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ABSTRACT

Software engineering researchers have long been interested in
where and why bugs occur in code, and in predicting where
they might turn up next. Historical bug-occurence data has
been key to this research. Bug tracking systems, and code
version histories, record when, how and by whom bugs were
fixed; from these sources, datasets that relate file changes to
bug fixes can be extracted. These historical datasets can be
used to test hypotheses concerning processes of bug intro-
duction, and also to build statistical bug prediction models.
Unfortunately, processes and humans are imperfect, and
only a fraction of bug fixes are actually labelled in source
code version histories, and thus become available for study
in the extracted datasets. The question naturally arises,
are the bug fixes recorded in these historical datasets a fair
representation of the full population of bug fixes? In this
paper, we investigate historical data from several software
projects, and find strong evidence of systematic bias. We
then investigate the potential effects of “unfair, imbalanced”
datasets on the performance of prediction techniques. We
draw the lesson that bias is a critical problem that threat-
ens both the effectiveness of processes that rely on biased
datasets to build prediction models and the generalizability
of hypotheses tested on biased dataﬂ

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—Product Metrics,
Process Metrics

General Terms

Experimentation Measurement
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1. INTRODUCTION

The heavy economic toll taken by poor software quality has
sparked much research into two critical areas (among others):
first, understanding the causes of poor quality, and second,
on building effective bug-prediction systems. Researchers
taking the first approach formulate hypotheses of defect
introduction (more complex code is more error-prone code,
pair-programming reduces defects, etc.) and then use field
data concerning defect occurrence to statistically test these
theories. Researchers in bug prediction systems have used
historical bug-fixing field data from software projects to
build prediction models (based on e.g., on machine learning).
Both areas are of enormous practical importance: the first
can lead to better practices, and the second can lead to
more effectively targeted inspection and testing efforts. Both
approaches, however, strongly depend on good data sets to
find the precise location of bug introduction. This data is
obtained from records kept by developers.

Typically, developers are expected to record how, when,
where, and by whom bugs are fixed in code version histories
(e.g., CVS) and bug tracking databases (e.g., Bugzilla). A
commit log message might indicate that a specific bug had
been fixed in that commit. However, there is no standard
or enforced practice to link a particular source code change
to the corresponding entry in the bug database. Linkages,
sadly, are irregular and inconsistent.

Many bug prediction efforts rely on corpora such as Sliwer-
ski and Zimmermann’s, which link bugzilla bugs with source
code commits in Eclipse |46], 49]. This corpus is created by
inferring links between commits in a source code repository
and a bug database by scanning commit logs for references
to bugs. Given inconsistent linking, this corpus accounts
for only some of the bugs in the bug database. Therefore,
we have a sample of bug fixes, rather than the population
of all actual bug fixes. Still, this corpus contains valuable
information concerning the location of bug fixes (and thus
bug occurrences). Consequently, this type of data is at the
core of much work on bug prediction [36] |43}, 25| [37].

However, predictions made from samples can be wrong, if
the samples are not representative of the population. The
effects of bias in survey data, for instance, are well known [18].
If there is some systematic relationship between the choice
or ability of a surveyed individual to respond and the char-
acteristic or process being studied, then the results of the
survey may not be accurate. A classic example of this is
the predictions made from political surveys conducted via
telephone in the 1948 United States presidential election [30].
At that time, telephones were mostly owned by individu-



als who were wealthy, which had a direct relationship with
their political affiliation. Thus, the (incorrectly) predicted
outcome of the election was based on data in which certain
political parties were over-represented. Although telephone
recipients were chosen at random for the sample, the fact
that a respondent needed to own a telephone to participate
introduced sampling bias into the data.

Sampling bias is a form of nonresponse bias because
data is missing from the full population [45] making a truely
random sample impossible. Likewise, bug-fix data sets, for
example, might over-represent bug-fixes performed by more
experienced or core developers, perhaps because they are
more careful about reporting. Hypothesis-testing on this
dataset might lead to the incorrect conclusion that more
experienced developers make more mistakes; in addition,
prediction models might tend to incorrectly signal greater
likelihood of error in code written by experienced developers,
and neglect defects elsewhere. We study these issues, and
make the following contributions.

1. We characterize the bias problem in defect datasets
from two different perspectives (as defined in Sec‘cion7
bug feature bias and commit feature bias. We also
discuss the consequences of each type of bias.

2. We quantitatively evaluate several different datasets,
finding strong statistical evidence of bug feature bias

(Section [5).

3. We evaluate the performance of BUGCACHE, an award-
winning bug-prediction system, on decidedly biased
data (which we obtain by feature-restricted sub-sampling
of the original data set) to illustrate the potential ad-
verse effect of bias. (Section [6])

2. RELATED WORK

We discuss related work on prediction models, hypothesis
testing, work on data quality issues in software engineering,
and considerations of bias in other areas of science.

2.1 Prediction Models in SE

Prediction Models are an active area of research. A recent
survey by Catal & Diri [11] lists almost 100 citations. This
topic is also the focus of the PROMISE conference, now in
it’s 4th year [41]. PROMISE promotes publicly available
data sets, including OSS data [42]. Some sample PROMISE
studies include community member behavior [24], and the
effect of module size on defect prediction [28].

Eaddy et al [16] show that naive methods of automatic
linking can be problematic (e.g. bug numbers can be in-
dicative of feature enhancements) and discuss in depth their
methodology of linking bugs.

