confounding factor for our results is that the
cross compilation step (Java to .Net via ikvm) could sub-
stantially alter the heap properties we are interested in. To
check this possibility we took versions of luindex and luse-

arch which had been, by hand, ported directly from Java to
C# [29]. The results for these native C# implementations
are identical to the DaCapo versions in the atomic node
rates. For luindex and lusearch respectively, the injectivity
rates are 89% and 97%, the cross edge rates are 42% and
25%, and the unclassified cross edge rates are 13% and 11%.
As these values are within a few percent of the results for
the DaCapo versions, we conclude that the cross compilation
did not impact our results to any significant degree.

All of the programs we examined are mature, well-tested
and implemented in object-oriented languages with garbage
collection. Thus, it is not clear whether these results general-
ize to domains such as low-level systems code, languages that
use other programming paradigms (e.g. functional program-
ming languages), programs in environments without fully
automatic memory management (e.g. as C++), or programs
that violate object-oriented programming conventions.

To further understand how these issues might impact our
results we looked at two proprietary C# programs. The
codebases were recently implemented, use modern C# lan-
guage features, and have non-trivial architectures and data
structure usage. The atomic rates for these programs of 93%

and 97% is similar to our DaCapo results. Edge injectivity
was slightly lower than for the DaCapo programs at 74% and
78%. However, the incidence of cross edges, 52% and 43%,
along with the rate of unclassified cross edges, 36% and 32%,
was higher than expected. When we shared these results
with the developers they explained that the observed shar-
ing involved user-defined immutable or lazily initialized ob-
jects, in addition to singletons or intern tables that were not
stored in static fields. After providing manual immutable/s-
ingleton/intern annotations on the types the resulting injec-
tivity/sharing values were in-line with the results from the
DaCapo benchmarks. Thus, the sharing idioms described
in this work appear to be generally applicable. However,
this result illustrates how different languages (and develop-
ment practices) may realize these concepts differently and
highlights the potential value of having a type/annotation
system or program analysis specifically for these properties.

Internal validity is related to how well associations or cor-
relations are indicative of causal effects. The goal of this
study has been to empirically examine characteristics of pro-
gram heaps rather then look at causes, so it does not suffer
from threats to its internal validity. Finally, a study has
construct validity when its conclusions are based on the cor-
rect use of measures and analyses. This largely rests on the
validity of the use of conceptual components as meaningful
partition of a concrete heap. We addressed this threat in the
previous section. No oracle exists for heap abstraction, so
our approach and results rest on a particular abstraction of
the heap and our study may suffer from construct validity to
the degree that the reader does not accept our abstraction.

5. RELATED WORK
A variety of questions about the structure of the program

heap have been explored in previous empirical studies. Often
these studies have focused on the shape of the data struc-
tures that appear in the programs and use type [21] or reach-
ability from root locations [30] to define the sets of objects
over which to compute shape information. This, relatively
coarse, decomposition of the heap results in lower resolu-
tion information than our approach. Mitchell et al. [27, 28]
and Potanin et al. [31] look at the heap through the lens of
ownership and dominator structures. In contrast this work
uses conceptual components and injectivity as introduced by
Marron et al. in [25, 26] which enable us to extract informa-
tion on injective/non-injective pointer sets and to differen-
tiate between sharing via single or multiple components.

At a high-level, the general approach to abstraction used
in this paper is standard: identify recursive structures and
define predecessor and equality relations to partition the
heap [5, 8, 33]. This general approach has been realized
in many different variations [2, 21, 25, 27, 28], among oth-
ers. However, details of the definitions used can produce a
wide range of different heap models. The abstraction used
in this work elucidates relatively unexplored features and
does so with greater precision than previous work. This
study examines heap features via a heap abstraction [25, 26]
that employs equivalence and predecessor relations, based
on field, type, and immediate predecessors, to capture struc-
tural features, notably pointer injectivity and shape. In con-
trast, Mitchell et al. use a predecessor relation based on type
information and dominators to group objects which merges
object structures into equivalence classes much more aggres-
sively. For example, Mitchell et al.’s abstraction, applied to

