
0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2937025, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 1

Moving from Closed to Open Source:
Observations from Six Transitioned Projects to GitHub

Pavneet Singh Kochhar, Eirini Kalliamvakou, Nachiappan Nagappan, Member, IEEE,
Thomas Zimmermann, Member, IEEE, and Christian Bird, Member, IEEE

Abstract—Open source software systems have gained a lot of attention in the past few years. With the emergence of open source
platforms like GitHub, developers can contribute, store, and manage their projects with ease. Large organizations like Microsoft, Google,
and Facebook are open sourcing their in-house technologies in an effort to more broadly involve the community in the development
of software systems. Although closed source and open source systems have been studied extensively, there has been little research
on the transition from closed source to open source systems. Through this study we aim to: a) provide guidance and insights for other
teams planning to open source their projects and b) to help them avoid pitfalls during the transition process. We studied six different
Microsoft systems, which were recently open-sourced i.e., CoreFX, CoreCLR, Roslyn, Entity Framework, MVC, and Orleans. This
paper presents the transition from the viewpoints of both Microsoft and the open source community based on interviews with eleven
Microsoft developer, five Microsoft senior managers involved in the decision to open source, and eleven open-source developers. From
Microsoft’s perspective we discuss the reasons for the transition, experiences of developers involved, and the transition’s outcomes
and challenges. Our results show that building a vibrant community, prompt answers, developing an open source culture, security
regulations and business opportunities are the factors which persuade companies to open source their products. We also discuss
the transition outcomes on processes such as code reviews, version control systems, continuous integration as well as developers’
perception of these changes. From the open source community’s perspective, we illustrate the response to the open-sourcing initiative
through contributions and interactions with the internal developers and provide guidelines for other projects planning to go open source.

Index Terms—Empirical Study, GitHub, Open-source, Microsoft

F

1 INTRODUCTION

O PEN source software systems have seen significant
growth over the past few years. Open source soft-

ware (OSS) development follows a somewhat different
way of building and deploying software systems ranging
from small to very large scale, with contributors spread
out in different parts of the world. Over the past two
decades or so, OSS development has produced several high-
quality projects such as the Linux operating system, Mozilla
browser, MySQL database system, and Hadoop framework.
Social coding websites such as GitHub, which has over
26 million users and more than 74 million repositories,
provides a new way for developers to collaborate. GitHub’s
user-friendly interface and its wide adoption by millions
of users has attracted even large software organizations to
adopt it as their development platform.

Recently, large software companies like Microsoft,
Google, and Facebook have joined the open source commu-
nity and have open sourced some of their proprietary soft-
ware such as Microsoft’s ASP.NET framework, Facebook’s
react JavaScript library [1], and Google’s Android platform.

• P. S. Kochhar is with the Singapore Management University, Singapore,
178902. E-mail: kochharps.2012@smu.edu.sg.

• E. Kalliamvakou is with University of Victoria, BC V8P 5C2. E-mail:
ikaliam@uvic.ca.

• N. Nagappan is with Microsoft Research, Redmond, WA 98502. E-mail:
nachin@microsoft.com.

• T. Zimmermann is with Microsoft Research, Redmond, WA 98502. E-
mail: tzimmer@microsoft.com.

• C. Bird is with Microsoft Research, Redmond, WA 98502. E-mail:
cbird@microsoft.com.

The reasons often cited by these companies include fos-
tering innovation, engaging the community, and additional
benefits for the organization as well as the community [2],
[3]. There have been several studies which investigate open
source development models and their attractiveness to de-
velopers (see [4], [5] for a small sample). Hauge et al. cite
several ways that organizations can adopt OSS, such as
deploying OSS products within the company, adopting OSS
software development practices, participating in external
open source projects, and providing their own projects
to the community [6]. However, there is lack of research
exploring the reasons for making proprietary software open
source, the engineering challenges during the open sourcing
process, developers’ views before and after the transition,
and the OSS community’s response to the open-sourcing of
a project by a large organization. To fill this gap, this paper
aims to help understand the reasons to open-source, the
transition process, challenges, and learnings from a qualita-
tive and quantitative perspective to expand our knowledge
for the whole transition process. In this study, we investigate
the transition of six projects developed at Microsoft: CoreFX,
CoreCLR, Roslyn, Entity Framework, MVC, and Orleans.

We follow a three-pronged approach: a) Interviews We
interview senior managers who were involved in the
decision-making process of open sourcing these projects
and the internal and external (Non-Microsoft) developers
who have actively contributed to the project. b) Survey - We
survey all the internal developers working on these open
sourced projects to validate our findings from the inter-
views. c) Quantitative Analysis - We perform quantitative

Authorized licensed use limited to: MICROSOFT. Downloaded on May 29,2020 at 22:38:25 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2937025, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 2

TABLE 1: Projects Description (Data collected from the projects’ open-sourcing initiative until August 16, 2018)

Project Description Lines of Code Years (days) Stars Forks
Open Sourced

CoreFX .NET Core runtime 3.0M 3.78 (1379) 14622 4248
CoreCLR .NET Core foundational libraries 9.4M 3.55 (1295) 9746 2404

Roslyn .NET Compiler Platform 3.9M 4.42 (1613) 9713 2309
Entity Framework Object-Relational mapper 0.6M 4.57 (1667) 6311 1714

MVC Model View Controller Framework 0.3M 4.68 (1709) 5535 2172
Orleans Distributed Virtual Actor Model 0.2M 3.66 (1337) 4142 1036

analysis to analyze the contributions from developers as
well as members of the community (who we call external
developers).

This paper makes the following contributions:

• We provide a qualitative and quantitative analysis of
the transition of projects from closed source to open
source.

• We identify the motivations for the decision to make
the transition.

• We describe the challenges faced, the process changes
required, and the developers’ perceptions during the
transition.

• We present an in-depth discussion of both closed source
and open source features from the developers’ perspec-
tives and provide guidelines for projects planning to go
open source.

The structure of the remainder of this paper is as follows.
In Section 2, we explain the methodology. We present the
transition reasons in Section 3. We discuss the transition
process and its outcomes in Section 4 and 5. In Section 6, we
describe the community response. We give suggestions for
teams planning to move open source and threats to validity
in Section 7 related work and conclusion are presented in
Section 8 and 9.

2 METHODOLOGY

In this section, we discuss our interview and survey
methodology. Table 1 gives the description of projects in
our dataset. We selected these projects as they are big in
size, have significant history before and after the transition,
and have been actively followed and forked by developers
on GitHub. Figure 1 shows the overall process of our study.

2.1 Internal Interviews

Protocol. For interviews, we want to explore the reasons
for the transition, the changes during the transition process,
and the outcomes. The interviews were conducted into two
phases: (1) Microsoft developers working on the projects
and (2) senior Microsoft managers involved in the decision
to open source the projects.

In the first phase, we interviewed Microsoft developers
who had the highest number of commits in their respective
projects. We used the git logs for each project to extract
the number of commits made by each developer to the
respective project. We emailed these developers to invite
them to interviews. The authors personally interviewed
these developers.

Each developer went through a semi-structured inter-
view, structured in two parts. In the first part, the inter-
viewer asked a few demographic questions such as total
work experience at Microsoft and any prior experience with
open source projects. In the second part, the interviewer
asked a broad set of questions to better understand the tran-
sition process when the project moved from being closed
source to open source. The high-level questions included
the following:
(a) How was the transition process?
(b) What were some of the things developers had to do

prior to the transition?
(c) What were some of the process changes due to transi-

tion?
(d) What are some of the positives and negatives about the

system after the transition?
(e) How has been the response of the open source commu-

nity?
The developers were encouraged to talk in detail about

any question or any parts of the transition our questions did
not cover. Before concluding the interviews, we asked devel-
opers about any suggestions or learnings they would like to
give to other project teams which are planning to transition
to open source. We also asked developers to identify a
senior manager who was involved in the decision making to
open source the project. Interviews lasted approximately 30
minutes and the audio was recorded and later transcribed.

In the second phase, we contacted the managers who
played a key role during the process before and after the
transition as identified by the developers. These managers
also regularly interacted with the senior management at
Microsoft. Our main focus with these interviews was to
understand the reasons behind open sourcing these projects.
We let the interviewees talk in detail about the reasons for
the transition. Interviews lasted approximately 20 minutes
and the audio was recorded and later transcribed.

Participants. In the first phase, we interviewed eleven
developers, each working on one or more of the six projects
we investigated. The average experience of these developers
at Microsoft was 8.36 years. For the second phase, we
interviewed five senior managers. These developers and
managers cover all the six projects (some worked on both
CoreFX and CoreCLR). Table 2 and 3 show the demograph-
ics of internal participants from various projects.

Data Analysis. After the interviews, we coded all the
transcripts. For each interview, we generated cards contain-
ing the key points. We, then, performed open and axial
coding. Open coding involves reading the data several
times and creating conceptual labels for segments of data
to denote the concept they represent. Axial coding involves

Authorized licensed use limited to: MICROSOFT. Downloaded on May 29,2020 at 22:38:25 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2937025, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 3

Fig. 1: Process steps for data collection and analysis. For six projects we conducted interviews with Microsoft employees
and Open-source contributors. With open and axial coding and card sorting we identified four themes: transition reasons,
the transition, transition outcomes, and the community. We followed up on the results from the interviews with a survey.

TABLE 2: Demographics of internal developers

Participant ID Project Experience in Microsoft
(years)

D1 CoreCLR, CoreFX 14
D2 CoreCLR, CoreFX 6.5
D3 CoreCLR, CoreFX 5
D4 Entity Framework 3
D5 CoreCLR 9
D6 Roslyn 1.5
D7 Roslyn 8.5
D8 CoreFX 9
D9 Entity Framework 8.5
D10 Entity Framework 15
D11 Orleans 12

TABLE 3: Demographics of internal managers

Participant ID Project
M1 Entity Framework
M2 Roslyn
M3 Orleans
M4 CoreCLR
M5 MVC

identifying relationships among the codes or the process of
forging links between a category and its emerging subcate-
gories. All the authors were involved in the coding process.
Initially, cards were divided among the authors and each
card was read and assigned to an existing category or a new
category was created. After all the cards were categorized,
a second pass was done together by all the authors to
make sure cards are correctly categorized and category
names aptly represent the cards under it. The categories
were not predefined but rather chosen during the card sort
and were used to define the headings of various sections:
Transition Reasons (Section 3); The Transition(Section 4);
Transition Outcomes (Section 5), Process Changes (Section
5.1); Developers’ Perception (Section 5.2); GitHub: Pros &
Cons (Section 5.3); and The Community (Section 6).

2.2 External Interviews

We conducted interviews with external developers after our
interviews with Microsoft employees. Our aim was to gauge
the community’s perspective beyond what was captured on
social media and forums. To that end, we invited partici-
pants to share with us their experience of collaborating with
Microsoft development teams and being part of discussions
on the projects’ direction.

As the purpose was to explore the community’s view, we
aimed to conduct a round of interviews with two external
developers per project to determine, after analysis, if we
performing data analysis to adjust further data collection is
common in exploratory qualitative studies [7].

Protocol. We opened the interviews by asking basic
demographic questions. We then asked interviewees about
their motivation to contribute to the Microsoft project of
their choice, and how they discovered the project had been
open sourced and hosted on GitHub.

Regarding their own contribution, interviewees de-
scribed any challenges they faced and whether the chal-
lenges had been addressed. Given our insights from Mi-
crosoft developers that some projects had changed their
build and testing processes as part of open sourcing, we
asked the external developers if they had observed any
changes during their contribution time. We also asked the
interviewees to comment on their perception of the project’s
code quality, and how they have seen the community’s
contributions impact the project.

We then proceeded to ask interviewees their impres-
sions from participating in project discussions; giving us
examples of good and bad discussions they had seen or
taken part in. To gauge impressions, we asked the external
developers if and how their experience of contributing to
the Microsoft projects has changed their view of Microsoft,
or the community. Finally, we concluded the interview by
asking participants if they would like Microsoft to change
something in the process it is following for the project they
contribute to. To ensure our understanding we prompted

Authorized licensed use limited to: MICROSOFT. Downloaded on May 29,2020 at 22:38:25 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2937025, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 4

TABLE 4: Demographics of external developers

Participant Project Professional Exp OSS Exp
ID (years) (years)
O1 Orleans 18 3
O2 Entity Framework 15 3
O3 CoreCLR 18 10
O4 Roslyn 6 1
O5 Roslyn 19 6
O6 Orleans 16 3
O7 Entity Framework 25 8
O8 CoreFX 22 10
O9 CoreCLR 13 15
O10 CoreFX 3 4
O11 Orleans 24 4

the interviewees to provide concrete examples throughout
the interview, as relevant.

