
The Design of Bug Fixes

Emerson Murphy-Hill

Department of Computer Science

North Carolina State University

Raleigh, North Carolina, USA

emerson@csc.ncsu.edu

Thomas Zimmermann, Christian Bird, Nachiappan

Nagappan, and Michael Barnett

Microsoft Research

Redmond, Washington, USA

{tzimmer,cbird,nachin,mbarnett}@microsoft.com

Abstract—When software engineers fix bugs, they may have sev-

eral options as to how to fix those bugs. Which fix is chosen has

many implications, both for practitioners and researchers: What

is the risk of introducing other bugs during the fix? Is the bug fix

in the same code that caused the bug? Is the change fixing the

cause or just covering a symptom? In this paper, we investigate

the issue of alternative fixes to bugs and present an empirical

study of how engineers make design choices about how to fix

bugs. Based on qualitative interviews with 40 engineers working

on a variety of products, 6 bug triage meetings, and a survey

filled out by 326 engineers, we found that there are a number of

factors, many of them non-technical, that influence how bugs are

fixed, such as how close to release the software is. We also discuss

several implications for research and practice, including ways to

make bug prediction and localization more accurate.

Keywords-component; bugs, faults, empirical study, design

I. INTRODUCTION

As the software systems we create and maintain continue to
grow in capability and complexity, software engineers must
ensure that these systems work as intended. When systems do
not, software engineers fix the “bugs” that cause this unintend-
ed behavior.

Traditionally, researchers and practitioners have assumed
that where in the software an engineer fixes a bug is where an
error was made [1]. For example, Endes [2] makes such an
assumption in a study, but cautions the reader that,

There is, of course, the initial question of how we can de-

termine what the error really was. To dispose of this ques-

tion immediately, we will say right away that, in the mate-

rial described here, normally the actual error was equat-

ed to the correction made. This is not always quite accu-

rate, because sometimes the real error lies too deep, thus

the expenditure in time is too great, and the risk of intro-

ducing new errors is too high to attempt to solve the real

error. In these cases the correction made has probably

only remedied a consequence of the error or circumvent-

ed the problem. To obtain greater accuracy in the analy-

sis, we really should, instead of considering the correc-

tions made, make a comparison between the originally in-

tended implementation and the implementation actually

carried out. For this, however, we usually have neither

the means nor the base material.

Although the software engineering community has
suspected that this assumption is sometimes false, there exists
little evidence to help us understand under what circumstances
it is false. The consequences of this lack of understanding are
manifold. Let us provide several examples. For researchers
studying bug prediction [3] and bug localization [4], models of
how developers have fixed bugs in the past may not capture the
true cause of failures, but may instead only capture
workarounds. For practitioners, when a software engineer is
evaluated based on how many bugs are fixed, the evaluation
may not accurately affect that engineer’s effect on software
quality. For educators, without teaching future engineers the
contextual factors that go into deciding which fix to apply, as
engineers they may choose inappropriate fixes.

However, to our knowledge, there has been no empirical

research into how bugs fixes are designed. In this paper, we

seek to understand the design of bug fixes. When we say that

bug fixes are “designed,” we mean that there are a number of

potential fixes for a single bug, and choosing between those

fixes is a matter of human judgment. As with any software

change, an engineer must deal with a number of competing

forces when choosing exactly what change to make. The task

is not always straightforward. To fill this gap, we seek to an-

swer two research questions:

RQ1: What are the different ways that bugs can be fixed?

Figure 1: Characterizing the design of bug Fixes

RQ2: What factors influence which fix an engineer chooses?

This paper’s primary contribution: The first systematic

characterization of the design of bug fixes. It analyzes the de-

sign space of bug fixes and describes how developers navigate

that design space, to understand the decisions that go into

choosing a bug fix (see Figure 1).

II. RELATED WORK

Several researchers have investigated bug fixes. Perhaps the
most relevant is Leszak, Perry, and Stoll’s [5] study of the
causes of defects, where the authors classified bug reports by
‘real defect location’:

‘Real’ location characterizes the fact that… some defects

are not fixed by correcting the ‘real’ error-causing com-

ponent, but rather by a… ‘work-around’ somewhere else.

While the authors collected real defect locations, the data was
not analyzed or reported. Our work explains why one fix would
be selected over another; or in other words, why an engineer
would choose a workaround instead of a fix at a “real location.”