To our knowledge, work on prediction models has not for-
malized the notion of bias, in terms of bug feature bias and
commit feature bias, and attempted to quantify it. How-
ever, some studies do recognize the existence of data quality
problems, which we discuss further below.

2.2 Hypothesis Testing in SE

There is a very large body of work on empirical hypothesis
testing in software, for example Basili’s work [5} |6, 7] with
his colleagues on the Goal Question Metric (GQM) approach
to software modeling and measurement. GQM emphasizes a

purposeful approach to software process improvement, based
on goals, hypotheses, and measurement. This empirical
approach has been widely used (see, for instance [22] and [38]).
Shull et al. [44] illustrate how important empirical studies
have become to software engineering reseach and provide a
wealth of quantitative studies and methods. Perry et al. [40)
echo the sentiment and outline concrete steps that can be
taken to overcome the biggest challenge facing empirical
researchers: defining and executing studies that change how
software development is done. Space considerations inhibit
a further, more comprehensive survey.

In general terms, hypothesis testing, at its root, consists of
gathering data relative to a proposed hypothesis and using
statistical methods to confirm or refute the hypothesis with
a given degree of confidence. The ability to correctly confirm
the hypothesis (that is, confirm when it is in fact true, and
vice versa) depends largely on the quality of the data used;
clearly bias is a consideration. Again, in this case, while
studies often recognize the threats posed by bias, to our
knowledge, our project is the first to systematically define
the notions of commit feature and bug feature bias, and
evaluate the effects of bug feature bias.

2.3 Data Quality in SE

Empirical software engineering researchers have paid at-
tention to data quality issues. Again, space considerations
inhibit a full survey, we present a few representative papers.
Koru and Tian [29] describe a survey of OSS project defect
handling practices. They surveyed members of 52 different
medium to large size OSS projects. They found that defect-
handling processed varied among projects. Some projects
are disciplined and require recording all bugs found; others
are more lax. Some projects explicitly mark whether a bug
is pre-release or post-release. Some record defects only in
source code; others also record defects in documents. This
variation in bug datasets requires a cautious approach to
their use in empirical work. Liebchen et al. [32] examined
noise, a distinct, equally important issue.

Liebchen and Shepperd [31] surveyed hundreds of empirical
software engineering papers to assess how studies manage
data quality issues. They found only 23 that explicity refer-
enced data quality. Four of the 23 suggested that data quality
might impact analysis, but made no suggestion of how to
deal with it. They conclude that there is very little work
to assess the quality of data sets and point to the extreme
challenge of knowing the “true” values and populations. They
suggest that simulation-based approaches might help.

Mockus [35] provides a useful survey of models and meth-
ods to handle missing data; our approach to defining bias is
based on conditional probability distributions, and is similar
to the techniques he discusses, as well as to [48, [33].

In |4] we surveyed five open source and one closed source
project in order to provide a deeper insight into the quality
and characteristics of these often-used process data. Specifi-
cally, we defined quality and characteristics measures, com-
puted them and discussed the issues arose from these obser-
vation. We showed that there are vast differences between
the projects, particularly with respect to the quality in the
link rate between bugs and commits.

2.4 Bias in Other Fields

Bias in data has been considered in other disciplines. Var-
ious forms of bias show up in sociological and psychological
studies of popular and scientific culture.



Source Code Repository

all commits C

<) (]
‘
J

o~ bitnot linked

all bugs B
related,

—
— L N i
Cfl . b k fixed bugs B,
- —
~ - T I~ *
fixed bugs B,
record
linked via log
messages
. \
fl \ 7

Figure 1: Sources of bug data and commit data and their relationships

Confirmation bias where evidence and ideas are used only
if they confirm an argument, is common in the marketplace of
ideas, where informal statements compete for attention [39].
Sensationalist bias describes the increased likelihood that
news is reported if it meets a threshold of “sensational-
ism” [21].

Several types of bias are well-known: publication bias,
where the non-publication of negative results strengthens
incorrectly the conclusions of clinical meta-studies [17]; the
omnipresent sample selection bias, where chosen samples
preferentially include or exclude certain results |23, 9]; and
ascertainment bias, where the random sample is not rep-
resentative of the population mainly due to an incomplete
understanding of the problem under study or technology
used, and affects large-scale data in biology [47].

The bias we study in this paper is closest to sample selec-
tion bias. Heckmann’s Nobel-prize winning work introduced
a correction procedure for sample selection bias [23], which
uses the difference between the sample distribution and the
true distribution to offset the bias. Of particular interest
to our work, and Computer Science in general, is the ef-
fect of biased data on automatic classifiers. Zadrozny [48]
studies of classifier performance under sample selection bias,
shows that proper correction is possible only when the bias
function is known. Naturally, better understanding of the
technologies and methods that produce the data yield better
bias corrections when dealing with large data sets, e.g. in
genomics [2]. We hope to apply such methods, including
those described by Mockus [35] in future work.

Next, we carefully define the kinds of bias of concern in
bug-fix datasets, and seek evidence of this type of bias.