Interviews were conducted online; they lasted from 45
minutes to an hour and were recorded with the intervie-
wee’s permission. 3 out of the 11 interviewees submitted
their responses to the interview questions in writing and
provided clarifications and examples in follow-up emails.

Participants. All interviewees in this part of the study
were external developers. We invited them via email. We
built our participant pool gradually, sending invitations to
batches of 3 to 5 external developers in a project at a time,
adding a batch if we didn’t get responses.

Since the aim of the interviews was to understand the
community’s perspective on collaborating with Microsoft,
we primarily invited external developers with high levels
of contribution. However, we also sent invitations to casual
external developers, who had contributed at earlier stages
or had only made a few commits.

For each of the six projects, we used the contribution
information in the GitHub repositories as well as git logs
to identify external developers with high and low levels
of committing activity, disregarding Microsoft employees.
Replies to our invitations came from 9 external developers
with high activity in the projects they contributed to, and
2 external developers that contributed casually. We were
unable to recruit interviewees from the MVC project, but
reached saturation after analyzing the 11 interviews cover-
ing the remaining 5 projects. Table 4 provides demographics
of the interviewees from the six projects. Participants had
on average 16 years of professional experience as develop-
ers, and 6 years of experience contributing to open source
projects. The majority (8 participants) were employed as
software or IT engineers, while 2 participants were Chief
Technology Officers and 1 was a .NET consultant.

Data Analysis. The recorded interviews were tran-
scribed. We used thematic analysis techniques [8] to process
the interview data. We first grouped our data assigning
codes that matched areas covered by the interview ques-
tions (e.g motivation, discoverability, challenges, impres-
sions etc.). We refined the coding scheme by adding codes to
account for emerging aspects and performed an open card
sort [9] to further combine or split codes into themes.

2.3 Survey
Protocol. Based on our findings from the interviews, we
created a survey to validate and further understand the
reasons behind the transition, the work involved before

and after, the outcomes, and the community response. Our
survey aimed to quantify the qualitative responses from the
interviews.

We followed Kitchenham and Pfeelger’s suggesting for
designing surveys [10]. We kept the questions optional to
encourage respondents to complete the survey, without
them feeling forced to answer every question. The sur-
vey had 8 statements about the reasons for transition, 7
statements about the prior steps to transition, 27 related
to transition outcomes (process changes, developer percep-
tions, GitHub pros & cons), and 13 statements about the
community response. For Likert scales we used Strongly
Agree, Agree, Neutral, Disagree, Strongly Disagree, and
Not Applicable. We also collected demographic information
such as total experience at Microsoft. The survey was anony-
mous.

Participants. We surveyed all the Microsoft developers
working on the six projects. We found their information
from the git logs and invited the developers who had
committed to these projects to participate in our survey.

We piloted our survey before sending it to 192 devel-
opers in Microsoft. We received 8 out of office responses
and 62 developers completed the survey. However, 14 of
them expressed that they were not part of the team when
the project was open sourced. We excluded these responses
from our analysis. Thus, our response rate was 26.09%. The
average experience of these respondents at Microsoft was
9.33 years and only 22.92% of the respondents had prior
experience of contributing to open source projects outside
Microsoft.

Data Analysis. We analyzed the distribution of Likert
responses and for each hypothesis, we present the percent-
age of respondents that belong to each category - Strongly
Agree, Agree, Neutral, Disagree, Strongly Disagree and
Not Applicable, respectively, in Table 5(a)-(f). Whenever we
present survey results, we give reference to Table 5, for
example, (S6) refers to the hypothesis “To help find and hire
potential employees.”

3 TRANSITION REASONS

In this section, we describe the primary reasons reported
in the study regarding open-sourcing the six projects. Table
5(a) shows the list of transition reasons and the correspond-
ing survey responses.
a) Vibrant Community:

Historically, all six projects were developed within the
organization and the vast majority of external users used
to consume those products. By excluding these potential
open source developers from the discussions, the projects
were missing out on valuable feedback and experience that
external developers can bring with them. While there were
people active in the community, there was a significant bar-
rier to contribute. To ensure that Microsoft is developing the
right product for its customers, it was considered important
to involve community members. A respondent mentioned:
“The community is one part of making sure that we are delivering
the best value to our customers.” (M2) Suggestions from the
community members can provide directions to the technol-
ogy/product. “Those guys don’t represent the whole community
but they are the ones who set the trends. They can tell you the

Authorized licensed use limited to: MICROSOFT. Downloaded on May 29,2020 at 22:38:25 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2937025, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 5

TABLE 5(a): List of hypotheses and survey responses (in %). SA- Strongly Agree, A- Agree, N Neutral, D Disagree, SD
Strongly Disagree

Transition Reasons
SA A N D SD N/A

S1 To engage and build trust in the community 70.21 27.66 0.00 0.00 2.13 0.00
S2 To receive faster feedback from the community 59.57 34.04 4.26 0.00 2.13 0.00
S3 To help developers in Microsoft write better code and become better

coders/testers
8.51 17.02 31.91 25.53 12.77 4.26

S4 To develop open source culture at Microsoft 40.43 42.55 8.51 6.38 2.13 0.00
S5 To help find and hire potential employees 0.00 19.15 40.43 23.40 12.77 4.26
S6 Easy access to resources such as new contributors and support for tools 14.89 44.68 25.53 8.51 2.12 4.25
S7 To generate business opportunities for other projects in the organization 17.02 29.79 25.53 19.15 4.26 4.26
S8 To help build trust and increase confidence with countries or organizations as

they can see what the source code does
40.43 25.53 19.15 8.51 6.38 0.00

way to design software to be fruitful and productive. You should
go in this direction and they set the standards for everyone else to
follow.” (M1) Ultimately, involving open source developers
helps in overall growth of the community.

Furthermore, open sourcing the code can help external
developers have a say as well as help companies build trust
with users and developers, which is likely to attract more
contributors. One manager indicated, that such a strategy
allows “To make ourselves one with the community and partici-
pate more.” (M1). Over 97% of the respondents agree that the
project was open-sourced to engage and build trust in the
community (S1).
b) Prompt Answers:

With the emergence of platforms like GitHub, the open
source community has been growing at a rapid pace. De-
velopers get exposure for their projects and can receive
comments from the community early on regarding new
features. As expressed by Eric Raymond “Given enough
eyeballs, all bugs are shallow” [11], meaning in this case that
developers internal to an organization might not be able to
solve all the issues, whereas putting code in the open will
expose the issues to the community which can help find
and solve bugs faster. “By getting this in front of them early on,
they can catch this stuff to make sure we are not making any big
mistakes. Some of our best bugs come from the community.” (M2).
More than 93% agree or strongly agree that open-sourcing
helps in receiving faster feedback from the community (S2).
c) Better Code, Better Coders:

Open-sourcing project exposes developers to new tool-
sets and fresh ideas from the community. Internal devel-
opers communicate with external developers on a regular
basis “We have gotten really close to a lot of these guys in the
community.” (M2) Eventually, this helps internal developers
do things which they might not have thought before and
helps make the community stronger. “It made my team better
coders and better testers.” (M2) This not only benefits the
product and improves its scope but also opens up career
opportunities for the developers. Thus, better developers
will help write better code and build products which matter
to the community.
d) Develop Culture:

Developers working on open source projects can act
as agents of change to adopt open source processes and
tools [12]. Some of our interviewees had experience at
different organizations where they were involved in open
sourcing their products. As a result, they sought to develop
an open source culture within Microsoft. Furthermore, to

open source more products in the future, it is imperative
that a culture needs to be developed within the company.
An interviewee mentioned, “To be a better company, we need
to move in that direction.” (M2). 82.98% of the survey respon-
dents agreed that developing open-source culture was one
of the reasons (S4).
e) Potential Employees:

There are developers in the community who are willing
to put in their time and effort to contribute and build good
products. By giving an opportunity to these members to
contribute, organizations can leverage these connections to
hire potential employees. One of our interviewees was an
external developer who was hired based on the contribu-
tions made to the project “I came from the community. I was one
of the guys that started giving feedback on EF [Entity Framework]
before EF was public and I ended up being hired.” (M1) The
increased exposure that comes with open-sourcing a project,
and the need for credibility can also lead to hire talent within
the organization. Some of the teams hired developers from
other teams. “We have picked up talent internally because of
this project” (M4) and rather than following the traditional
interview process, developers were given some tasks to
be accomplished in the open to give them a feel of what
the job would look like, which the interviewee termed as
“interview through open source contributions” (M4). If the work
the candidates did was satisfactory, they were subsequently
hired.
f) Limited Resources:

Organizations have limited resources in terms of number
of developers in the team as well as the amount of time
they have to implement something. Open sourcing code
provides the opportunity to a large number of community
members to contribute and provide valuable feedback. From
a company’s perspective, hiring good developers takes up
significant amount of time, while at the same time there are
people in the community who have expertise to accomplish
project tasks. A respondent mentioned, “It kills us sometime.
We have really great idea and we can’t develop it simply because
don’t have enough bodies to do it. We have to do three things
well than do five things in a mediocre fashion. The community
lets us do five things well.” (M2) while another reported, “We
don’t have the resources to test on different operating systems ...
backport to older versions of Linux. We just can’t do that with
the number of people we have currently.” (D3). 59.57% of the
respondents agree that open-sourcing can give easy access
to resources such as new contributors and support for tools
(S6).

Authorized licensed use limited to: MICROSOFT. Downloaded on May 29,2020 at 22:38:25 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2937025, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 6

TABLE 5(b): List of hypotheses and survey responses (in %). SA- Strongly Agree, A- Agree, N Neutral, D Disagree, SD
Strongly Disagree

The Transition
SA A N D SD N/A

S9 Sanitizing/Cleaning the source code 50.00 41.67 6.25 2.08 0.00 0.00
S10 Changing the build system 45.83 33.33 6.25 6.25 4.17 4.17
S11 Providing resources to enable cross platform support 25.00 29.17 14.58 22.92 4.17 4.17
S12 Writing documentation 19.15 34.04 19.15 23.40 4.26 0.00
S13 Marketing about the project like writing blog posts 17.02 46.81 23.40 12.77 0.00 0.00

g) Business Opportunities:
A project in an organization might bring new customers

or business opportunities for other projects when these two
projects are somehow interrelated. If an open source project
runs on a platform provided by the organization, users of
the project would need the platform to run their applica-
tions. Thus, open sourced projects can indirectly generate
revenue for the organization.
h) Building Trust:

When a project’s source code is not available freely, it
makes it difficult for countries, government agencies and
other organizations to trust what the software does. The
organizations who are using the software want to ensure
that their privacy is maintained especially in the cases of
software such as a compiler, which takes in source code
and creates binaries. By opening their code to the public
companies help build trust, so that other entities are ensured
that the confidentiality of their data is maintained. One of
the developers quoted, “There are a number of agencies out
there who would not pick us up unless they can trust the code
base.” (M2). 65.96% agree that the project was open-sourced
to help build trust and increase confidence with countries
or organizations as they can see what the source code does
(S8).