Ko and Chilana studied 100 contentious open-source bug re-
ports to investigate how engineers make decisions about bugs
[6]. While this paper did investigate “design dimensions” dur-
ing bug fixing, by “design” they meant the design of software
(for example, whether a fix makes the software more usable),
rather than “design” in the sense we mean it, which is the de-
sign of the fix itself. Our study also complements this study by
improving our understanding of the decision making process
when fixing bugs, specifically for commercial software and for
decisions that get made outside of the bug report itself.

Breu and colleagues observed in a study of 600 bug reports
that 25.3% of discussions in bug reports are spent on the cor-
rection itself, discussions involving suggestions, feedback re-
quests, and understanding files [7]. Our study complements this
work by exploring the design space of bug fixes.

Several other researchers have investigated the bug fixing. In
a manual inspection of bug fixes, Lucia and colleagues found
that some fixes are spread over many lines of code [4]. Bird
and colleagues found that bug fixes reported in bug databases
have different characteristics than fixes not reported in data-
bases [8]. Yin and colleagues investigated why bugs are fixed
incorrectly, that is, require a later bug fix to the source code
changed by the original fix [9]. Aranda and Venolia investigat-
ed 10 closed bugs and surveyed 110 engineers about bug coor-
dination patterns at Microsoft [10]. Spinellis and colleagues
attempted to correlate code metrics, such as number of bugs
fixed, to evaluate the quality of open source software [11]. Sto-
rey and colleagues investigated the interaction of bugs and
code annotations [12]. Anvik and colleagues investigated
which engineers get assigned to fix bugs [13]. In contrast to
these papers, our paper seeks to understand in what way bug
fixes differ, and why one fix is chosen over another.

III. METHODOLOGY

To answer our two research questions, we conducted a

mixed-method study. We used several research methods,

rather than a single one, both to study our research questions

in as broad a way as possible and to triangulate the answers to

improve their accuracy [14]. While we feel that our methods

are thorough and rigorous, some threats still exist as we

discuss in Section V. We now discuss our four research

methods: opportunistic interviews, firehouse interviews, triage

meeting observations, and surveying. For each method, we

discuss the goal of using that method, how we recruited

participants, the protocol we used, how we analyzed data, and

a brief summary of the shape of the data we collected.

A. Opportunistic Interviews

With our first method, we randomly asked engineers about a
recent bug they had been involved in fixing.

Goal. Our goal in performing opportunistic interviews was
to rapidly obtain qualitative answers to our research questions
in a way that was minimally obtrusive to interviewees.

Protocol. We conducted these interviews by having the first
author go to a building that housed a particular product group.
Armed with a list of office numbers for software engineers, the
interviewer walked to each engineer’s office. If the engineer’s
door was closed, was wearing headphones, or was talking to
someone else, the interviewer went to the next office. Other-
wise, the interviewer introduced himself, said that he was doing
a study, and asked if the interviewee had 10 to 15 minutes to
talk. If the engineer consented, the interviewer asked a series of
semi-structured questions [14] regarding the last bug that the
engineer was involved in fixing. Although interviewees were
not offered an incentive, before the interviewer left, interview-
ees were compensated with a $10 gift card for lunch.

We performed pilot interviews to identify potential prob-
lems and rectify them prior to the main study. In doing so, we
noticed that pilot interviewees could remember the fix they
made, but had difficulty recalling the alternative fixes they did
not make. Some pilot interviewees stated that they fixed the
bug the only way that it could have been fixed, even though
there clearly were other fixes, even from our perspective as
outsiders. We sought to reduce this ‘hindsight bias’ [15] in our
interviews using two different techniques. For every odd-
numbered interview (the first, the third, and so on), we gave the
interviewee an example of three bugs and multiple ways of
fixing each bug. For the other half of the interviewees, we pre-
sented a small program containing a simple bug, and then
asked the interviewee to talk us through how she might fix the
bug; interviewees typically mentioned several alternative fixes.
Comparing the results obtained after starting interviews with
these two methods, we noticed no qualitative differences in the
responses received, suggesting that both methods were about
equally effective. Comparing pilot interview results against real
interview results, we feel that this technique significantly
helped interviewees think broadly about the design space.