the SpecJVM Raytracer (mtrt), merges 4 cyclic structures,
4 list structures, and 30 atomic sets of objects into a sin-
gle component (via their dominator-based abstraction), as
shown in [27, Figure 4c]. Our abstraction preserves this
structural information. This increased resolution enables us
to count List/Cycle/Atomic shapes and their sharing rela-
tions, instead of reporting a single cyclic structure [26].

The work in [19] performs an extensive evaluation of reach-
ability in the context of understanding object lifetime for
garbage-collection applications. The paper [3] introducing
the DaCapo benchmarks (used in this work) includes an ex-
tensive evaluation of both general properties of the bench-
marks and how they allocate and use memory.

Work by Hackett and Aiken in [16] explores how aliasing
is used in systems software and, much like the work in this
paper, relates the observed aliasing relations to concepts in
the source code. Their work focuses on aliasing on individ-
ual pointers instead of larger scale conceptual components
and therefore does not explore as wide a range of proper-
ties as the work presented in this paper. Work by Ma and
Foster [23] explores a rich set of sharing and structural anno-
tations and develops a static analysis to extract them. Their
empirical study employs their static analysis to construct a
conservative over-approximation of actual program behav-
ior and identify the prevalence of various properties. Thus,
their work provides a lower bound (possibly a very conser-
vative one) on these numbers while our work uses runtime
sampling to compute an upper bound (which we believe is
quite precise) for the prevalence of the properties measured.
Abi-Antoun and Aldrich computed ownership domain infor-
mation whose quality was evaluated by developers [1].

6. FUTURE WORK AND CONCLUSION
In an effort to understand the heaps of real-world pro-

grams, we analyzed the heap structures of a number of Da-
Capo applications. We found that the organization of heap
structures is fairly simple, with the vast majority made up
of atomic shapes and that approximately half of all data
structures on the heap are locally owned. Sharing occurs be-
tween conceptual components more often than within them
and although a high proportion (37% to 61%) of objects are
shared, this sharing is frequently of immutable objects or, in
smaller proportions, unique or global objects. In practice,
sharing occurs via fairly simple and common development
idioms. Our abstraction classifies a large majority of sharing
relations (89% of fields and 87% of edges) and partitions the
heap into categories that 1) show clear statistical differences
in occurrence, 2) model simple and common programming
practices, and 3) are useful and intuitive to practitioners.
These results call into question the commonly held belief
that the heap exhibits intricate sharing and show, rather,
that the heap is, in practice, a fundamentally simple struc-
ture which is primarily constructed from a small number of
basic structures and sharing idioms. Finally, our results have
actionable implications for rethinking the design of annota-
tion systems, memory management, and program analyses.

7. ACKNOWLEDGMENTS
We would like to thank the reviewers for their constructive

feedback on earlier drafts of this paper. This research was
supported in part by the NSF, grant 0964703. This paper’s
content does not necessarily reflect the position or policy of
the government; no official endorsement should be inferred.

8. References
[1] M. Abi-Antoun and J. Aldrich. A field study in static extraction

of runtime architectures. In PASTE, 2008.

[2] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn,
T. Wies, and H. Yang. Shape analysis for composite data struc-
tures. In CAV, 2007.

[3] S. Blackburn, R. Garner, C. Hoffman, A. Khan, K. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wieder-
mann. The DaCapo benchmarks: Java benchmarking develop-
ment and analysis (2006-mr2). In OOPSLA, 2006.

[4] N. R. Cameron, J. Noble, and T. Wrigstad. Tribal ownership. In
OOPSLA, 2010.

[5] D. R. Chase, M. N. Wegman, and F. K. Zadeck. Analysis of
pointers and structures. In PLDI, 1990.