4 THE TRANSITION

Open-sourcing a project involves more than uploading the
source code to GitHub. We found that teams took many
steps during the transition to increase the likelihood of
success. This section describes the steps. Table 5(b) shows
the various hypotheses for the steps taken during transition.
a) Preparation for the transition:

Code, Tools & Documentation: Since the six projects
were being put in the open and anyone would be able
to read the code, it was important to sanitize the code
to remove confidential or sensitive terms in comments or
identifiers. Over 90% agreed that sanitizing was important
and as expressed by one of the developers (S9) - “A big part
of it is sanitizing the existing source bases.” (D3). Developers
emphasized that it is important to make the code readable
as it will be easier for external developers to read, under-
stand and contribute to the project. Therefore, it was very
important to clean the code “Lot of it was really cleaning up the
code. We wanted to provide a much clearer, more understandable
code base” (D11)

Before the projects were open-sourced, developers had to
consider aspects of the development process. For example,
How do developers build? How do they do basic testing?
Developers reported putting in significant amounts of time
to get the code and accompanying artifacts ready to be used

by open source developers as well. Internally, some projects
use MSBuild [13], the Microsoft Build Engine. Development
teams had to move to a different build system to facilitate
external developers using it together with GitHub. 79.16%
of the respondents mentioned changing build system as
an important step (S10). One of the developers mentioned,
“Bunch of workarounds. Refactor how the source tree is laid out.
We used internal MSBuild system. We probably spent about
2 or 3 months ... 5 or 6 engineers from different disciplines
getting things ready. Moving to a new build system, changing
the layer of the tree” (D2). Open-sourcing also meant that the
project team had to provide resources to the community
to develop and use the product on different platforms as
expressed by a developer - “Lot of work was done to enable
cross-platform support.” (D3) and supported by 54.17% of the
survey respondents (S11).

Documentation is an important part of supporting de-
velopers/users to get an understanding of a project. Good
documentation makes it easier for novices as well as experi-
enced developers who would like to build and contribute to
the project. Project teams had to put in significant amount
of time to ensure that there is proper documentation present
with the project. A developer mentioned, “There was quite a
bit of effort not to clean the code but writing this documentation.
We were reasonably good at that before but there were still
lot of gaps in that particularly when it came to the question
of extensibility and the framework and you write this type of
extension and that type of extension.” (D11). In the survey,
53.19% of the respondents mention writing documentation
as an important step during the transition (S12).

Publicity: When projects were open sourced, open
source developers were given the opportunity to now con-
tribute to the projects they have been using or they would
want to use. Therefore, project teams announced the open-
sourcing on different media platforms so that open source
community knows that Microsoft is trying to engage with it.
As one of the developers expressed, “When we open sourced,
we wanted it to be a big deal like prepare a blog post so that we
can have a media blitz.” (D2). In the survey, 64% agreed that
marketing about the project like writing blog posts is an
important step before the transition (S13).
b) Transition to Open source:

Before moving to GitHub, Microsoft had its own open
source project hosting site CodePlex [14], which supported
the Git version control system. Roslyn and Entity Frame-
work were initially moved to CodePlex before moving to
GitHub, whereas other projects were directly open-sourced
on GitHub. When projects were in CodePlex only the source
code was visible to the external developers whereas most
of the tools to build and test the software were internal,
which acted as a barrier of entry for developers. Thus, the

Authorized licensed use limited to: MICROSOFT. Downloaded on May 29,2020 at 22:38:25 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2937025, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 7

TABLE 5(c): List of hypotheses and survey responses (in %). SA- Strongly Agree, A- Agree, N Neutral, D Disagree, SD
Strongly Disagree

Transition Outcomes (Process Changes)
SA A N D SD N/A

S14 Git has a higher learning curve than TFS 18.75 39.58 12.50 16.67 12.50 0.00
S15 Git is faster than TFS 56.25 20.83 16.67 4.17 2.08 0.00
S16 I would prefer using CodeFlow than GitHub for code reviews 39.58 33.33 12.50 6.25 8.33 0.00
S17 I would like to see the complete file with the changes rather than the diffs while

doing code reviews on GitHub
27.08 31.25 27.08 4.17 4.17 6.25

S18 Testing became harder as the test cases need to be moved or re-written to a
different test framework

10.42 29.17 22.92 18.75 16.67 2.08

S19 Testing became harder as some of the internal tools are not available 10.42 39.58 14.58 22.92 12.50 0.00
S20 External contributors are required to submit test cases along with their pull

requests
20.83 47.92 20.83 4.17 2.08 4.17

S21 Some external contributors only write test cases 8.33 14.58 37.50 29.17 0.00 10.42
S22 Continuous Integration can help detect merging issues early and easily 51.06 36.17 6.38 4.26 2.13 0.00
S23 Managing pull requests is easier on GitHub than internally 38.30 31.91 17.02 6.38 4.26 2.13
S24 Only internal developers have the right to merge the pull requests 27.66 61.70 6.38 4.26 0.00 0.00
S25 My project is maintaining two copies of the source code internal and external 15.56 31.11 2.22 24.44 24.44 2.22
S26 Managing multiple copies of code, i.e., internally and externally can be trouble-

some
31.11 33.33 4.44 6.67 2.22 22.22

contributions from external developers in CodePlex were
minimal. Microsoft developers made changes to the internal
repository which was replicated to CodePlex. “The changes
were actually made on the closed side and replicated to the
open and that process was somewhat fragile.” (D1) In contrast,
GitHub’s user-friendly platform was seen as potentially
better support for the community to contribute. “CodePlex
is very buried in the UI like how to submit a pull request
whereas GitHub is very first class like ‘Oh fork this project’. They
have really good help.” (D4) Also, developers indicated that
the large community on GitHub motivated them to move
the code base from CodePlex. The open source community
shared this view also. An external developer commented,
“Choosing to go on GitHub was a big thumbs up, CodePlex was
much more difficult to use.” (O1).

Moving code and tests involved transitioning from inter-
nal tools to open source tools. Initially, projects only ported
the source code and did not accept any changes to ensure
that the project doesn’t break. “In the beginning, we moved the
product without moving the tests because tests were much more
work. In this case, we were not taking any pull request for that
code until we have tests on GitHub.” (D5)

Overall, most of the projects had a smooth transition. As
one developer put it, “Every single project that I have seen it’s
gone very well.” (D3)

5 TRANSITION OUTCOMES

This section discusses the transition outcomes, divided into
three parts: Process Changes, Developers’ Perception and
views of developers about GitHub. The corresponding hy-
potheses are shown in Table 5(c), 5(d) and 5(e).

5.1 Process Changes
a) Version Control System:

Prior to the transition, the projects in our dataset used
Team Foundation Server (TFS) [15], which is a collaboration
platform for application lifecycle management. After the
projects were open sourced, they had to move to Git, which
is the basis for GitHub. TFS is a centralized version control
system (CVCS), whereas Git is a distributed version control

system (DVCS). As Muslu et al. [16] point out, DVCSs have a
high learning curve but provide significant benefits such as
the ability to work offline and managing multiple contexts.
Developers echoed a similar sentiment: “There is a learning
curve but once you get past that, it works a lot smoother” (D3)
and was agreed by more than 58% of the respondents (S14).
77% of the survey respondents agreed that Git is faster than
TFS (S15) and a developer mentioned: “We like it a lot because
it [is] just faster and more decoupled system There are many level
and tiers in which you can work. You can work on the bus, on the
plane. You just sync your stuff later. It’s just that flexibility helps
us.” (D1).
b) Code Reviews:

Microsoft developers use CodeFlow, an internal tool,
to perform code reviews. Since CodeFlow only partially
supports GitHub, code reviews may become a challenge
for developers. A developer mentioned: “I’m still missing
code review tools. CodeFlow doesn’t work with GitHub. It can
read from GitHub but the comments I post don’t go to GitHub
and that’s not useful.” (D6). Over 72% of the respondents
preferred CodeFlow over GitHub for code reviews (S16).
GitHub provides a simple user interface and it is good for
small reviews but doesn’t perform well for large reviews.
As one of the developers mentions: “Code reviews it’s a mixed
bag. We do basically all our code reviews now on TFS through
the pull request workflow. For small changes it’s much better
just because they come in quickly, you can review them on your
phone, and you just hit the merge button and that’s really great.
For larger changes GitHub UI doesn’t seem to be designed for
CodeFlow like in-depth code review. I wish that we had something
like CodeFlow that could talk to TFS for more in-depth stuff”
(D2). Furthermore, GitHub only shows the diffs of changes
made to the code rather than the entire file which makes it
harder for developers to understand the context in which
these changes were made. Being able to see the file with
marked changes would make it much easier to understand
and analyze the changes. A developer quoted, “It tends to
put it as a diff so you get these little windows on the changes and
sometimes it is really hard to see what the context of this overall
change.” (D11). More than 58% of the respondents mention
that during code review they would like to see the complete

Authorized licensed use limited to: MICROSOFT. Downloaded on May 29,2020 at 22:38:25 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2937025, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 8

file with changes instead of diffs (S17).
c) Testing:

Microsoft developers use internal tools for testing appli-
cations. As these are proprietary tools which were not open
sourced along with the project, developers had to switch
to open source tools such as xUnit. Developers reported
that testing became harder as they had to move or rewrite
the test cases to a new framework. Almost half of the
respondents agreed that testing became harder (S19) and a
developer opined:“We internally had our own test framework.
We have moved to xUnit. We basically do all of our unit testing
through xUnit.” (D2). When a project is open sourced, it is
harder to perform similar testing as when done internally
in the organization, due to unavailability of resources. A
developer mentioned: “The big thing that you lose at least for
developing externally is that you lose a big portion of testing. We
just can’t move all the CoreCLR testing over. It will take a lot of
time to build that stuff up to the point where we can look at a
product outside and can say this is good enough to ship based on
the testing that exists externally. A lot of time we spend building
up these tools that move the code back into into TFS and test it
using the old processes, which is inefficient and prone to error.”
(D3)

Resources such as introducing a test framework, show-
ing example test suites or providing learning materials to
first time contributors can help in communicating the testing
culture of the project [17]. Over 68% of the developers agree
that they had a good culture where everyone (internal or
external developer) had to submit unit tests along with
their pull request (S20). “If you send a pull request without
adequate testing, we are not going to take it even internally. So,
when we went open source, we just expected that from our con-
tributors” (D4). This corroborates previous research where
existence of testing code in the pull-request is considered
as a positive signal and project integrators are more likely
to reject pull-requests that do not have test cases [18], [19].
The interviewees reported that if the project team felt that
there was a need for additional testing, they would assign
a developer to thoroughly test the changes. Furthermore,
there were developers who planned to make changes in the
long-term but are currently focused only on testing. “There
are external contributors who do primarily test. They plan to do
changes to the code, but they agree it would not be comfortable to
do changes without adequate tests” (D1). This was echoed by
a community member, “a lot of the testing stuff was done from
another contributor, the dashboard which is still sitting off of the
Orleans contributions has become so useful most of our QA staff
have to use it all the time.” (O1)
d) Continuous Integration:

Continuous Integration (CI) is a development practice
that requires developers to integrate their working copy of
the code with the main repository several times a day [20].
Each check-in is automatically tested before merging, which
helps developers detect issues early. Using CI, the devel-
opment teams can effectively manage pull requests; reject
fewer pull requests from external developers and find errors
quickly and more easily [21]. 87.23% of the respondents
agreed that CI can help detect merging issues early and
easily (S22). Developer D5 mentioned, “It’s because we have
this CI which is checking every single pull request. Before you even
check in, you would know if this request is OK or not. It’s much

easier to see if it was your fault or someone else’s.” . Projects
using CI on different operating systems can check if their
project is running on all these platforms. “We are running
continuous integration on Windows, Linux, and Mac. Now, we
are more certain that it works well because it runs on all these
systems.” (D6)
e) Code Check In:

Projects have moved to GitHub’s pull request mecha-
nism, where everyone on the team internal or external, fol-
lows the same procedure. GitHub’s pull request mechanism
provides increased opportunities for community engage-
ment and reduces time to incorporate contributions [22].
Over 70% of the developers expressed that they liked how
easy managing pull requests is on GitHub (S23). When a
developer submits a change, people discuss if the PR should
be accepted or if any changes need to be made. Using this
procedure, developers get varied and timely opinions about
the change. If there are no issues, two senior Microsoft
employees who are part of the project team need to provide
approval. This is done to ensure that the change satisfies the
project guidelines and does not break the original product.
A developer mentioned, “Even inside the team we have an
agreement that a pull request must be OKed by two senior mem-
bers before it goes in. There must be reasons to bypass that. It’s not
enforced but everyone tries to play within these rules unless there
are reasons.” (D1). An external developer commented, “It was
clearer what the issues are and who is working on them, and easier
to submit pull requests. Back in CodePlex, when people submitted
pull requests, they just got closed, and the Roslyn people would
get the changes and put them in the internal tools and publish
that back to the CodePlex repo. In GitHub, they just merge the
pull requests.” (O4)
f) Multiple Copies:

Some projects maintain two copies of the code i.e., the
GitHub one and the internal one. The changes take place
in one of the repositories and are mirrored to the other
repository automatically. “We have two copies of the code:
internal one and the public part of the code” (D5). This can create
issues as developers need to ensure that both the copies
are properly updated at all times. Apart from code, some
teams are also duplicating other items such as tracking bugs
internally and externally, since moving all the previously
logged bugs is difficult. Thus, developers have to manage
both tracking systems. A developer mentioned, “Historically,
we had lot of bugs in TFS. We ported some of them and still some
of them are in TFS. We are still managing bugs in two different
universes.” (D8)

5.2 Developers’ Perception

During the interviews, developers expressed their views of
the transition process and its impact on them. We present
the perceptions of developers in this section.
a) Simple Build:

Before open-sourcing, the six projects used internal build
systems such as MSBuild. Developers wanted a simple build
procedure which makes it easier for community members to
contribute. A developer mentioned: “We just wanted simple
self-contained build as vanilla as possible like File =¿ New Project.
We had that setup beforehand. I would actually wish that more
people would stick to the vanilla stuff like what most of our

Authorized licensed use limited to: MICROSOFT. Downloaded on May 29,2020 at 22:38:25 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2937025, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 9

TABLE 5(d): List of hypotheses and survey responses (in %). SA- Strongly Agree, A- Agree, N Neutral, D Disagree, SD
Strongly Disagree

Transition Outcomes (Developers’ Perception)
SA A N D SD N/A

S27 Build system is simpler than it was internally 31.91 23.40 17.02 21.28 4.26 2.13
S28 Build breaks happen more often internally than externally on GitHub 13.33 11.11 44.44 17.78 11.11 2.22
S29 Agile process in the open source has made it easier for external developers to

contribute
43.48 39.13 13.04 2.17 0.00 2.17

S30 Number of bugs reported have increased 19.57 32.61 36.96 8.70 2.17 0.00
S31 The quality of the software has improved 23.91 34.78 28.26 6.52 6.52 0.00
S32 Open source tools have better support than internal tools 15.22 28.26 43.48 8.70 2.17 2.17

customers do. They don’t write these crazy MSBuilds, libraries
such as all these awesome stuffs. It’s useful but I think it can be a
bit of a barrier” (D4). 55.31% of the respondents mention that
build system now is simpler than the internal one (S27). TFS
also has an automated build engine which was used by the
project teams to build the project. As developers moved to
a simple build system on GitHub, build breaks became less
frequent, “Internally, the build breaks happen much more often.
I would say much much more often. I saw only like three build
breaks on GitHub” (D5).
b) Agile Process:

After the six projects were open sourced, they adopted
the agile development methodology [23], which makes the
development process faster and encourages flexiblity. A
significant percentage (82.61%) of developers agreed that
the agile process made it easier for external developers to
contribute to the project (S29). “I think it’s definitely a big
benefit for us. Partially, because our toolset has changed and the
new model is more agile than before which is [an] indirect effect of
open source.” (D1).
c) Bug Quality:

As open source developers have access to the source
code, there are more people looking at the code which
increases the chances of finding bugs. Developers reported
that the quality of bugs filed by community members has
increased. “I think there are more bugs reported” (D5), while
another said, “Basically the turnaround and quality of bugs is
clearly [an] improvement from open source” (D1) as supported
by over 58% of the respondents (S31). Furthermore, there
were high-quality bug fixes as one community member
expressed, “I saw some high quality fixes. It is hard to imagine
these huge technologies being re-written from scratch and being at
the level of stability they are now without those bug fixes.” (O2)
d) Code Quality:

As more people are reviewing the code, there is potential
for higher code quality as well. As expressed by one of
the external developers, “there won’t be a difference in quality
between something that was contributed by community or some-
thing implemented internally ..., because everything gets reviewed
together by MS developers and also by community members, so
you get this 4-eye check on every single change.” (O6). Similar
views were expressed by Dabbish et al. [24], i.e., projects
which get more attention are of higher quality. Microsoft
developers also ensured that the code has comments and
follows coding standards to make it easier for external
developers to contribute as well as maintain the high-quality
code on GitHub. An external developer pointed out, “I think
the software has proven to be overall of very good quality. The
code had comments and follows coding guidelines, and the coding

standards used are popular. When I contributed, I tried to keep the
same standards and conventions myself.” (O11)

Developers inside organizations often face schedule con-
straints as they have to work under strict deadlines and
deliver high quality product to the customers. This leaves
little time for them to perform code cleanup, which would
increase the readability of the code. Organizations can lever-
age the strength of the open source community as there are
large numbers of developers available who can contribute
without the pressure of the same time constraints. A devel-
oper mentioned: “Letting the community take the low hanging
fruit, I think it’s a benefit. We have had people who have done
clean up on our comments or clean up in the code or I ran a static
analyzer and I found a bunch of warnings and I fixed them.’ From
a business point of view, that doesn’t have a benefit but as a dev
I think our codebase health is improving and we have a bunch of
people who want to make little improvements.” (D2)
e) Increased Developer Awareness:

The open source development community uses a wide
array of tools for development and testing software. When
a project is open sourced, it exposes internal developers to
tools they may not use within the organization. Peer inter-
action, such as recommendation or observations, can help
developers discover and adopt new tools [25], [26]. Thus, the
transition helps make developers aware of available tools
and provides opportunity to experiment with these tools.
A developer mentioned, “Moving to open source world was
[an] eye opening experience to alternative tool chains and some of
them are better like the whole process of accepting pull requests.
Initially, it was reserved for third party contributions but now we
all go through pull requests because it’s just easier.” (D1)
f) Tool Support:

Some open source tools have a large user base, which
increases the support for these tools in terms of new fea-
tures, improving the existing ones or finding bugs. With
such community support tools are modified to run of var-
ious systems and platforms. One developer commented,
“The open source workforce is standardized and several tools
which are well-known. If they are not maintained by us, they
are maintained by somebody because they are publicly released”
(D1) while another commented “It is very unusual where
open-source infrastructure breaks whereas closed source is fragile
and complicated” (D1). However, developers also expressed
their dissatisfaction about some internal tools which are not
available in the open source world.
g) Discoverability:

When any of the six projects was open-sourced, Mi-
crosoft announced it on several mediums such as Hacker
News, Reddit, Microsoft Build etc. which made it easier for

Authorized licensed use limited to: MICROSOFT. Downloaded on May 29,2020 at 22:38:25 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2937025, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 10

TABLE 5(e): List of hypotheses and survey responses (in %). SA- Strongly Agree, A- Agree, N Neutral, D Disagree, SD
Strongly Disagree

Transition Outcomes (GitHub Pros & Cons)
S33 GitHub provides a tighter feedback loop due to a big community 31.11 48.89 11.11 6.67 2.22 0.00
S34 TFS item tracking is better than issue tracking in GitHub 25.00 25.00 16.67 12.50 16.67 4.17
S35 GitHub is good for small pull requests but not for large pull requests 24.44 28.89 31.11 8.89 6.67 0.00
S36 GitHub Markdown lacks some features such as support for writing equations 4.44 15.56 42.22 15.56 4.44 17.78
S37 It’s complex to manage permissions using GitHub’s permission system 6.67 24.44 37.78 15.56 4.44 11.11

external developers to discover them. “I read an announce-
ment on either HackerNews or Reddit” (O5), “It was all over the
news sites I read. Hard to miss really.” (O9) Several developers
were actively following Microsoft on different channels such
as GitHub, Twitter, blogs etc. through which they discovered
the six projects. “I got interested in the project before so I think I
was following Sergei on Twitter and he announced it before it was
announced in Build.” (O6) Another developer mentioned, “I
was actively following the MS open source thing at the time, so I
was subscribed to dotnet logs for years, and I found out through
there.” (O2)

5.3 GitHub: Pros & Cons
All the projects we investigated in this study were moved
and are now hosted on GitHub. GitHub hosts millions of
projects and provides various features such as forking a
repository, a push-pull mechanism and an issue tracking
system. From the developer interviews, we found that
there are some GitHub characteristics which developers
like, whereas some developers preferred using the internal
systems. We discuss these aspects below. Table 5(e) shows
the hypotheses related to GitHub pros and cons. Some of
these were mentioned in the previous studies [18], [27].

GitHub is known to and accessible by a large community
of developers with expertise in different areas. Such an
environment increases the likelihood that a hosted project
may be successful. GitHub also provides social transparency
which promotes increased awareness [24] and makes it
easier for teams to find developers with relevant experience
as well as help developers in finding projects they would
like to contribute to. Teams can get faster feedback which
can help them tackle situations such as solving bugs faster.
One developer mentioned, “GitHub gives a tighter feedback
loop with technically minded individuals in the community” (D2)
and was agreed by 80% of the respondents (S33).

GitHub has its own integrated issue tracking system.
It provides features such as labels for issues, prioritized
issues, voting, and closing issues from commit messages.
The projects we studied were using TFS to manage bugs be-
fore open-sourcing. Developers reported that GitHub issue
tracking is not as powerful as the one in TFS – especially
when there is a large number of bugs – and prioritization
is easier in TFS. A developer mentioned: “Bug management
is not as good as we used to. What GitHub provides issue
tracking/bug management is different and so far doesn’t seem to
be as powerful. It’s good for everyday. But when you have to
do triage, you have to sort through hundreds of bugs and figure
out what action needs to be taken and who will address them
and when and how.the tools are not as powerful” (D1). 50%
of the respondents agreed that TFS item tracking is better
(S34) and similar views were expressed by professional
developers using GitHub for commercial projects [12].

GitHub’s pull request mechanism lets external develop-
ers contribute to the project by pushing changes to a repos-
itory. The project team can review the changes submitted,
give suggestions and push code to the repository. Develop-
ers express that GitHub is good when they receive small pull
requests but it becomes difficult for large requests. “[GitHub]
gets slow in Chrome if you have big PRs that you are trying
to work on” (D2). Over 53% of the respondents agreed that
GitHub is good for smaller pull requests (S35).

GitHub provides support for Markdown, which allows
users to write using a user-friendly plain text format which
is then converted to HTML for viewing GitHub in the
browser. Although Markdown was preferable to publish-
ing word documents, it provided limited features as one
developer pointed out “The problem is that markdown is very
basic. I cannot put equations in it. I can draw some tables but not
anything fancy. That kind of limits the way I can make specs more
readable and better” (D6).

GitHub provides a system of giving permissions
whereby the developer or team managing the account pro-
vides permission to new developers to contribute to the
project. Such an authorization system works well when the
project is created by an individual developer or a small
organization but makes it difficult for large organizations
having a large number of open source projects on GitHub.
For example, if an organization has 50 projects on GitHub,
the account owner has to give permission to any developer
joining any of the projects whereas giving rights to individ-
ual teams of a particular project would make the process
much smoother. One developer mentioned, “What we would
like is a group of contributors to our project but the way GitHub
organization model works, all the control is very flat at the top. To
add a person to any list, you have to get the organization owner
to make this change for you” (D11).

6 THE COMMUNITY

The open source community has grown in leaps and bounds
in the past few years with the evolution of platforms like
GitHub. Developers are actively collaborating on different
types of projects ranging from test framework, operating
systems, mobile and web applications, gaming software etc.
Organizations are open sourcing their software in order
to leverage the strengths of an ever-growing community.
One developer mentioned: “You are going to go where the
community is. I think a lot of the open source community es-
pecially the .NET open source community seems to have adopted
GitHub. It made sense to be there.” (D2). More than 93% of the
repondents agree that GitHub is the right place due to big
community (S38). Table 5(f) shows the hypotheses related to
this section.