After this introductory exercise, the interviewer asked the in-
terviewee about the most recent bug that they fixed. The inter-
viewer asked about the software that the bug appeared in, the

symptoms, the causes, and whether they considered more than
one way to fix the bug. If an interviewee did consider multiple
fixes, we asked her to briefly explain each one, and justify their
final choice. The full interview guide can be found online.

1

Participants. To sample a wide variety of engineers, we re-
cruited interviewees using a stratified sampling technique,
sampling across several dimensions of the products that engi-
neers create. We first postulated what factors might influence
how engineers design fixes; we list those factors in Table I.

Factor Values

Domain Desktop, web application, enter-

prise/backend, embedded
Product Type Boxed, service
Bug fix types Pre-release, post-release
Number of ver-

sions shipped
0 to continuous release

Phase Planning and milestone quality, main de-

velopment, stabilization, and maintenance

Table I. Factors for selecting product groups.

Using these factors, we selected a cross section of Microsoft
products that spanned those factors. We chose four products
from which to recruit engineers, because we estimated that four
products would balance two competing requirements; that we
sample enough engineers from each product team to get a good
feeling for what bug fixing is like within that team, and to sam-
ple enough product teams that we could have reasonable gener-
alizability. The four product teams that we selected spanned
each of the values in the Table. For example, one team we
talked to worked on desktop software, one web applications,
another enterprise/backend, and the last embedded systems.

Within each product team, we aimed to talk to a total of 8
software engineers: six were what Microsoft calls “Software
Development Engineers” (developers for short) and two were
“Software Development Engineers in Test” (testers for short).
We interviewed more developers, as developers spend more
time fixing bugs than testers. Once we reached our quota of
engineers in a team, we moved on to the next product team. In
total, we completed 32 opportunistic interviews with engineers.

Data Analysis. We prepared the interviews for analysis by
transcribing them. We then coded the transcripts [16] using the
ATLAS.ti

2
 software. Before beginning coding, we defined sev-

eral base codes, including codes to identify symptoms, the fix
that was applied, alternative fixes, and reasons for discriminat-
ing between fixes. The first author did the coding. Additionally,
our research group, consisting of 7 full time researchers and 7
interns, analyzed the coded transcripts again, to determine if
any other notable themes emerged. Each person in the group
analyzed 2 to 4 transcripts over ½ hour. We regard the first

1
 http://people.engr.ncsu.edu/ermurph3/experiments/BugFixDesignInterview.pdf

2
 http://atlasti.com/

author’s coding as methodical and thorough, while the team’s
analysis was brief and serendipitous. We derived most of the
results described in this paper from the first author’s coding.
We use the codes about fixes to describe the design space (Sec-
tion IV.A) and codes about discriminating between fixes to
describe how engineers navigate that space (Section IV.B).

Data Characterization. Overall, we found software engi-
neers very willing to be interviewed. To obtain 32 interviews,
we visited 152 engineers’ offices. Most offices were empty or
the engineers appeared busy. In only a few cases, engineers
explicitly declined to be interviewed, largely because the engi-
neer was too busy. Interviews lasted between 4 and 30 minutes.
In this paper, we refer to participants as P1 through P32.

Most participants reported multiple possible fixes for the
bug that they discussed. In a few cases, participants were una-
ble to think of alternate solutions; however, the interviewer,
despite being unfamiliar with the bug, was able to suggest an
alternative fix. In these cases, the engineer agreed that the fix
was possible, but never consciously considered the alternative
fix, due to external project constraints.

Interestingly, this opportunistic methodology allowed us to
interview three engineers who were in the middle of consider-
ing multiple fixes for a bug.

B. Firehouse Interviews

Using the firehouse research method [17], we interviewed
engineers immediately after they fixed a bug. Firehouse re-
search is so called because of the unpredictable nature of the
events under study; if one wants to study social dynamics of
victims during and immediately after a fire, one has to literally
live in the firehouse, waiting for fires to occur. Alternatively,
one can purposefully set fires, although this research method-
ology is generally discouraged. In our case, we do not know
exactly when an engineer is considering a fix, but we can ob-
serve a just-completed fix in a bug tracker and “rush to the sce-
ne” so that the event is fresh in the engineer’s mind.

Goal. Our goal was to obtain qualitative answers to our re-
search questions in a way that maximized the probability that
engineers could accurately recall their bug fix design decisions.