3. BACKGROUND AND THEORY

Figure [1| depicts a snapshot of the various sources of data
that have been used for both hypothesis testing and bug
prediction in the past [19]. Many projects use a bug database,
with information about reported bugs (right of figure). We
denote the entire set of bugs in the bug database as B. Some
of these bugs have been fixed by making changes to the
source code, and been marked fixed; we denote these as By.
On the left we show the source code repository, containing

every revision of every file. This records (for every revision)
who made the commit, the time, the content of the change,
and the log message. We denote the full set of commits as
C'. The subset of C' which represents commits to fix bugs
reported in the bug datase is C'y. Unfortunately, there is not
always a link between the fixed bugs in the bug database and
the repository commits that contains those fixes: it’s up to
developers to informally note this link using the log message.
In general, therefore, C; is only partially known. One can
use commit meta-data (log message, committer id) to infer
the relationship between the commits Cy and the fixed bugs
By [46]. However, these techniques depend on developers
recording identifiers, such as bug numbers in commit log
messages. Typically, only some of the bug fixes in the source
code repository are “linked” in this way to bug entries in
the database. Likewise, only a portion of the fixed bugs in
the database can be tied to their corresponding source code
changes. We denote this set of “linked” bug fix commits as
Cyi and the set of linked bugs in the bug repository as By;.

Unfortunately, | By:| is usually quite a bit smaller than |By|.
Consequently, there are many bug fixes in Cy that are not
in Cy;. Therefore we conclude also that |Cy;| < |C¢|. The
critical issue is this: Programmers fix bugs, but they only
sometimes explicitly indicate (in the commit logs) which
commits fix which bugs. While we can thus identify Cy;
by pattern-matching, identifying Cy requires extensive post-
mortem manual effort, and is usually infeasible.

OBSERVATION 3.1. Linked bug fixes Cy; can sometimes
be found, amongst the commits C' in a code repository by
pattern-matching, but all the bug-firing commits Cy cannot
be identified without extensive, costly, post-hoc effort.

Features Both experimental hypothesis testing, and bug
prediction systems, make use of measurable features. Pre-
diction models are usually cast as a classification problem;
given a fresh commit ¢ € C, classify it as “good” or “bad”.
Often, predictors use a set of commit features (such as size,
complexity, churn, etc) ff...f5,, each with values drawn from
domains DY ... Dy,, and perform the classification operation
using a prediction function Fj,

F,:Df x ... x Dy, — {Good, Bad}



Meanwhile, bugs in the bug database also have their own
set of features, which we call bug features, which capture the
properties of the bug, and its history. Properties include
severity of the bug, the number of people working on it, how
long it remains open, the experience of the person finally
closing the bug, and so on. By analogy with commit features,
we define bug features fP...f%, with values drawn from
domains DY ... D%. We note here that both commit features
and bug features can be measured for the entire set of bugs
and the entire set of commits. However, By, represents
only a portion of the fixed bugs, By. Similarly we can only
examine CYy;, since the full set of bug-fixing commits, Cy,
is unknown. The question that we pose is, are the sets By,
and C; representative of By and Cy respectively, or is there
some sort of bias. Next, we more formally define this notion,
first for bug features, and then for commit features.

Bug Feature Bias Consider the set By, representing bugs
whose repair is linked to source files. Ideally, all types fixed
bugs would be equally well represented in this set. If this
were the case, predictive models, and hypotheses of defect
causation, would be use data concerning every type of bug.
If not, it is possible that certain types of bugs might be
systematically omitted from By;, and thus any specific phe-
nomena pertaining to these bugs would not be considered in
the predictive models and/or hypothesis testing. Informally,
we would like to believe that the properties of the bugs in
By, look just like the properties of all fixed bugs. Stated in
terms of conditional probability, the distributions of the bug
features over the linked bugs and all fixed bugs would be
equal:

Pl - S| Bp) = p(f1 - fu | By) (1)

If Eqn above isn’t true, then bugs with certain prop-

erties could be over- or under-represented among the linked

bugs; and this might lead to poor bug prediction, and/or

threaten the external validity of hypothesis testing. We call
this bug feature bias.

OBSERVATION 3.2. Using datasets that have bug feature
bias can lead to prediction models that don’t work equally well
for all kinds of bugs; it can also lead to mistaken validation
of hypotheses that hold only for certain types of bugs.

Commit Feature Bias Commit features can be used in a
predictive mode, or for hypothesis testing. Given a commit c
that changes or deletes code, we can use version history to
identify the prior commits that introduced the code that ¢
affected. The affected code might have been introduced in
more than one commit. Most version control systems include
a “blame” command, which, given a commit ¢, returns a set
of commits that originally introduced the code modified by
c:

blame : C — 2¢

Without ambiguity, we can promote blame to work with sets
of commits as well: thus, given the set of linked commits
Cf1, we can meaningfully refer to blame(Cy;) the set of
commits that introduced code that were later repaired by
linked commits, as well as blame(C'), the set of all commits
that contained code that were later subject to defect repair.
Ideally, there is nothing special about the linked, blame set
blame(CY;), as far as commit features are concerned:

p(fi - frm | blame(Cr1)) = p(f1 ... fa | blame(Cy))  (2)

If Eqn does not hold, that suggests that certain types
of commit features are being systematically over-represented
(or under-represented) among the linked bugs. We call this
commit feature bias. This would bode ill both for the ac-
curacy of prediction models, and for the external validity
of hypothesis testing, that made use of the features of the
linked blame set blame(Cj).