Authorized licensed use limited to: MICROSOFT. Downloaded on May 29,2020 at 22:38:25 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2937025, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 11

TABLE 5(f): List of hypotheses and survey responses (in %). SA- Strongly Agree, A- Agree, N Neutral, D Disagree, SD
Strongly Disagree

The Community
S38 GitHub is the right place for the project due to big community 44.44 48.88 2.22 2.22 2.22 0
S39 Community members are very active 40.91 47.73 9.09 2.27 0.00 0.00
S40 Community members are excited about the project going open source 68.18 31.82 0.00 0.00 0.00 0.00
S41 Community members were eager to submit their first pull request 46.67 48.89 4.44 0.00 0.00 0.00
S42 My project team asks some open-source developers to solve issues 13.64 61.36 13.64 11.36 0.00 0.00
S43 Community members provide useful and timely feedback 20.45 61.36 18.18 0.00 0.00 0.00
S44 News website like Hacker News actively published before and/or after project

was open sourced
34.09 38.64 13.64 2.27 0.00 11.36

S45 Community members are actively using social media like Twitter to express
their excitement

27.27 56.82 15.91 0.00 0.00 0.00

S46 My project team publishes design meeting notes on GitHub 33.33 31.11 15.56 15.56 2.22 2.22
S47 Community members take up leadership roles, for example, to take a task or

organize meetings etc
13.64 22.73 27.27 29.55 2.27 4.55

S48 My project does not follow a hierarchical structure of contribution such as
developers have to first earn the privilege to submit changes

29.55 29.55 22.73 9.09 2.27 6.82

S49 Community members submit pull request which are not useful/relevant and do
not satisfy business concerns for the project

6.82 29.55 22.73 34.09 4.55 2.27

S50 Too many contributions from the community members are difficult to manage 0.00 22.73 36.36 29.55 11.36 0.00

TABLE 6: Mean number of issues (open and closed) by
Microsoft developers & the community

Project Community Microsoft
Closed Open Closed Open

Entity Framework 600.11 42.56 249.44 42.33
MVC 332.44 10.44 193 7.89
CoreCLR 374.71 98.29 374.86 115.29
CoreFX 646.13 137.13 699.75 134.63
Orleans 181.14 34.43 34.00 14.14
Roslyn 597.43 223.71 873.86 425.86

TABLE 7: Mean number of comments on issues (open and
closed) by Microsoft developers & the community

Project Community Microsoft
Closed Open Closed Open

Entity Framework 1656.78 278.44 1943.56 193.33
MVC 1106.56 69.22 1351.22 59.67
CoreCLR 1680.71 600.29 2190.57 582.29
CoreFX 2793.88 960.88 5459.13 1176.50
Orleans 814.00 213 570.14 121.71
Roslyn 3650.14 1073.29 3908.86 1161.43

With more Microsoft projects being open sourced, the
community has been responding positively through contri-
butions on GitHub. 88.64% of the developers mentioned that
community members are very active (S39). Table 6 and 7
show the number of issues and the number of comments on
those issues (both open and closed), submitted by Microsoft
developers and the community, respectively. From Table
6, we observe that the number of issues logged by Non-
Microsoft developers are higher than Microsoft developers
for Entity Framework, MVC and Orleans, and similar to
Microsoft developers for CoreFX, CoreCLR and Roslyn.
Following Eric Raymond [11], this shows that the commu-
nity has been actively participating in finding issues for
the open-sourced systems. Similarly, Table 8 and 9 show
the number of pull requests (PRs) and the corresponding
comments on these PRs. We consider all the pull requests
- merged, closed and open. PRs that are accepted are
marked as merged whereas the rejected ones are marked as
closed. We observe that the number of pull requests by the
community have either increased (e.g., CoreFX, CoreCLR,

TABLE 8: Mean number of pull requests (merged, closed
and open) by Microsoft developers & the community

Project Community Microsoft
Merged Closed Open Merged Closed Open

Entity Framework 60.89 45.11 0.56 283.78 64.56 0.22
MVC 43.78 83.89 0.22 111.33 104.78 0.22
CoreCLR 626.14 145.71 5.14 878.71 54.43 2.71
CoreFX 756.88 160.50 2.00 1198.25 108.50 1.25
Orleans 150.00 20.00 0.43 226.57 13.71 1.29
Roslyn 432.43 119.29 8.14 1149.29 190.57 12.14

TABLE 9: Mean number of comments on pull requests
(merged, closed and open) by Microsoft developers & the
community

Project Community Microsoft
Merged Closed Open Merged Closed Open

Entity Framework 60.89 45.11 0.56 283.78 64.56 0.22
MVC 106.22 225 0.44 314.22 544.67 0.33
CoreCLR 1872.29 442.14 25.00 878.71 54.43 2.71
CoreFX 756.88 160.50 2.00 4546.14 624.43 26.14
Orleans 419.86 103.43 10.00 548.00 90.43 8.86
Roslyn 1169.57 325.71 62.71 5920.86 926.29 54.29

Roslyn) or remained more or less the same (e.g., EF, MVC).
Furthermore, we observe that most of the community PRs
are accepted to be merged. From Figure 2, we can observe
that community has been actively submitting issues and
pull requests. Orleans, Entity Framework and MVC received
more than 50% of the issues from the community, whereas
CoreCLR, Orleans and CoreFX received more than 40% of
the pull requests from the community. From Figure 3, we
can observe that there is a continuous influx of new develop-
ers from the community after the projects are open-sourced.
CoreCLR and Orleans observe a drop in the number of new
developers, whereas for rest of the projects there are new
developers even after 36-48 months from open-sourcing.
Furthermore, we observe that few developers (MVC - 25%,
Entity Framework - 12.5%, CoreFX - 11%, Roslyn - 10%,
Orleans - 2.3%, CoreCLR - 2.15%) from the community that
joined these projects within 6 months after open-sourcing
are still contributing after 4-5 years.
a) Developer Excitement:

Open source developers are excited about the code of
the six projects released to the community. All the survey
respondents (100%) agreed that the community is excited

Authorized licensed use limited to: MICROSOFT. Downloaded on May 29,2020 at 22:38:25 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2937025, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 12

(S40). GitHub provides social transparency, which can be
leveraged by developers to improve their technical skills,
coordinate with other developers and manage their rep-
utation [24]. GitHub also provides an embeddable badge,
which shows the number of public repositories, number of
followers, number of forks etc. This provides increased ex-
posure for developers looking to contribute to other projects.
One developer mentioned: “Surprising how quickly the first
pull request comes in within like a couple of hours you have
the first pull request of somebody fixing typos. They want their
little badge on the GitHub page” (D3). More than 95% of the
survey respondents agreed that the community members
were eager to submit their first pull-request (S41).

Through active contributions, developers have gained
recognition in the community. Microsoft has embraced open
source and developer teams often approach community
members to provide help “Can you review this? What do
you think about doing this? We have this problem with Mac,
we don’t know what to do. What do you think our approach is?
We do get some good feedback from that” (D2). In the survey,
75% of the respondents agreed that their team asks open-
source developers to solve issues (S42). This not only helps
to improve the product but also gives sense of belonging
to members; they are valued for their contributions and the
company builds stronger ties with the community. A Roslyn
developer from the community mentioned, “I looked at the
issue tracker and found some bugs that were labelled ‘up for grabs’,
tried to reproduce and then I looked at the code to see what’s going
wrong. I also found other bugs and submitted the fixes.” (O4)
b) Active Engagement:

Microsoft developers and external developers often en-
gage in active discussions that are to the point and provide
camaraderie. Some of the excerpts from external developers
demonstrate this: “In all the discussions the MS people have
been very nice, polite and they focus on the topic. The community
is also nice too.” (O4), “My interactions so far are high quality,
the MS people are very respectful of the minor platforms, half of
them had never heard of NetBSD before but they were respectful
of my contribution, and they make the patches quickly.” (O3),
“There tend to be a lot of discussions, they are not chatty like in
open source forums. They do tend to stay on topic.” (O8)

Open source community members have a gamut of
experience of working on different types of projects. These
developers can provide valuable and timely feedback which
can improve the overall community. As one developer puts
it: “The feedback we get and the people who are using it, I
think it’s a huge benefit because we used to go to all the way
to the end and we release it and people say that is not what we
want. Now, we get the feedback way earlier than that which I
think is very valuable. We actually provide things that people
want.” (D7). Over 81% of the respondents agreed that the
community members provide useful and timely feedback
(S43). An external developer mentioned, “there is very good
discussion going on and in the community some people have very
strong feelings about what the team should prioritize, I think there
is fruitful discussion, although the team cannot do everything
everyone wants. Having this discussion definitely helps them
prioritize better.” (O7)

These developers are putting in time and effort to make
projects work on different platforms. As one of the develop-
ers comments: “The people who are working on it are really

excited. CoreCLR now runs on FreeBSD and that was done
entirely by the community and they were super excited to see
that they can not only make it run on FreeBSD but we made a
conscious decision that we would keep it working by testing it
actively with each pull request and each commit so that we don’t
break them. As long as we keep on sending that message that we
care about what people are doing, things will get better.” (D3).
A community developer mentioned, “the MS people are very
respectful of the minor platforms, half of them had never heard of
NetBSD before but they were respectful of my contribution, and
they make the patches quickly.” (O3).

News about Microsoft’s open-source project was actively
shared on social news website such as Hacker News. Over
72% of the respondents agree that websites like Hacker
News actively published about these projects (S44). De-
velopers often express their excitement on social media
websites such as Twitter. External developers also feel that
Microsoft developers have been actively responding to their
requests. “There was very quick response time to my pull requests
or issues, sometimes a matter of hours, few days maximum.” (O3).
Another developer mentioned, “The longer feature I have been
working on over a few weeks, there is a bit of delay because of the
time difference, but the responsiveness of the guys is phenomenal.”
(O6)
c) Transparency:

Some of the projects we studied published design meet-
ing notes and filed bugs in the open in addition to open-
sourcing their code. Such action gives more confidence to
the open source community that the project wants the com-
munity to get involved. Through these materials, external
developers keep themselves aware of what is going on in
the project. One developer mentioned: “Third parties can
get involved a lot earlier in the process instead of waiting for
internal preview build to go to all of our MVPs. Because we are
working in the open, they see all the bugs we file, we publish our
design meeting notes so when we discuss something as a team,
we publish those and they can comment this is great and if you
consider this, it really helps build the product.” (D4). Over 64%
of the survey respondents agreed that their team publishes
design meeting notes on GitHub (S46). An external devel-
oper mentioned, “I can get a very good understanding of where
the project is going, what features are planned for the future,
how they will be implemented, how the project will evolve in the
short and long term, and I can align my work in my business
along the project, because I know where the project is going.
I’m not really surprised at the Build conference, I already know
about it upfront.” (O6). Our results corroborate past studies
which find that transparency on GitHub helped identify
user skills and needs, allowed work to progress and projects
to evolve [24].
d) Ownership:

Community members actively looked for ways to com-
municate with each other and provide updates about what
they are doing. Members in the project Orleans started
webcasts to share ideas “Some of the community members
took a leadership role upon themselves to organize monthly
community hangouts. They have organized a series of monthly
webcasts. People just volunteer like I will present about this next
month”’ (D11). Over 35% of the respondents mention that
community members took up leadership positions (S47).
Apart from using GitHub to have communication about

Authorized licensed use limited to: MICROSOFT. Downloaded on May 29,2020 at 22:38:25 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2937025, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 13

(a) Issues (b) Pull Requests

Fig. 2: Contribution of Microsoft developers and the community.

Fig. 3: Number of new community developers vs. Number
of months since open-sourcing.

the project, Microsoft developers and external developers
leveraged different communication channels to share ideas.
“We also set up a Gitter chat. There are a lot of people regularly
logging there and there has been a lot of interaction talking about
ideas. Really kind of helping the community to shape the ideas
we have.” (D11) This practice provides opportunity to chat
with other developers and get instant answers, as one of
the community members expressed, “If Gitter was not there,
I don’t think that this project would be working the way that it is
for us.” (O1).