[6] S. Cherem and R. Rugina. Region analysis and transformation
for Java programs. In ISMM, 2004.

[7] D. Clarke, J. Potter, and J. Noble. Ownership types for flexible
alias protection. In OOPSLA, 1998.

[8] A. Deutsch. Interprocedural may-alias analysis for pointers: Be-
yond k-limiting. In PLDI, 1994.

[9] I. Dillig, T. Dillig, and A. Aiken. Precise reasoning for programs
using containers. In POPL, 2011.

[10] S. Dowdy, S. Wearden, and D. Chilko. Statistics for research.
John Wiley & Sons, third edition, 2004.

[11] M. Ernst, J. Perkins, P. Guo, S. McCamant, C. Pacheco,
M. Tschantz, and C. Xiao. The Daikon system for dynamic de-
tection of likely invariants. SCP, Dec. 2007.

[12] M. Fähndrich and R. DeLine. Adoption and focus: Practical
linear types for imperative programming. In PLDI, 2002.

[13] C. Gordon, M. Parkinson, J. Parsons, A. Bromfield, and J. Duffy.
Uniqueness and reference immutability for safe parallelism. In
OOPSLA, 2012.

[14] S. Guyer, K. McKinley, and D. Frampton. Ulterior reference
counting: Fast garbage collection without a long wait. In OOP-
SLA, 2003.

[15] S. Guyer, K. McKinley, and D. Frampton. Free-Me: A static
analysis for automatic individual object reclamation. In PLDI,
2006.

[16] B. Hackett and A. Aiken. How is aliasing used in systems soft-
ware? In FSE, 2006.

[17] Heap abstraction code. http://heapdbg.codeplex.com/.

[18] M. Hirzel, A. Diwan, and M. Hertz. Connectivity-based garbage
collection. In OOPSLA, 2003.

[19] M. Hirzel, J. Henkel, A. Diwan, and M. Hind. Understanding
the connectivity of heap objects. In ISMM, 2002.

[20] ikvm. http://www.ikvm.net/.

[21] M. Jump and K. McKinley. Dynamic shape analysis via degree
metrics. In ISMM, 2009.

[22] C. Lattner and V. Adve. Automatic pool allocation: Improving
performance by controlling data structure layout in the heap. In
PLDI, 2005.

[23] K.-K. Ma and J. Foster. Inferring aliasing and encapsulation
properties for Java. In OOPSLA, 2007.

[24] M. Marron. Heap analysis design: An empirical approach. In
Submission, 2012.

[25] M. Marron, M. Méndez-Lojo, M. Hermenegildo, D. Stefanovic,
and D. Kapur. Sharing analysis of arrays, collections, and recur-
sive structures. In PASTE, 2008.

[26] M. Marron, C. Sanchez, Z. Su, and M. Fahndrich. Abstracting
runtime heaps for program understanding. IEEE TSE, 2013.

[27] N. Mitchell. The runtime structure of object ownership. In
ECOOP, 2006.

[28] N. Mitchell, E. Schonberg, and G. Sevitsky. Making sense of
large heaps. In ECOOP, 2009.

[29] Nlucene. http://nlucene.sourceforge.net/.

[30] S. Pheng and C. Verbrugge. Dynamic data structure analysis for
Java programs. In ICPC, 2006.

[31] A. Potanin, J. Noble, and R. Biddle. Checking ownership and
confinement: Research articles. Concurrency and Computation:
Practice and Experience, 2004.

[32] J. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS, 2002.

[33] S. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis
via 3-valued logic. In POPL, 1999.

http://heapdbg.codeplex.com/
http://www.ikvm.net/
http://nlucene.sourceforge.net/

	Introduction
	Theory
	Illustrative Example
	Research Questions

	Methodology
	Measurement

	Evaluation
	Related Work
	Future Work and Conclusion
	Acknowledgments
	References