The empirical distribution of the commit features prop-
erties on the linked blame set, blame(CYy;) can certainly be
determined. The real problem, again, here, is that we have
no (automated) way of identifying the exact set of bug fixes,
Cy. Therefore, in general, we come to the following rather
disappointing conclusion:

OBSERVATION 3.3. Given a set of linked commits Cjy,
there is no way to know if commit feature bias exists, lacking
access to the full set of bug fix commits Cy.

However, bug feature bias per se can be observed, and can
be a concern, as we argue below.

4. DATA GATHERING

Pre-existing Data We used the Eclipse and AspectJ bug
data set from the University of Saarland [49| [14]. The Eclipse
datasetﬂ is well-documented and has been widely used in
research [13| |49, |36] as well as in the MSR Conferences’
mining challenges in the years 2007 and 2008. We also used
the iBugs datasetEl for linked bug-fix information in AspectlJ;
the full set of bug fixes is actually in the Eclipse bugzilla
repository, since AspectJ is part of the Eclipse effort. We also
attempted to use other datasets, specifically the PROMISE
dataset [42]. However, for our study, we also needed a full
record of closed bugs, the set By. These datasets included
only files that were found to include bug fixes, and in many
cases, do not identify the bugs that were fixed, and thus it
is impossible to tell if they are a biased sample of the entire
set of bugs.

Data Retrieval and Preprocessing Additionally, we gath-
ered data for five projects: Eclipse, Netbeans, the Apache
Webserver, OpenOffice, and GNOME. They are clearly quite
different sorts of systems. In addition, while they are all open-
source, they are developed under varied regimes. Eclipse is
under the auspices of IBM, while OpenOffice and Netbeans
are influenced substantially by Sun Microsystems. GNOME
and Apache, by contrast, do not experience such central-
ized influence, and are developed by diffuse, sizeable, motley
teams of volunteers. We were concerned with two data
sources: source code management systems (SCM), and the
bug tracker databases (primarily Bugzilla and IssueZilla);
also critical was the link between bug fixes and the bug-fixing
commits in the SCM. Our procedures were consistent with
currently adopted methods, and we describe them below.
We extracted change histories from the SCM commit logs
using well-known prior techniques [19} |50]: information in-
cluded commit date, committer identity, lines changed, and
log message. In addition to this information, we also need
information on rework: when a new commit ¢,, changes code
introduced by an earlier commit c,, ¢, is said to rework

2Please see http://www.st.cs.uni-saarland.de/softevo/
bug-data/eclipse| (release 1.1)

°See http://www.st.cs.uni-saarland.de/ibugs (release
1.3)
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Co. This requires origin analysis, that is, finding which com-
mit introduced a specific line of code: this is supported
by repository utilities such as cvs annotate and svn blame.
However, these utilities do not handle complications such
as code movement and white space changes, very well. The
git SCM has a better origin analysis, and we found that it
handles code movement (even between files) and whitespace
changes with far greater accuracy. So, we converted the CVS
and SVN repository into git, to leverage greater accuracy
of origin analysis. We used the origin analysis to identify
reworking commits.

We also mined the bug databases. Bug databases such
as Bugzilla or Issuezilla record the complete history of each
reported bug. The record includes events: opening, closing,
reopening, and assignment of bugs; severity assignments and
changes; and all comments. The time, and initiator of every
event is also recorded.

Linking the Data Sources It is critical for our work to
identify the linked subset of bugs By; and the corresponding
commits C'r;. We base our approach on the current technique
of finding the links between a commit and a bug report
by searching the commit log messages for valid bug report
references. This technique has been widely adopted and is
described in Fischer et al. [19]. It has been used by other
researchers |13} |49} |36 |46]. Our technique is based on this
approach, but makes several changes to decrease the number
of false negative links (i.e., links that are valid references in
the commit log but not recognized by the current approach).
Specifically, we relaxed the pattern-matching to find more
potential mentions of bug reports in commit log messages
and then verified these references more carefully in three
steps (Steps 2—4) (see [3]).

1. Scan through the commit messages for numbers in
a given format (e.g. “PR: 112233”), or numbers in
combination with a given set of keywords (e.g. “fixed”,
“bug”, etc.).

2. Exclude all false-positive numbers (e.g., release num-
bers, year dates, etc.), which have a defined format.

3. Check if the potential reference number exists in the
bug database.

4. Check if the referenced bug report has a fixing activity
7 days before or 7 days past the commit date.

In words, the process tries to match numbers used in
commit messages with bug numbers. For all positive matches
it then establishes if the corresponding bug was fixed in
the period of 7 days before or 7 days after the relevant
commit — a time period that we found optimal for the projects
investigated. With this improved process, we achieved higher
recall than in other data sets.