Furthermore, the community has taken initiatives to
develop tools for project such as Roslyn. Some of the
community-driven projects that are a part of The Fellowship
of the Roslyn Project - C# pad, CodeConnect.io, DuoCode
etc. [28].
e) Recognition System:

The open source community follows an onion structure
where longtime contributors make up the core and have the

highest reputation, whereas others support the core group
by reporting issues, submitting patches and adding docu-
mentation [29]. As developers reported during interviews
and survey, Microsoft teams do not follow any particular
recognition system for contributions (S48). Our results are in
line with the findings of Jergensen et al. [30] who found little
support for the traditional onion model. However, there are
developers who are very active in the community “There are
people who hangout in the issues and are passionate about their
areas.” (D2), whereas others contribute occasionally, “There
have definitely been things when some random person shows up
with a pull request. We look at it, it’s great we merge it in and we
never see him again” (D2).
f) Relevant Contributions:

Although open source developers seem excited about the
opportunity to contribute to the six projects, it is not easy for
the project team to accept all contributions. Incoming code
must be appropriate for the project [31] otherwise project
teams might have to reject the contributions. Therefore, it
is up to the Microsoft teams to set the right expectations
so that they can receive valuable contributions from the
community. “It’s hard sometimes but I think when you have
something on GitHub, people have an expectation that like you
are going to be taking almost anything. It just needs to stand on
its technical merits like there isn’t this business concern behind
it.” (D2). However, there are cases of developers submitting
changes which do not match the guidelines even when the
team explicitly specifies them. “Even we explicitly had the
guidelines; don’t submit the change that changes the style. We
have specific style. If it’s not captured there, keep it as it is and
don’t change style arbitrarily. Still, people submit changes with
style. So, we reject them.” (D6)

Some external developers contribute patches which
might be useful to them but not to the community of users as
a whole. Such patches are often rejected by the project team
as they do not bring benefits for the project. “I think a lot of
those type pull requests are just: Hey I was doing this on my fork
to enable my product. I thought it might be useful to you guys in
general.’ We look at it and say this is nice for your scenario but it
is missing all these other things around it.” (D4). A community
developer opined, “Not all ideas are valid and accepted but there
is always very clear rationale given about why going a certain path
is not a good idea.” (O11). Finally, the number of incoming

Authorized licensed use limited to: MICROSOFT. Downloaded on May 29,2020 at 22:38:25 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2937025, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 14

contributions can overwhelm the Microsoft developers as
they need to perform testing and ensure that the new
patch request does not break the software. A developer
mentioned, “It may be a good thing that there are no swell of
changes coming because you need to evaluate every single change.
Even contributions within the team take considerable amount of
time of my day. For e.g., if there were ten more people contributing
at the same rate, I think it would be hard to manage.” (D8). Only
22% of the respondents agree that too many contributions
from the community is hard to manage (S50).

7 DISCUSSION

As more and more organizations are interested in open-
sourcing internal projects, it is important to ensure that the
transition is smooth. Organizations must provide resources
which will make it easier for internal developers to transi-
tion and aid external developers to contribute to the project.
Based on our study findings, we provide some recommen-
dations below for project teams to avoid pitfalls during the
transition process. Furthermore, we perform statistical test
on the hypotheses used in our survey.

7.1 Ratings of Hypotheses
In this section, we present the results of Scott-Knott Effect
Size Difference (ESD) test, which is used for comparison of
treatment means. Among the 50 hypotheses in our survey,
we want to understand which hypothesis are considered
more important by the survey respondents. This informa-
tion will be useful for organizations planning to go open-
source to prioritize and consider hypotheses which are
higher ranked. Furthermore, the test statistically confirms
the results observed in the survey.

Table 10 presents the hypotheses as ranked by the Scott-
Knott Effect Size Difference (ESD) test [32] according to their
Likert scores. The Scott-Knott test uses hierarchical cluster-
ing to divide the sample treatment means into statistically
distinct groups (α = 0.05). As shown in [32], the original
Scott-Knott test assumes data is normally distributed and it
may create groups that are trivially different from one an-
other. Scott-Knott ESD corrects the non-normal distribution
of the dataset and merge two statistically distinct groups
that have negligible effect size as per Cohen’s d.

We observe that the top 3 most highly rated hypotheses
(Group 1) are:

• S1: To engage and build trust in the community
• S9: Sanitizing/Cleaning the source code
• S2: To receive faster feedback from the community

Next 3 highly rated hypotheses (Group 2) are:
• S15: Git is faster than TFS
• S40: Community members are excited about the project

going open source
• S22: Continuous Integration can help detect merging

issues early and easily
From the top ranked hypotheses (S1, S2, S15), we observe

that community involvement is important and Microsoft
developers want to make sure that community gets the
platform to actively contribute and be engaged. The com-
munity has also reciprocated by getting actively involved

and contributing through opening issues, submitting pull
requests and posting comments on GitHub (see Figure ?? -
2).

7.2 Recommendations for Organizations

Infrastructure Support: As one of the developers described,
projects need to differentiate between “developing in the
open” and “developing open source”. “Developing in the
open” means projects simply place their code on a publicly
accessible platform without providing any means for the
community to contribute. In contrast, “Developing open
source” means a project solicits contributions from exter-
nal developers and the project team provides resources to
the community to facilitate the contribution process. “It’s
not just dump the code in the open. You have to provide the
ways to build and test it.” (D1) When Roslyn’s and Entity
Framework’s source code was made open on CodePlex,
most of the building and testing infrastructure was internal,
making it difficult for external developers to contribute.
Thus, a project that is considering open-sourcing should
put in place infrastructure which will make it easy for
external developers to seamlessly contribute to the project.
A developer said “Prepare the infrastructure first. If they have
any internal processes, just expect to put them in the open as soon
as possible. If we have an internal process like our API review,
they should tell three or four people on how to do it. Also, write
some guidelines on how to contribute.” (D5)

Clear Goals: When a project is open-sourced, it is im-
portant to have a long-term vision of what the organization
wants out of the project. Concise explanation of the goals
of the project to the community can attract developers who
would like to make significant contributions to the project,
whereas unclear goals can drive away the developers from
actively participating. A developer mentioned, “When you
open source you kind of really need to understand how you are
going to interact with the community. I don’t think we have done
a great job of explaining to the community of where we are and
where we want to go ... people from the community get upset about
that sometime. It’s like I want to help but I don’t know how to.”
(D2)

Uniform Processes: When an organization plans to open
source multiple projects, it is important to keep uniform pro-
cesses across the projects. This makes it easier for internal
as well as external developers to contribute across projects
without learning a new set of tools and techniques. It also
persuades community members who have contributed to
one project, to contribute to another as they only need to
know the project details but not a new process. A developer
mentioned, “... between CoreCLR, CoreFX and a bunch of other
projects, we are using the same test harnesses xUnit. ’I know if I
look at the WCF project, it’s going to work same as the CoreFX
project. I can move between the two projects and contribute both
places without learning a new set of processes.’ ” (D3)

Hosting Platform: Choosing the right platform to host
an open-sourcing project increases the chances of getting
more participation from the community. Open source plat-
form like GitHub provide social transparency and tools for
developers to collaborate, which can enhance the project’s
visibility and provide avenues for the developers to con-
tribute. Recall that some of the Microsoft projects were

Authorized licensed use limited to: MICROSOFT. Downloaded on May 29,2020 at 22:38:25 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2937025, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 15

TABLE 10: Hypotheses ranked according to Scott-Knott ESD test

Group Hypothesis

1
S1: To engage and build trust in the community
S9: Sanitizing/Cleaning the source code
S2: To receive faster feedback from the community

2
S15: Git is faster than TFS
S40: Community members are excited about the project going open source
S22: Continuous Integration can help detect merging issues early and easily

3

S41: Community members were eager to submit their first pull request
S4: To develop open source culture at Microsoft
S24: Only internal developers have the right to merge the pull requests
S38: GitHub is the right place for the project due to big community
S10: Changing the build system
S29: Agile process in the open source has made it easier for external developers to contribute
S16: I would prefer using CodeFlow than GitHub for code reviews
S39: Community members are very active

4

S8: To help build trust and increase confidence with countries or organizations as they can see what the source code does
S23: Managing pull requests is easier on GitHub than internally
S33: GitHub provides a tighter feedback loop due to a big community
S45: Community members are actively using social media like Twitter to express their excitement
S20: External contributors are required to submit test cases along with their pull requests
S43: Community members provide useful and timely feedback
S13: Marketing about the project like writing blog posts

5

S17: I would like to see the complete file with the changes rather than the diffs while doing code reviews on GitHub
S31: The quality of the software has improved
S27: Build system is simpler than it was internally
S30: Number of bugs reported have increased
S46: My project team publishes design meeting notes on GitHub
S42: My project team asks some open-source developers to solve issues
S6: Easy access to resources such as new contributors and support for tools
S14: Git has a higher learning curve than TFS
S11: Providing resources to enable cross platform support
S12: Writing documentation
S35: GitHub is good for small pull requests but not for large pull requests

6

S44: News website like Hacker News actively published before and/or after project was open sourced
S32: Open source tools have better support than internal tools
S19: Testing became harder as some of the internal tools are not available
S34: TFS item tracking is better than issue tracking in GitHub
S7: To generate business opportunities for other projects in the organization
S48: My project does not follow a hierarchical structure of contribution such as developers have to first earn the privilege to submit
changes
S18: Testing became harder as the test cases need to be moved or re-written to a different test framework

7

S26: Managing multiple copies of code, i.e., internally and externally can be troublesome
S28: Build breaks happen more often internally than externally on GitHub
S47: Community members take up leadership roles, for example, to take a task or organize meetings etc.
S21: Some external contributors only write test cases
S3: To help developers in Microsoft write better code and become better coders/testers
S49: Community members submit pull request which are not useful/relevant and do not satisfy business concerns for the project
S25: My project is maintaining two copies of the source code internal and external
S5: To help find and hire potential employees
S37: It’s complex to manage permissions using GitHub’s permission system
S50: Too many contributions from the community members are difficult to manage

8 S36: GitHub Markdown lacks some features such as support for writing equations

originally moved to CodePlex. However, the little or not
response from the community led to these projects move to
GitHub. “When we moved from CodePlex to GitHub, we get far
more pull requests, I think it’s so much easier to do on GitHub.
It’s like a big part of the culture.” (D4). Similar sentiments were
echoed by the community members, “The actual process of
contributing code was very easy, it was just the GitHub process,
which is in itself a great thing that MS chose to go with it, because
everyone knows it.”

Transition Time: Project Roslyn was initially partially
open-sourced and then later completely open-sourced when
most of the development had taken place. Developers rec-
ommend transitioning the whole project early on in its
lifecycle so that the project team can get input from external
developers. The project was initially open sourced on Mi-
crosoft’s platform, CodePlex but it was harder to contribute
as most of the tools were still internal. Therefore, developers

could see the code but it increased barriers for contributions.
A developer said: “In my opinion, it was significant distraction.
So, I would recommend doing this thing in a more planned
manner and more quiet time like in the beginning of the product
cycle not when we are trying to shut down.” (D8)

7.3 Recommendations for Developers & Managers

Developing Culture: Developers in software organizations
often do not interact with the customers on a regular
basis. Senior management does most of such interactions.
However, when open-sourcing, developers regularly col-
laborate with the external developers, some of whom are
customers as well. Developers may lack skills to effectively
communicate with external community members. To that
end, managers should promote this culture internally by
giving developers an opportunity to interact with external

Authorized licensed use limited to: MICROSOFT. Downloaded on May 29,2020 at 22:38:25 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2937025, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 16

members which will help increase confidence and rapport
between different stakeholders.

Harmonious Attitude: Community members voluntar-
ily invest time and effort to contribute to projects. It is
important for internal team members to be receptive to
comments or feedback from the community. Such a practice
helps build trust and projects can attract more developers
as community members share their experiences with their
counterparts through various means such as social media
websites. A manager shared, “Try to be open to that con-
structive feedback. You can learn a lot by just listening to the
community, listening to what they want, connecting with them
and the closer you can be, the more open you can be, the more
present you can be as a development team to where they are talking
this, the more you will learn.” (D11)

Documenting Best Practices: When a project is open
sourced, team members without any prior experience of
working with OSS learn several best practices followed by
the community, which might be different from the best
practices within the organization. Such practices are not
always documented. We recommend documenting the in-
coming best practices from the open source community,
which would be helpful for other projects planning to open-
source. A community member expressed, “At first I didn’t
know what the labels on the issues mean, but they later updated
the wiki and explained that.” (O4)

Decoupled Parts: For various reasons (e.g. the use by
other internal teams) only a part of a project may be open-
source. If software is open-sourced in parts and the open
source and closed source components are tightly coupled,
it becomes difficult for the project team to manage both
repositories. One developer mentioned, “It’s OK to have open
source components and closed components sources. You want to
make sure there is not too much coupling between them because
otherwise they will tend to gravitate to where the bigger mass is.”
(D1) However, it is better if the project and its resources are
maintained in a single place.