Protocol. We first picked one product group at Microsoft,
went into the building where most development for that prod-
uct takes place, and monitored that group’s bug tracker, watch-
ing for bugs an engineer marked as “fixed” within the last ten
minutes. If the engineer was not located in the building, we
moved on to the next most recently closed bug. Otherwise, the
interviewer went immediately to the engineer’s office.

When approaching engineers for this study, we were slightly
more aggressive than in the opportunistic interviews; if the
engineer’s door was closed, we knocked on the door. If the
engineer was not in her office by the time we arrived, we wait-
ed a few minutes. These interviews were the same as the op-
portunistic interviews, except that the interviewer insisted that
he engineer focused on the bug that they had just closed.

Participants. Our options for choosing a product group to
study was fairly limited, because we had to have a personal
contact within that team that was willing to allow us to have
live, read-only access to their bug tracker. We chose one prod-

http://people.engr.ncsu.edu/ermurph3/experiments/BugFixDesignInterview.pdf
http://atlasti.com/

uct, which will remain anonymous; the product group was dif-
ferent from any of those chosen in the opportunistic interviews.

We aimed to talk to 8 software engineers in total for these
interviews. While we interviewed fewer people than with the
opportunistic interviews, these firehouse interviews tended to
take much longer to orchestrate, mostly because we had specif-
ic people that we wanted to talk to. In retrospect, we did not
notice any qualitative differences in engineers’ responses to the
two interview types, so for the remainder of the paper, we do
not distinguish between these two groups of participants. None-
theless, you may do so if you wish; participants of the firehouse
interviews are labeled P33 through P40.

Data Analysis. We analyzed data in the same way as with
the opportunistic interviews.

Data Characteristics. We also found engineers to be recep-
tive to being interviewed, although they were usually surprised
we asked about a bug they had just fixed. We reassured them
that we are from Microsoft Research, and are there to help.

In total, we went to 16 offices, and were able to interview 10
engineers. Two of these we mistakenly interviewed, one be-
cause his officemate actually closed the bug, and one because
the interviewer misread the bug report. We compensated these
engineers for their time, but we exclude them from analysis.

C. Triage Meetings

We hypothesized that not only do individual engineers
make decisions about the design of bug fixes, but perhaps that
bug fix designs happen during bug triage meetings as well.

Goal. Our goal was to obtain qualitative answers to our re-
search questions with respect to how engineers work together
to find good bug fix designs.

Protocol and Participants. We attended six bug triage
meetings across four product groups. Five of these groups were
the same groups that we did interviews with. To ensure engi-
neers were comfortable, we did not record these meetings; ra-
ther, we took notes and observed in silence.

Data Analysis and Data Characteristics. It became clear
that there was very little data we could gather in these triage
meetings, for two reasons. The first is that participants rarely
discussed how to fix a bug beyond whether to fix it and when
to do so. Second, when participants did discuss how to fix
bugs, the team was so tightly knit that very little explanation
was needed; this terseness made bug fix decisions basically
impossible for us to understand without the context that the
team members had. As a result, we were able to glean few in-
sights from the meetings. For the few observations that we
could make, we label these meetings as T1 to T6. Because
there was little usable data from these meetings, we did not
perform any data analysis beyond reading through our notes.

D. Survey

Goal. Our goal was to quantify our observations made dur-
ing the interviews and triage meetings.

Protocol. After we performed the interviews and triage
meetings, we sent a survey to software engineers at Microsoft.
As in the interviews, the survey started by giving examples of

bugs that could be fixed using different techniques, where the
examples were drawn from real bugs described by interview-
ees. As suggested by Kitchenham and Pfleeger [17], we con-
structed the survey to use formal notations and limit responses
to multiple-choice, Likert scales, and short, free-form answers.

At the beginning of the survey, we suggested that the re-
spondent browse bugs that they had recently closed to ground
their answers. In Section IV, we discuss these questions, inter-
mixed with engineers’ responses. After piloting the survey, we
estimate that it took respondents about 15-20 minutes to fill out
the survey. The full text of this survey can be found online.

3

Participants. We sent the survey to 2000 participants by
selecting employees of Microsoft who had “development” in
their job title, and were not interns or contractors. This fol-
lowed Kitchenham and Pfleeger’s advice to understand wheth-
er respondents had enough knowledge to answer the questions
appropriately [17]. We incentivized participation by giving $50
Amazon.com gift certificates to two respondents at random.