For our work, it was critical to obtain as faithful an ex-
traction of all the linked commit messages as possible. As
additional verification, we manually inspected the results of
our scan, looking for both false positives and false negatives.
To scan for false negatives, we manually examined 1,500
randomly sampled commit log messages that were marked
as unlinked, and we found 6 true positive links, giving us a
confidence interval of 0.14% to 0.78% for our false negative
rate. To scan for false positives, we looked at 30,000 commit
log messages that were marked as linked, and we found 6
that were incorrect. This puts a confidence interval upper

bound on false positives of .05%. We concluded therefore
that the extremely low levels of observed error in our manual
examination did not pose a threat, and so we assumed for
the purposes of our analysis that we are finding virtually all
the commit log messages which the programmers flagged as
fixing specific bug:ﬂ

Since we have two data sets for Eclipse, we refer to the
publicly available data set from Zimmermann et al. [49] as
Eclipsez and the data we mined [3] to reduce false negative
links as Eclipsep. The first two rows in Table [I] show the
total number of fixed bugs per project and the number of
those bugs that are linked to specific commits. The total
fixed bugs for Eclipsez is less than Eclipsep because Eclipsez
includes only bugs that occurred in the 6 months prior to and
after releases 2.0, 2.1, and 3.1. It appears from the overall
totals that Eclipsez has higher recall; this is not so. Under
the same constraints, the technique we used identified 3,000
more linked bugs than Eclipsez; thus, for the periods and
versions that Eclipsez considers, Eclipsep does actually have
a higher recall.

S. ANALYSIS OF BUG-FEATURE BIAS

We begin our results section by reminding the reader (c.f.
Observation that commit feature bias is impossible to
determine without extensive post-hoc manual effort; so our
analysis is confined to bug feature bias.

We examine several possible types of bug feature bias in
By;. We consider features relating to three general categories:
the bug type, properties of the bug fizer, and properties of
the fixing process. The combined results of all our tests are
shown in Table[I[] We note here that all p-values have been
corrected for multiple hypothesis testing, using the Benjamini-
Hochberg correction [8]; the correction also accounted for the
hypotheses that were not supported. In addition to p-values,
we also report summary statistics (rows 4/5 and 7/8) indicat-
ing the magnitude of the difference between observed feature
values in linked and unlinked samples. With large sample
sizes, even small-magnitude, unimportant differences can
lead to very low p-values. We therefore also report summary
statistics, so that the reader can judge the significance of the
differences.

Bug Type Feature: Severity In the Eclipse, Apache, and
GNOME bug databases, bugs are given a severity level. This
ranges from blocker — defined as “Prevents function from
being used, no work around, blocking progress on multiple
fronts” — to trivial — “A problem not affecting the actual
function, a typo would be an example” |10]. Certainly bug
severity is important as developers are probably more con-
cerned with more severe bugs which inhibit functionality and
use. Given the importance of more severe bugs, one might
reasonably assume that the more severe bugs are handled
with greater care, and therefore are more likely to be linked.
We therefore initially believed that bugs in the more severe
categories would be overrepresented in By;, and that we
would observe bug feature bias based on the severity of the
bug.

HyPOTHESIS 5.1. There is a difference in the distribution
of severity levels between By and By.

4The relevant p-values in Table [l supporting our hypothesis,
are comfortably low enough to justify this assumption.



Eclipsez Eclipseg Apache Netbeans OpenOffice GNOME AspectJ
1 | Total fixed bugs 24119 113877 1383 68299 33924 117021 1121
2 | Linked fixed bugs 10017 34914 686 37498 2754 45527 343
3 | Severity x° p<L0l p<k.01 p<k.01 N/A N/A p< .01 p=.997
4 | median Exp.” for all 279 188 26 227 149 179 114
5 | median Exp. for linked 314 457 31 277 219 218 89
6 | Experience KS pk. 0l px01l p=.08 p<x.01 p < .01 pkK.01 p=.98
7 | Verified 7 for all .336 317 .006 .631 .650 .016 .012
8 | Verified 7 for linked 470 492 .006 .694 .881 .013 .006
9 | Verified x? p<L.0l p<.0l p=.99 p<.01 p < .01 p=.99 p=.99'

Table 1: Data and results for each of the projects. P-values have been adjusted for lower significance (thus higher

p-values), using Benjamini-Hochberg adjustment for multiple hypothesis testing, including the hypotheses that weren’t
supported. TA Fisher’s exact test was used for AspectJ due to small sample size. *Experience is measured as number

of previously fixed bugs.
(details at end of § [4).

Figure [2 shows the proportion of fixed bugs that can be
linked to specific commits broken down by severity level. In
the apache project, 63% of the fixed minor bugs are linked,
but only 15% of the fixed blocker bugs are linked. If one
were to do hypothesis testing or train a prediction model on
the linked fixed bugs, the minor and trivial bugs would be
overrepresented. We seek to test if:

p(severity | Byi) = p(severity | By) (3)

Note that severity is a categorical (and in some ways
ordinal) value. It is clear in this case that there is a difference
in the proportion of linked bugs by category. For a statistical
test, of the above equation, we use Pearson’s x? test \\ to
quantitatively evaluate if the distribution of severity levels
in By; is representative of By. With 5 severity levels, we
observed data yields a x? statistic value of 94 for Apache
(with 5 degrees of freedom), and vanishingly low p-values, in
the case of Apache, Eclipseg, GNOME, and Eclipsez (row 3
in Table|l)). This indicates that it is extremely unlikely that
we would observe this distribution of severity levels, if the
bugs in By and By; were drawn from the same distribution.
We were unable to perform this study on the OpenOffice and
Netbeans data sets because their bug tracking systems do
not include a severity field on all bugs. For AspectJ, we used
a Fisher’s exact test (rather than a Pearson x? test) since
the expected number for some of the severities in the linked
bugs is small . Surprisingly, in each of the cases except
for AspectJ, and Eclipsez, we observed a similar trend: the
proportion of fixed bugs that were linked decreased as the
severity increased. Interestingly, the trend is prevalent in
every dataset for which the more accurate method, which we
believe captures virtually all the intended links, has been used.