7.4 Threats to Validity

Threats to External Validity. Threats to external validity
relate to the generalizability of our results. In this study,
we investigated six large projects, which Microsoft open-
sourced recently. Every project is different and [32] project
teams may face different issues during the transition. Our
findings may not generalize to projects outside Microsoft.
However, we do find several similarities between these
projects as expressed by developers during the interviews.
Threats to Internal Validity. These threats relate to the
conditions under which the study is performed. We con-
ducted semi-structured interviews with the developers. The
interview questions could have biased the developers al-
though we tried to keep the questions open-ended and let
developers give a holistic picture of the transition process.
Since we recorded the interviews, developers might have
behaved differently. However, we did the recording after
getting consent from the developer. To reduce the bias dur-
ing the card sort, we involved non-authors to help us. The
authors and developers being from Microsoft might have
introduced some bias, however, to counter this we have
interviewed 11 developers from the community. We believe

that these responses along with that of Microsoft developers
give an in-depth explanation of the transition process. We
do not present the transition period (i.e., preparations and
the actual time to transition) as it varies from project to
project on several factors such as amount of code, number
of engineers involved, software lifecycle stage during the
transition, parts of code open-sourced etc. For example, D2
mentioned - “We probably spent about 2 or 3 months on that and
5 or 6 engineers from different disciplines getting things ready.”,
whereas D5 said, “In the beginning, we moved the product
without moving the tests because tests were much more work.”

8 RELATED WORK

In this section, we summarize prior empirical studies on
transition to open-source and attractiveness of open-source
to both developers and organizations.

8.1 Closed Source to Open Source

Pinto et al. studied eight projects to understand the chal-
lenges of open-sourcing proprietary software projects [33].
They surveyed developers through means of opening issues
or mailing lists for the eight projects in GitHub and solicited
responses from the active members of these projects. They
found that the rise of contributions is not straightforward,
and they observe a newcomer’s wave, i.e., a high number
of newcomers make a few contributions initially but do
not contribute again. They also observed an increase in
the number of pull-requests and issues after the projects
were open-sourced. They also observed a growth in pop-
ularity by measuring the number of stars against top-2500
most starred public projects. In our study, we address the
similar problem of understanding reasons to open-source,
the transition process, challenges, and learnings. However,
there are several differences between ours and previous
study. Instead of asking questions on GitHub, we conduct
interviews with the developers and managers involved in
the projects, which gives us an opportunity to get deeper
insights. While previous study only targets developers, we
also interview managers to understand the reasons for
transition. We further survey developers to validate find-
ings from the interviews. We also describe the transition
outcomes and community response through qualitative and
quantitative measures. Compared with the above study, we
find similar results: the number of pull requests increase
after the transition and a significant number is from the
community, the number of issues increase and developers
put in effort to close them as soon as possible. While the
previous study provides mostly quantitative analysis, we
also combine qualitative data to back up the numbers.

Several online blogs provide suggestions for developers
or organizations planning to go open source and why orga-
nizations open source proprietary software. Todorov gave
several suggestions such as cleaning code, self-contained
modules, code refactoring, external dependencies, provid-
ing documentation, testing standalone deployments etc. be-
fore making the code public [34]. A blog by Shopsys Frame-
work gives several reasons to open-source a project based
on their past experience such as finding best developers, get-
ting expert advice, helping fellow developers to reuse your

Authorized licensed use limited to: MICROSOFT. Downloaded on May 29,2020 at 22:38:25 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2937025, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 17

code, increasing the standards on the code substantially
etc. [35]. Another blog gives several reasons to open source
such as advertisement for the company, faster development,
and attracting talent and retaining talent [36]. A blog by
Google gives several reasons for organizations to open
source such as long-term returns, sharing your work, es-
tablishing or supporting an open standard, paradigm shift,
and recruiting developers from the community [37]. Increas-
ingly, large organizations have open-sourced their artificial
intelligence (AI) systems such as Amazon Alexa, Google
TensorFlow, Facebook M, Microsoft Cognitive Toolkit [38].
DARPA, the research arm of the U.S. Department of Defense
has also published a catalog of state-of-the-art machine
learning, visualization and other technologies that can be
used to build custom AI tools [38]. A blog gives set of activ-
ities that need to be done to open-source a product: publish
the source code under an open-source license, publish the
software build environment, accept contributions and build
a genuine community [39]. Furthermore, there is work need
to be done to make a software publishable: critical review
of the source, investment in communication channels, easy
tools to support contributions etc. [39]. The above studies
give suggestions and reasons to move open source based
on their past experiences. We find some similarities such as
taking steps before open-sourcing (cleaning the code, refac-
toring, providing tools, documentation etc.), various reasons
to open-source (finding developers, getting advice, code
reuse, long-term returns etc.). Furthermore, several blogs
have similar viewpoints that open-sourcing a project helps
in building the community. However, they do not follow a
scientific methodology of taking opinions from both internal
and external developers. Furthermore, previous studies are
based on one project, whereas we analyse transition of six
different projects.

8.2 Attractiveness of Open Source

Santos et al. developed a model to evaluate the factors that
increase attractiveness of open source projects and lead to
higher contributions and maintenance activities [40]. They
found that available resources and license restrictiveness
are the main factors that impact activities, however, higher
activity in a project slows down tasks like adding new
features. Hauge et al. presented a classification framework
describing how companies adopt OSS [6]. Some of the
ways they found were deploying OSS products in their
environment, integrating OSS components into their own
systems, providing their products to the community and
using software development practices within their organi-
zation. Krogh et al. performed a review of studies of what
makes developers contribute to open source and developed
a new framework that considers interplay of good, social
institutions and practices [5]. Their findings showed peer
review and quick feedback improves quality in OSS, soft-
ware organizations can find future employees working on
OSS, and social practices can promote loyalty and motivate
developers to contribute.

Agerfalk et al. studied customer and community obliga-
tions for a healthy relationship and success of the project
in the open source world [41]. They found that organiza-
tions should provide commitment from senior management,

should not try to dominate and control the project, and aid
in developing an open and trusted ecosystem. At the same
time, community members should promote democratic au-
thority structures, show professionalism and show loyalty
and commitment to the project. Zhou et al. studied three
hybrid projects that are supported by companies and used
literature, online materials and interviews to understand
policies and actions taken by companies to attract and retain
contributors [42]. They find three models of commercial
involvement hosting: when a company has full control,
supporting: when company supports a project, but it is
controlled by another OSS organization and collaborating:
when a company has a shared control with other organiza-
tions. Homscheid et al. surveyed Linux kernel developers
to understand turnover intention factors of firm-sponsored
open source projects [43]. They found that perceived ex-
ternal reputation of the employing organization reduces
turnover intention towards the company while perceived
own reputation dampens turnover intention directed to-
wards the OSS community. Riehle et al. studied the Linux
kernel and projects on Ohloh to understand the amount
of open source development that is paid against volunteer
work [44]. They found that 50% of all contributions have
been paid work and many small projects are fully paid
for. They further observed a healthy mixture of paid and
volunteer work in larger projects.

Bleek et al. studied the transition of a web-based com-
munity system in three phases: closed source, transition to
open source and completely open source using the Capabil-
ity Maturity Model (CMM) [45]. They found that extreme
change to the organizational structure of the project can be
detrimental for the project quality, but migration to open
source is an appropriate decision to maintain high quality
of the project. Hst et al. conducted a systematic literature re-
view to understand the research conducted on usage of open
source components and participation of companies in open
source development [46]. Their findings showed four types
of categories: usage of open source as component-based
software engineering, organizations’ business models with
open source, organizations’ participation in open source
and usage of open source processes within an organization.
Oruevi-Alagi et al. presented a study on the changes of static
software quality metrics such as lines of code, cyclomatic
complexity, the amount of comments etc. as a proprietary
database management system was open sourced [47]. The
results of their study showed that over half of the changes
were made to the front-end components and there was an
increase in the quality metrics for code developed by the
open source community.

Stol et al. present several factors related to product,
process, and organization before adopting inner source, i.e.,
using open-source practices inside the organization [48].
The factors fall into three categories: product suitability,
practices and tools, and people and management. Adopting
inner source might be the first step for some organizations
to get a taste of practices followed by the open-source
community before they plan to open-source their internal
software. While inner source describes practices that will be
adopted by an organization internally, in our study, we try
to understand the outcomes and challenges that come with
open-sourcing a software. We find similar results with some

Authorized licensed use limited to: MICROSOFT. Downloaded on May 29,2020 at 22:38:25 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2937025, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 18

of the studies above such as feedback improves OSS quality,
finding potential employees, increased code quality, build-
ing healthy community through support of the organization
etc. We further provide several reasons to open-source along
with challenges and opportunities. Furthermore, we also
verify the results of the interviews by conducting a survey.

8.3 Qualities of Open Source

Paulson et al. compared three closed source projects to
three open source projects i.e., Linux, Apache and GCC to
analyze the similarities and differences in the two models of
development [49]. They compared five different character-
istics and found that open source projects foster creativity
and generally have fewer bugs. Mockus et al. used email
archives of source code change history and issue reports to
analyze several aspects such as code ownership, productiv-
ity, defect density etc. [50] They hypothesized that a large
group of developers will find and repair defects and exhibit
faster responses to customer issues. They also suggested a
hybrid model of development where a core team has the
right to commit code, whereas a large number of developers
contribute. We observed similar trends in our study as
most of the external developers contributed and Microsoft
developers had the right to merge the code to the product.
Bonaccorsi and Rossi studied recent theories to explain the
motivation, coordination in the absence of central authority
and diffusion of open source software in the presence of
network externality [4]. They also developed a simulation
model to identify important factors in the diffusion of the
technology. Raghunathan et al. studied quality improve-
ments for open source and closed-source approaches using
game theoretic analysis and compared these two models
in monopolistic and competitive markets [51]. They found
quality depends on the nature of the market. However,
open source programmers have better opportunity to gain
recognition and exhibit their talent to potential employers.
Furthermore, finding bugs is a fun activity for open source
developers and it motivates them to improve software.

9 CONCLUSION

Open source software has attracted the attention of devel-
opers and researchers alike. In the two decades or so, the
open source community has produced several high-profile
software systems, which are being developed, supported
and used by a large number of developers. In this paper, we
studied the transition of six large Microsoft projects from
being closed source to open source. We interviewed five
senior managers and eleven Microsoft developers who were
involved in these projects before and after the transition.
Furthermore, we also interviewed eleven community mem-
bers who have contributed to these six projects.
(1) Engaging the community, prompt responses, develop-

ing culture, security regulations, business opportuni-
ties, limited resources, making better coders and hiring
potential employees were the factors to open-source
projects.

(2) The transition causes process changes such as for test-
ing, code reviews, version control, and continuous inte-
gration.

(3) Developers described the adoption of an agile process,
simple builds, improved bug quality, exposure to tools,
increased awareness and cleaner code as some of the
positive effects of the transition.

(4) The open source community has been actively con-
tributing through new features, finding and fixing bugs,
giving fast feedback, and taking the lead to organize
community events.

In the future, we plan to study more systems to analyze
if our findings generalize to other projects.

ACKNOWLEDGMENTS

The authors would like to thank you all the developers and
managers who provided their valuable feedback during the
interviews and survey.

REFERENCES

[1] “React, a javascript for building user interfaces.” https://reactjs.
org/. Accessed: 2018-08-13.

[2] “Facebooks head of open source gives 3 reasons why the company
open-sources its technology.” https://venturebeat.com/2015/06/
12/facebooks- head- of- open- source- gives- 3- reasons- why- the-
company-open-sources-its-technology/. Accessed: 2018-08-13.

[3] “Microsoft’s open sourcing of .net: The back story.” https://www.
zdnet.com/article/microsofts- open- sourcing- of- net- the- back-
story/. Accessed: 2018-08-13.

[4] A. Bonaccorsi and C. Rossi, “Why open source software can
succeed,” Research Policy, vol. 32, no. 7, pp. 1243 – 1258, 2003.

[5] G. V. Krogh, S. Haefliger, S. Spaeth, and M. W. Wallin, “Carrots and
rainbows: Motivation and social practice in open source software
development,” MIS Quarterly, vol. 36, no. 2, pp. 649 – 676, 2012.