Data Analysis. We analyzed our data with descriptive sta-
tistics (for example, the median), where appropriate. We did
not perform inferential statistics (for example, the t-test) be-
cause our research questions do not necessitate them. When
reporting survey data, we omit “Not Applicable” question re-
sponses, so percentages may not add up to 100%.

Data Characteristics. 324 engineers completed the survey,
a response rate of about 16%, within the range of other soft-
ware engineering surveys [18]. Respondents were from all
eight divisions of Microsoft. Respondents reported between
0.08 and 39 years of experience in the software industry (medi-
an=9.5), with a median of 5 years of experience at Microsoft.
65% reported being developers, while 34% reported being test-
ers. One respondent reported being a product manager.

IV. RESULTS

We next characterize the design options that engineers have
when selecting a bug fix (Section IV.A), and then describe how
engineers choose which fix to implement (Section IV.B).

A. Description of the Design Space

In our interviews, we asked participants to estimate what
percentage of their bugs for which there were multiple possible
solutions. The median was 52%, with a wide range of variance,
with individual responses ranging from 0% to 100%. This sug-
gests that many bugs can be fixed in multiple ways, although
this number should be interpreted as a rough estimate.

With respect to the dimensions of the design space, we ob-
tained answers to this research question by asking interviewees
to explain the different fixes that they considered when fixing a
single bug. In bold below, we present several dimensions on
which bugs may be fixed, a description of each dimension, and
an example from our interviews. Note that a single fix can be
considered a point in this design space; for example, a fix may
have low error surfacing and high refactoring, and simulta-

3
 http://people.engr.ncsu.edu/ermurph3/experiments/BugFixDesignSurvey.pdf

http://people.engr.ncsu.edu/ermurph3/experiments/BugFixDesignSurvey.pdf

neously be placed in the other dimensions. These dimensions
are not intended to be exhaustive, yet we believe that the num-
ber of interviews we performed suggests that the list represents
a solid foundation on which to build a theory of bug fix design.

Data Propagation Across Components. This dimension

captures how far information is allowed to propagate across a

piece of software, where the engineer has the option of fixing

the bug by intercepting the data in any of the components. At

one end of the dimension, data is corrected at its source.

As an example, P25 worked on software with a layered ar-
chitecture, with at least four layers, the top-most being the user
interface. The bug was that the user interface was reporting
disk space sizes far too large, and the engineer found that the
problem could be traced back to the lowest-level layer, which
was reporting values in kilobytes when the user interface was
expecting values in megabytes. The interviewee had the option
of fixing the bug by correcting the calculation in the lowest
layer, or by transforming the data (multiplying by a thousand)
as it is passed through any of the intermediate layers.

Error Surfacing. This dimension describes how much

information is revealed to users, whether that information is

for end users or other engineers. At one end of the dimension,

the user is made aware of detailed error information; at the

other, the existence of an error is not revealed.

P28 described a bug where the software he was developing
crashed when the user deleted a file. When fixing the bug, the
engineer decided to catch the exception to prevent the crash,
but also was considering whether or not the user should be no-
tified that an exceptional situation had occurred.

As another example, P6 described a bug where she was
calling an API that returned an empty collection, where she
expected a non-empty collection. The problem was that she
passed an incorrect argument to the API, and the empty collec-
tion signified an error. However, an empty collection could
also signify “no results.” As part of the fix, the engineer con-
sidered changing the API so that it threw an error when an un-
expected argument was passed to the API. She anticipated that
this would have helped future engineers avoid similar bugs.

Behavioral Alternatives. This dimension relates to whether a

fix is perceptible to the user. At one one end of the dimension,

the fix does not require the user to do anything differently; at

the other end, she must significantly modify her behavior.

One example is P11, who described a bug where the back

button in a mobile application was occasionally not working.

As part of the fix, he made the back button work, but had to

simultaneously disable another feature when the application

first loads. P11 stated that having both the back button and the

other feature working at the same time was simply not possi-

ble; he had to choose which one should be enabled initially.

Functionality Removal. This dimension relates to how much

of a feature is removed during a bug fix. At one end of the

dimension, the whole software product is eliminated; at the

other, no code is removed at all.

As an example, P18 described a bug in which a crash oc-

curred. Rather than fixing the bug, P18 considered removing

the feature that the bug was in altogether. We were initially

quite surprised when we heard this story, because the notion

that an engineer would remove a feature just to fix a bug

seems quite extreme. However, removal of features was men-

tioned repeatedly as a fix for bugs during our interviews.