Hence, Hypothesis 5.1 is supported for all projects for
which we have severity data except for AspectJ.

Our data also indicates that By; is biased towards less
severe bug categories. A defect prediction technique that
uses By; as an oracle will actually be trained with a higher
weight on less severe bugs. If there is a relationship be-
tween the features used in the model and the severity in the
bug (e.g. if most bugs in the GUI are considered minor),
then the prediction model will be biased with respect to By
and will not perform as well on more severe bugs. This is
likely the exact opposite of what users of the model would
like. Likewise, testing hypotheses concerning mechanisms of
bug introduction, on this open-source data, might lead to
conclusions more applicable to the less important bugs.

Also note that Eclipsep actually has higher recall than Eclipse; for a comparable period
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Figure 2: Proportion of fized bugs that are linked, by

severity level. In all the projects where the manually
verified data was used (all except AspectJ and Eclipsey)
linkage trends upward with decreasing severity.

Bug Fixer Feature: Experience We theorize that more
experienced project members are more likely to explicitly
link bug fixes to their corresponding commits. The intuition
behind this hypothesis is that project members gain process
discipline with experience, and that those who do not, over
time, are replaced by those who do!

HYPOTHESIS 5.2. Bugs in By are fized by more experi-
enced people than those who fix bugs in By.

Here, we use the experience of the person who marked the
bug record as fixed. We define experience of a person at time
t as the number of bug records that person has marked as
fixed prior to t. Using this measure we record the experience
of the person marking the bug as fixed at the fixing time. In
this case we will test if:

p(experience | Byi) = p(experience | By) (4)

Experience in this context is a continuous variable. We
use here a Kolmogorov-Smirnov test , a non-parametric,
two-sample test indicating if the samples are drawn from
the same continuous distribution. Since our hypothesis is
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Figure 3: Boxplots of experience of bug closer for all
fixed bug records and linked bug records.

that experience for linked bugs is higher (rather than just
different), we use a one-sided Kolmogorov-Smirnov test.

To illustrate this, Figure [3| shows boxplots of experience
of bug closers for all fixed bugs and for the linked bugs in
Eclipseg. The Kolmogorov-Smirnov test finds a statistically
significant difference (although somewhat weak for apache),
in the same direction between By, and By in every case
excepting AspectJ. Rows 4 and 5 of Table[I]show the median
experience for closers of linked bugs and all fixed bugs. The
distribution of experience is heavily skewed; so the median
is a better summary statistic than the mean. Hypothesis 5.2
is therefore confirmed for every data set but AspectJ.

The implications of this result are that more experienced
bug closers are over-represented in By;. As a consequence
any defect prediction model is more likely to predict bugs
marked fixed (though perhaps not committed) by experienced
developers; hypothesis testing on these data sets might also
tend to emphasize bugs of greater interest to experienced
bug closers.

Bug Process Feature: Verification The bug databases
for each of the projects studied record information about the
process that a bug record goes through. Once a bug has been
marked as resolved, it may be verified as having been fixed,
or it may be closed without verification [20]. We hypothesize
that being verified indicates that a bug is important and will
be related to linking.

HYPOTHESIS 5.3. Bugs in By are more likely to have been
verified than the population of fixed bugs, By.

We test if:
p(verified | Byi) = p(verified | By) (5)

While it is possible for a bug to be verified more than once,
we observe that this is rare in practice. Thus, the feature
verified is a dichotomous variable. Since the sample size is
large, we can again use a x> test to determine if verification
is different for By; and By. When dichotomous samples are
small, such as in AspectJ which had only 14 bug fixes verified,
a Fisher’s exact test should be used.

In addition, since verified is a binomial variable, we can
compute the 95% confidence interval for the binomial proba-
bility, 7 of a bug being verified in By; and By. We do this

using the Wilson score interval method |1]. For the Eclipsep
data, the confidence interval for linked bugs is (.485,.495),
with point estimate .490. The confidence interval for the
population of all fixed bugs is (.289,.293), with point esti-
mate .291. This indicates that a bug is 66% more likely to
to be verified if it is linked. No causal relationship has been
established; however, the probability of a bug being verified
is conditionally dependent on it also being linked. Likewise,
via Bayes Theorem [34], the probability of a bug being linked
is conditionally dependent on it being verified.

The Pearson x? results and the binomial probability es-
timates, # are shown in rows 7-9 of Table[I] In all cases,
the size of the confidence interval for 7 was less than .015.
We found that there was bias with respect to being veri-
fied in Eclipsez, Eclipsep, Netbeans and OpenOffice. There
was no bias in Apache or AspectJ. Interestingly, in GNOME,
bugs that were linked were less likely to have been verified.
We therefore confirm Hypothesis 5.3 for Eclipsez, Eclipses,
Netbeans, and OpenOffice.

Bug Process Features: Miscellaneous We also evaluated
a number of hypotheses, relating process-related bug features,
that were not confirmed.

HyPOTHESIS 5.4. Bugs that are linked are more likely to
have been closed later in the project that bugs that are not.

The intuition behind this is that the policies and develop-
ment practices within OSS projects tend to become rigorous
as the project grows older and more mature. Thus we con-
jecture that the proportion of fixed bugs that are linked will
increase with lifetime. However, this hypothesis was not
confirmed in the projects studied.