[6] O. Hauge, C. Ayala, and R. Conradi, “Adoption of open source
software in software-intensive organizations - a systematic liter-
ature review,” Information and Software Technology, vol. 52, no. 11,
pp. 1133–1154, 2010.

[7] J. Lawrence and U. Tar, “The use of grounded theory technique as
a practical tool for qualitative data collection and analysis,” vol. 11,
pp. 29–40, 2013.

[8] A. Strauss and J. Corbin, Basics of qualitative research: Techniques and
procedures for developing grounded theory (2nd ed.). Thousand Oaks,
CA, US: Sage Publications, Inc., 1998.

[9] D. Spencer and J. Garrett, Card Sorting: Designing Usable Categories.
Rosenfeld Media, 2009.

[10] B. A. Kitchenham and S. L. Pfleeger, Personal Opinion Surveys,
pp. 63–92. Springer London, 2008.

[11] E. S. Raymond, The Cathedral and the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. O’Reilly & Associates,
Inc., 2001.

[12] E. Kalliamvakou, D. Damian, K. Blincoe, L. Singer, and D. M.
German, “Open source-style collaborative development practices
in commercial projects using github,” in Proceedings of the 37th
International Conference on Software Engineering - Volume 1, pp. 574–
585, 2015.

[13] “Msbuild, the microsoft build engine.” https://msdn.microsoft.
com/en-us/library/dd393574.aspx. Accessed: 2018-08-13.

[14] “Codeplex, project hosting for open source software.” https://
archive.codeplex.com/. Accessed: 2018-08-13.

[15] “Team foundation server.” https://visualstudio.microsoft.com/
tfs/. Accessed: 2018-08-13.

[16] K. Muşlu, C. Bird, N. Nagappan, and J. Czerwonka, “Transition
from centralized to decentralized version control systems: A case
study on reasons, barriers, and outcomes,” in Proceedings of the
36th International Conference on Software Engineering, pp. 334–344,
2014.

[17] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and K. Schneider,
“Creating a shared understanding of testing culture on a social
coding site,” in Proceedings of the 2013 International Conference on
Software Engineering, pp. 112–121, 2013.

Authorized licensed use limited to: MICROSOFT. Downloaded on May 29,2020 at 22:38:25 UTC from IEEE Xplore. Restrictions apply.

https://reactjs.org/
https://reactjs.org/
https://venturebeat.com/2015/06/12/facebooks-head-of-open-source-gives-3-reasons-why-the-company-open-sources-its-technology/
https://venturebeat.com/2015/06/12/facebooks-head-of-open-source-gives-3-reasons-why-the-company-open-sources-its-technology/
https://venturebeat.com/2015/06/12/facebooks-head-of-open-source-gives-3-reasons-why-the-company-open-sources-its-technology/
https://www.zdnet.com/article/microsofts-open-sourcing-of-net-the-back-story/
https://www.zdnet.com/article/microsofts-open-sourcing-of-net-the-back-story/
https://www.zdnet.com/article/microsofts-open-sourcing-of-net-the-back-story/
https://msdn.microsoft.com/en-us/library/dd393574.aspx
https://msdn.microsoft.com/en-us/library/dd393574.aspx
https://archive.codeplex.com/
https://archive.codeplex.com/
https://visualstudio.microsoft.com/tfs/
https://visualstudio.microsoft.com/tfs/

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2937025, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 19

[18] G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen,
“Work practices and challenges in pull-based development: The
integrator’s perspective,” in Proceedings of the 37th International
Conference on Software Engineering (ICSE) - Volume 1, pp. 358–368,
2015.

[19] I. Steinmacher, G. Pinto, I. S. Wiese, and M. A. Gerosa, “Almost
there: A study on quasi-contributors in open source software
projects,” in Proceedings of the 40th International Conference on
Software Engineering (ICSE), pp. 256–266, 2018.

[20] P. Duvall, S. Matyas, P. Duvall, and A. Glover, Continuous Integra-
tion: Improving Software Quality and Reducing Risk. Addison-Wesley,
2007.

[21] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality
and productivity outcomes relating to continuous integration in
github,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering (FSE), pp. 805–816, 2015.

[22] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study
of the pull-based software development model,” in Proceedings
of the 36th International Conference on Software Engineering (ICSE),
pp. 345–355, 2014.

[23] J. Highsmith and A. Cockburn, “Agile software development: The
business of innovation,” Computer, vol. 34, no. 9, pp. 120–122, 2001.

[24] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding
in github: Transparency and collaboration in an open software
repository,” in Proceedings of the ACM 2012 Conference on Computer
Supported Cooperative Work (CSCW), pp. 1277–1286, 2012.

[25] E. Murphy-Hill and G. C. Murphy, “Peer interaction effectively,
yet infrequently, enables programmers to discover new tools,”
in Proceedings of the ACM 2011 Conference on Computer Supported
Cooperative Work (CSCW), pp. 405–414, 2011.

[26] S. Xiao, J. Witschey, and E. Murphy-Hill, “Social influences on
secure development tool adoption: Why security tools spread,”
in Proceedings of the 17th ACM Conference on Computer Supported
Cooperative Work & Social Computing (CSCW), pp. 1095–1106, 2014.

[27] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and
challenges in pull-based development: The contributor’s perspec-
tive,” in Proceedings of the 38th International Conference on Software
Engineering (ICSE), pp. 285–296, 2016.

[28] “A journey through open source: The trials & triumphs in roslyn’s
first year of open source.” https://blogs.msdn.microsoft.com/
dotnet/2015/04/06/a- journey-through-open-source- the- trials-
triumphs-in-roslyns-first-year-of-open-source/. Accessed: 2018-
08-22.

[29] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of
open source software development: Apache and mozilla,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 11, no. 3, pp. 309–346, 2002.

[30] C. Jergensen, A. Sarma, and P. Wagstrom, “The onion patch:
Migration in open source ecosystems,” in Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering (ESEC/FSE), pp. 70–80, 2011.

[31] J. Tsay, L. Dabbish, and J. Herbsleb, “Let’s talk about it: Evaluating
contributions through discussion in github,” in Proceedings of the
22Nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE), pp. 144–154, 2014.

[32] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Mat-
sumoto, “An empirical comparison of model validation tech-
niques for defect prediction models,” IEEE Transactions on Software
Engineering, vol. 43, no. 1, pp. 1–18, 2017.

[33] G. Pinto, I. Steinmacher, L. F. Dias, and M. Gerosa, “On the chal-
lenges of open-sourcing proprietary software projects,” Empirical
Software Engineering, 2018.

[34] “10 steps to migrate your closed software to open source.” https:

//opensource.com/business/14/5/10-steps-migrate-closed-to-
open-source. Accessed: 2018-08-13.

[35] “6 reasons why we moved from closed to open-source and
you should too.” https://blog.shopsys.com/6- reasons- why-
we- moved- from- closed- to- open- source- and- you- should- too-
9d7007cd71f8. Accessed: 2018-08-13.

[36] “5 reasons your company should open source more code.” https:
//readwrite.com/2015/01/28/open-source-code-5-reasons-to-
open-up/. Accessed: 2018-08-28.

[37] “Why open source?.” https://opensource.google.com/docs/
why/. Accessed: 2018-08-28.

[38] “Why big tech companies are open-sourcing their ai sys-
tems.” https://www.iflscience.com/technology/why-big- tech-
companies-are-open-sourcing-their-ai-systems/. Accessed: 2018-
08-28.

[39] “An in-depth guide to turning a product into an open
source project.” https://opensource.com/business/16/5/how-
transition-product-open-source-project. Accessed: 2018-08-28.

[40] C. Santos, G. Kuk, F. Kon, and J. Pearson, “The attraction of
contributors in free and open source software projects,” The Journal
of Strategic Information Systems, vol. 22, no. 1, pp. 26–45, 2013.

[41] P. J. gerfalk and B. Fitzgerald, “Outsourcing to an unknown
workforce: Exploring opensurcing as a global sourcing strategy,”
MIS Quarterly, vol. 32, no. 2, pp. 385–409, 2008.

[42] M. Zhou, A. Mockus, X. Ma, L. Zhang, and H. Mei, “Inflow and
retention in oss communities with commercial involvement: A
case study of three hybrid projects,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 25, no. 2, pp. 13:1–
13:29, 2016.

[43] D. Homscheid and M. Schaarschmidt, “Between organization
and community: Investigating turnover intention factors of firm-
sponsored open source software developers.,” in 8th International
ACM Web Science Conference, 2016.

[44] D. Riehle, P. Riemer, C. Kolassa, and M. Schmidt, “Paid vs.
volunteer work in open source,” in 2014 47th Hawaii International
Conference on System Sciences, pp. 3286–3295, 2014.

[45] W.-G. Bleek, M. Finck, and B. Pape, “Towards an open source
development process - evaluating the migration to an open source
project by means of the capability maturity model,” in Proceedings
of the First International Conference on Open Source Systems, pp. 37–
43, 2005.

[46] M. Hst and A. Oruevi-Alagi, “A systematic review of research on
open source software in commercial software product develop-
ment,” Information and Software Technology, vol. 53, no. 6, pp. 616 –
624, 2011.

[47] A. Oručević-Alagić and M. Höst, “A case study on the transfor-
mation from proprietary to open source software,” in Open Source
Software: New Horizons, pp. 367–372, Springer Berlin Heidelberg,
2010.

[48] K. Stol and B. Fitzgerald, “Inner source–adopting open source
development practices in organizations: A tutorial,” IEEE Software,
vol. 32, no. 4, pp. 60–67, 2015.

[49] J. W. Paulson, G. Succi, and A. Eberlein, “An empirical study of
open-source and closed-source software products,” IEEE Transac-
tions on Software Engineering (TSE), vol. 30, no. 4, pp. 246–256, 2004.

[50] A. Mockus, R. T. Fielding, and J. Herbsleb, “A case study of open
source software development: The apache server,” in Proceedings
of the 22Nd International Conference on Software Engineering (ICSE),
pp. 263–272, 2000.

[51] S. Raghunathan, A. Prasad, B. K. Mishra, and H. Chang, “Open
source versus closed source: software quality in monopoly and
competitive markets,” IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, vol. 35, no. 6, pp. 903–
918, 2005.

Authorized licensed use limited to: MICROSOFT. Downloaded on May 29,2020 at 22:38:25 UTC from IEEE Xplore. Restrictions apply.

https://blogs.msdn.microsoft.com/dotnet/2015/04/06/a-journey-through-open-source-the-trials-triumphs-in-roslyns-first-year-of-open-source/
https://blogs.msdn.microsoft.com/dotnet/2015/04/06/a-journey-through-open-source-the-trials-triumphs-in-roslyns-first-year-of-open-source/
https://blogs.msdn.microsoft.com/dotnet/2015/04/06/a-journey-through-open-source-the-trials-triumphs-in-roslyns-first-year-of-open-source/
https://opensource.com/business/14/5/10-steps-migrate-closed-to-open-source
https://opensource.com/business/14/5/10-steps-migrate-closed-to-open-source
https://opensource.com/business/14/5/10-steps-migrate-closed-to-open-source
https://blog.shopsys.com/6-reasons-why-we-moved-from-closed-to-open-source-and-you-should-too-9d7007cd71f8
https://blog.shopsys.com/6-reasons-why-we-moved-from-closed-to-open-source-and-you-should-too-9d7007cd71f8
https://blog.shopsys.com/6-reasons-why-we-moved-from-closed-to-open-source-and-you-should-too-9d7007cd71f8
https://readwrite.com/2015/01/28/open-source-code-5-reasons-to-open-up/
https://readwrite.com/2015/01/28/open-source-code-5-reasons-to-open-up/
https://readwrite.com/2015/01/28/open-source-code-5-reasons-to-open-up/
https://opensource.google.com/docs/why/
https://opensource.google.com/docs/why/
https://www.iflscience.com/technology/why-big-tech-companies-are-open-sourcing-their-ai-systems/
https://www.iflscience.com/technology/why-big-tech-companies-are-open-sourcing-their-ai-systems/
https://opensource.com/business/16/5/how-transition-product-open-source-project
https://opensource.com/business/16/5/how-transition-product-open-source-project