To quantify functionality removal, we asked survey re-

spondents to estimate how often they remove or disable fea-

tures, rather than alleviating a symptom of a bug. About 75%

of respondents said they had removed features from their

software to fix bugs in the past.

Refactoring. This dimension expresses the degree to which

code is restructured in the process of fixing a bug, while

preserving its behavior. A bug may be fixed with a simple

one-line change, or it may entail significant code restructuring.

As an example, P5 considered refactoring to remove some

copy-and-paste duplication, so “you're not only fixing the bug,

but you also are kind of improv[ing it].”

In our survey, we asked respondents to report on refactor-

ing frequency when fixing bugs, as shown in Table II. In the

table, “Should be refactored” indicates how often participants

“notice code that should be refactored when fixing bugs.” For

example, 29% of respondents indicated that they usually no-

tice code that should be refactored. The “Is refactored” row

indicates how often participants “refactor this code that should

be refactored”. For example, 26% reported rarely refactoring

code that should be refactored. These results suggest that, alt-

hough engineers appear to regularly encounter code that

should be refactored, much of this code remains unchanged.

Internal vs External. This dimension relates to how much

internal code is changed versus external code is changed as

part of a fix. On one end of this dimension, the engineer makes

all of her changes to internal code, that is code for which the

engineer has a strong sense of ownership. On the other end,

the bug is fixed by changing only code that is external, that is,

code for which the engineer has no ownership.

One example is P33, who maintained a testing framework

for devices used by several other teams. The bug was that

many devices were not reporting data in a preferred manner,

causing undesirable behavior in the P33’s framework. Part of

the fix was immediate and internal (changing the testing

framework), but part of it was deferred and external (changing

each of the other teams’ device code).

N
ev

er

R
ar

el
y

So
m

et
im

e
s

U
su

al
ly

A
lw

ay
s

Should be refactored 1% 7% 56% 29% 5%

Is refactored 4% 26% 44% 21% 3%

Table II. Survey respondents’ refactoring behavior

Accuracy. This dimension captures the degree to which a fix

utilizes accurate information. One one end of this dimension,

the engineer uses highly accurate information, and on the

other, he uses heuristics or guesses.

An example is P29, who was working on a bug where

web browser printing was not working well. An accurate fix

would be one where his print driver retrieves the available

fonts from the printer, then modifies the browser’s output

based on the available fonts. A less accurate fix was to use a

heuristic that produces better, but not optimal, print output.

Hardcoding. This dimension captures to what degree a fix

hardcodes data. On one end of the dimension, data is specified

explicitly, and on the other, data is generated dynamically.

One example of fixes on this dimension is P24, who was

writing a test harness for a system that received database que-

ries. The bug was that some queries that his harness was gen-

erating were malformed. He considered a completely hardcod-

ed solution to the problem, removing the query generator and

using a fixed set of queries instead. A more dynamic solution

he considered was to modify the generator itself to either filter

out malformed queries, or not to generate them at all.

B. Navigating the Design Space

While the previous section described the design space of
bug fixes, it said nothing about why engineers implement par-
ticular fixes within that design space. For instance, when would
an engineer refactor while fixing a bug, and when would she
avoid refactoring? In an ideal world, we would like to think
that engineers make decisions based completely on technical
factors, but realistically, a variety of external factors come into
play as engineers navigate this bug fixing design space. In this
section, we describe those external factors.

Risk Management by Development Phase. A common way
that interviewees said that they choose how to design a bug fix
is by considering the development phase of the project. Specif-
ically, participants noted that as software approaches release,
their changes become more conservative. Conversely, partici-
pants reported taking more risks in earlier phases, so that if a
risk materializes, they would have a longer period to compen-
sate. Two commonly mentioned risks were the risk that new
bugs would be introduced and the risk that spending significant
time fixing one bug comes at the expense of fixing other bugs.

P12 provided an example of taking a more conservative
approach, when he had to fix a bug by either fixing an existing
implementation of the double checked locking pattern, or re-
place the pattern with a simpler synchronization mechanism.
He eventually chose to correct the pattern, even though he
thought the use of the pattern was questionable, because it was
the “least disruptive” way to fix the bug. He noted that if he
had fixed the bug at the beginning of the development cycle, he
would have removed the pattern altogether.