HyPOTHESIS 5.5. Bugs that are closed near a project re-
lease date are less likely to be linked.

As a project nears a release date (for projects that attempt
to adhere to release dates), the bug database becomes more
and more important as the ability to release is usually de-
pendent on certain bugs being fixed. We expect that with
more time-pressure and more (and possibly less experienced)
people fixing bugs at a rapid rate, less bugs will be linked.
We found no evidence of this in the data.

HYPOTHESIS 5.6. Bugs that are linked will have more peo-
ple or events associated with them than bugs that are not.

Bug records for the projects studied, track the number of
people that contributed information to them in some way
(comments, assignments, triage notations, etc.). They also
include the number of “events” (e.g., severity changes, reas-
signments) that happen in the life of the bug. We hypothesize
that more people and events would associate with more im-
portant bugs, and thus contribute to higher likelihood of
linkage. The data didn’t support this hypothesis.

The Curious Case of AspectJ:

Curiously, none of our hypotheses were confirmed in the
AspectJ data set: it showed very little bug feature bias!
It has a relatively smaller sample size. So we manually
inspected the data. We discovered that 81% of the fixed
bugs in AspectJ were closed by just three people. When we
examined the behavior of these bug fixers with respect to
linking, we found that 71% of the linked bugs are attributable
to the same group. Strikingly, 20% to 30% of each person’s
fixed bugs were linked, indicating that there is no bias in
linking with respect to the actual developer (a hypothesis not



tested on the other data sets). This lack of bias continues
even when we compare the proportion of linked bugs per
developer by severity. Clearly these developers fixed most of
the bugs, and linked without any apparent bias.

The conclusion from this in-depth analysis is that there
is no bias in the iBugs AspectJ data set with regard to the
bug features examined. This is an encouraging result, in
that it gives us a concrete data set that lacks bias (along the
dimensions we tested).

6. EFFECT OF BUG FEATURE BIAS

We now turn to the critical question, Does bug-feature bias
matter? Bias, in a sample, matters only insofar as it affects
the hypothesis that one is testing with the sample, or the
performance of the prediction model trained on the sample.
We now describe an evaluation of the impact of bug feature
bias on a defect prediction model, specifically, BUGCACHE,
an award-winning method by Kim et al. [27].

If we train a predictor on a biased training set, which
is biased with respect to some bug features, how will that
predictor perform on the unbiased full population?

In our case, the problem immediately rears up: the avail-
able universe, for training and evaluation, is just the set of
linked commits C'y;. What we’d like to do is train on a biased
sample, and evaluate on an unbiased sample. Given that all
we have is a biased dataset C'f; to begin with, how are we to
evaluate the effect of the bias?

Our approach is based on sub-sampling. Since all we
have is a biased set of linked samples, we test on all the
linked samples, but we train on a linked sub-sample that has
systematically enhanced bias with respect to the bug features.
We consider both severity and experience. We do this in two
different ways.

1. First we choose the training set from just one category:
e.g., train on only the critical linked bugs, and evaluate
the resulting “super-biased” predictor on all linked bugs.
We can then judge if the predictions provided by the
super-biased predictor reflects the enhanced bias in
the training set. We repeat this experiment, with
the training set drawn exclusively from each severity
category. We also conduct this experiment, choosing
biased training sets based on experience.

2. Second, rather than training on bugs of only one sever-
ity level, we train on bugs of all severities, but chosen
in a way to preserve, but eraggerate the observed bias
in the data. In our case, we choose a training sample
in proportions that accentuates the slope of the graph
in Figure [2] (rather than focusing exclusively on one
severity category).

Finally, we train on all the available linked bugs, and evaluate
the performance.

For our evaluation, we implemented BUGCACHE as de-
scribed in the Kim et al. [27] along with methods used to
gather data [46] used by BUGCACHE. First, blame data is
gathered for all the known bug-fixing commits, i.e., blame(Cy;).
These are considered bug-introducing commits, and the goal
of BUGCACHE is to predict these just as soon as they occur,
roughly on a real-time basis. BUGCACHE essentially works
by continuously maintaining a cache of the most likely bug
locations. We scan through recorded history of commits,

updating the cache according to a fixed set of rules described
by Kim et al., omitted here for brevity. A hit is recorded
when a bug-introducing commit is encountered in the history,
and is also discovered in the cache, and a miss if it’s not in
the cache. We implemented this approach faithfully as de-
scribed in [27]. We use a technique similar to Kim et al. |206]
to identify the fix inducing changes, but use git blame to
extract rework data, rather than cvs annotate. git tracks
code copying and movements, which CVS and SVN do not,
and thus provides more accurate blame data. For each of
the types of bias, we evaluated the effect of the bias on BuG-
CACHE by systematically choosing a superbiased training
set By C By; and examining the effects on the predictions
made by BUGCACHE. We run BUGCACHE, and record hits
and misses for all bugs in By;. We use the recall measure,
essentially the proportion of hits overall.

We report findings when evaluating BUGCACHE on both
Eclipse linking data sets. As a baseline, we start by training
and evaluating BUGCACHE with respect to bug severity on the
entire set By, for Eclipsez. Figure [4a] shows the proportion
of bugs in By; that are hits in BUGCACHE. The recall is
around 90% for all severity categories.

Next, we select a superbiased training set B; and evaluate
BuGCACHE on By;. We do this by recording hits and misses
for all bugs in By, but only updating the cache when bugs in
By are missed. If B, and By, share locality, then performance
will be better. For each of the severity levels, we set B; to
only the bugs that were assigned that severity level and
evaluated the effect on BUGCACHE. Figure shows the
recall of BUGCACHE when B; included only the minor bugs
in By; from Eclipsez and figure [4c| shows the recall when b,
included only critical bugs. It can be seen that the recall
performance also shows a corresponding bias, with better
performance for the minor bugs. We found that BuGCACHE
responds similarly when trained with superbiased training
sets drawn exclusively from each severity class, except for the
normal class: we suspect this may be because normal bugs are
more frequently co-located with bugs of other severity levels,
whereas e.g., critical bugs tend to co-occur with other critical
bugs. We also evaluated BUGCACHE with less extreme levels
of bias. For instance, when B; was composed of 80% of the
blocker bugs, 60% of the critical, etc. The recall for this
scenario is depicted in figure @d] The bias towards higher
severity in bug hits still existed, but was less pronounced
than in Figure We obtained similar results when using
Eclipser.

From this trial, it is likely that the Bug Type: Severity bug
feature bias in By, is affecting the performance of BUGCACHE.
Hence, given the pronounced disproportion of linked bugs
shown in Figurefor our (more accurate) datasets, we expect
that BUGCACHE is getting more hits on less severe bugs than
on more severe bugs. We also evaluated the effect of bias
in a bug process feature, i.e., experience, on BUGCACHE.
We divided the bugs in By; into those fixed by experienced
project members and inexperienced project members by
splitting about the median experience of the closer for all
bugs in By;. When BUGCACHE was trained only on bugs
closed by experienced closers, it did poorly at predicting
bugs closed by inexperienced closers and vice versa in both
Eclipsep and Eclipsez. This suggests that experience-related
feature bias also can affect the performance of BUGCACHE.
In general BUGCACHE predicts best when trained on a set
with bug feature bias similar to the test set.
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Figure 4: Recall of BugCache when trained on all fixed bugs (a), only “minor” fixed bugs (b), only “critical” bugs (c),
and a dataset biased towards more severe bugs (d) in Eclipsez. Similar results were observed in other severity levels

and in Eclipsep.

Does bug feature bias affect the performance of prediction
systems? The above study examines this using a specific
model, BUGCACHE, with respect to two types of bug feature
bias. We made two observations 1) if you train a prediction
model on a specific kind of bug, it performs well for that kind
of bug, and less well for other kinds. 2) If you train a model
on a sample including all kinds of bugs, but which accentuates
the observed bias even further, then the performance of the
model reflects this accentuation. These observations cast
doubt on the effectiveness of bug prediction models trained
on biased models.

Potential Threat Sadly, we do not have a unbiased oracle
to truly evaluate BUGCACHE performance. Thus, BUGCACHE
might be overcoming bias, but we are unable to detect it,
since all we have is a biased linked sample to use as our
oracle. First, we note that BUGCACHE is predicated on the
locality and recency effects of bug occurrence. Second, the
data indicates that there is strong locality of bugs, when
broken down by the severity and experience bug features. For
BUuGCACHE to overcome bug feature bias, bugs with features
that are over-represented in the linked sample would have
to co-occur (in the same locality) with unlinked bugs with
features that are under-represented. It seems unlikely that
this odd coincidence holds for both Eclipseg and Eclipsez.

7. CONCLUDING DISCUSSION

In this paper we defined the notions of bug-feature bias
and commit feature bias in defect datasets. Our study found
evidence of bug-feature bias in several open source data
sets; our experiments also suggest that bug-feature bias
affects the performance of the the award-winning BUGCACHE
defect prediction algorithm. Our work suggests that this
type of bias is a serious problem. Looking forward, we ask,
what can be done about bias?

One possibility is the advent of systems like Jazz that force
developers to link commits to bugs and/or feature requests;
however experience in other domains suggest that enforce-
ment provides little assurance of ample data quality .

So the question remains: can we test hypotheses reliably,
and/or build useful predictive models even when stuck with
biased data. As we pointed out in section [2.4] some ap-
proaches for building models in the presence of bias do exist.

We are pursuing two approaches. First, we have engaged
several undergraduates to manually create links for a sample
of unlinked bugs in APACHE. It is our hope that with this
hard-won data set, we can develop a better understanding
of the determinants of non-linking, and thus build statisti-
cal models that jointly describe both bug occurrence and
linking; we hope such models can lead to more accurate
hypotheses-testing and bug-prediction. Second, we hope to
use commercial datasets that have nearly 100% linking to
conduct monte-carlo simulations of statistical models of bi-
ased non-linking behaviour, and then develop & evaluate,
also in simulation, robust methods of overcoming them (e.g.,
using partial training sets as described above).

We acknowledge possible threats to validity. The biases
we observed may be specific to the processes adopted in the
projects we considered; however, we did choose projects with
varying governance structures, so the results seem robust.
As noted earlier, our study of bias-effects may be threatened
by highly specific (but rather unlikely) coincidences in bug-
occurrence and linking. It is possible that our data gathering
had flaws, although as we noted, our data has been carefully
checked. Replications of this work, by ourselves and (we
hope) others will provide greater clarity on these issues.
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