In our survey, we asked engineers several questions relat-
ing to risk and development phase, as shown in Table IIIA.
Here we asked engineers “How often do the following factors
influence which fix you choose?”, where each factor is listed at
left. The table lists the percentage of respondents who choose
that frequency level. Note that the factors are not necessarily
linked; for instance, an engineer could choose to change very
few lines of code for a reason other than the product is late in
development. However, our qualitative interviews suggested
that these factors are typically linked together, and thus we feel
justified in presenting these four factors as a whole. These re-
sults suggest that, for most respondents, risk mitigation usually
plays an important role in choosing how to fix a bug.

N
ev

er

R
ar

el
y

So
m

et
im

e
s

U
su

al
ly

A
lw

ay
s

Optimal fix should
be reconsidered 1% 17% 38% 29% 14%

Actually are fixed
optimally 4% 40% 38% 13% 1%

Table IV. Survey respondents’ optimal fix

N
ev

er

R
ar

el
y

So
m

et
im

e
s

U
su

al
ly

A
lw

ay
s

(A)

Phase of the
release cycle

2% 6% 17% 35% 37%

Changes few
lines of code

3% 10% 32% 38% 17%

Requires little
testing effort

3% 12% 31% 37% 16%

Takes little
time to im-

plement
3% 10% 43% 30% 13%

(B)

Doesn't
change inter-

faces or break
backwards

compatibility

0% 2% 8% 36% 53%

(C)

Maintains the
integrity of
the original

design

1% 5% 16% 50% 28%

(D)

Frequency in
practice

2% 17% 39% 33% 8%

Table III. Factors that influence engineers’ bug fix design

One of the findings that emerged from our interviews is
that if engineers are frequently making conservative changes,
then they may be incurring technical debt. As P15 put it,

I wish to do it better, but I'm doing it this way because

blah, blah, blah. But then I don't know if we ever go back

and kind of “Oh, okay, we had to do this, now we can

change it.” And I feel that code never goes away, right?

We verified this statement by asking survey respondents how

often they think bugs that are initially fixed “suboptimally”

should be reconsidered for a more optimal fix in the future.

We asked how many of these bugs actually are fixed optimally

after the initial fix. Table IV displays the results. These results

suggest that engineers often feel that optimal fixes should be

reconsidered in the future, but that those bugs rarely get fixed

optimally. As one respondent noted, “although we talk about

the correct fix in the next version, it never happens.”

Interface Breakage. Another factor that participants said in-
fluenced their bug fixes is to what degree a fix breaks existing
interfaces. If a fix breaks an interface that is used by external
clients, then an engineer may be less inclined to implement that
fix because it entails changes in those external clients.

One example comes from P16, who was working on a bug re-
lated to playing music and voice over Bluetooth devices. He
said that a better fix for the problem would be to change the
Bluetooth standard, but too many clients already depend on it.

We also asked survey respondents how often the following
factor influences which fix they choose: “Doesn’t change ex-
ternal interfaces or breaks backwards compatibility.” 72% re-
ported that “usually” or “always,” suggesting that changing
external interfaces is a significant determinant in choosing
which bug fix to implement (Table IIIB).

Consistency. This factor describes to what degree a fix will be
consistent with the existing software or existing practices. A fix
that is not consistent with the existing code may compromise
the design integrity of that code, leading to code rot.

One example is P10, who fixed a performance bug in his
build system. P10 fixed the bug by using the build system in a
way consistent with how it was being used by other teams.
However, he felt that a change that was inconsistent with the
way the build system currently worked would have produced
better build performance, at least for his product. Table IIIC
lists survey respondents’ attitudes towards the importance of
maintaining design consistency when fixing bugs.

User Behavior. This factor describes the effect of how users of
the software behave on the fix. If users have strong opinions
about the software, or use a certain part of the software heavily,
engineers may choose a fix that suits the user better.

One example is from T1, where the team discussed bugs in
a code analysis tool. The team wondered how often a certain
code pattern was used in practice. They acknowledged that
their analysis did not work when the pattern was used, but how
they fixed the bug depended on how often users actually wrote
code in that pattern. They judged, apparently based either on
intuition or experience, that several of these bugs were so un-

likely to arise in practice that the effort to implement a com-
prehensive fix for the problem was not justified.

After hearing about T1 and some interviewees talk about
frequency of user behavior, we became interested in how engi-
neers know what users actually do. Thus, we asked two ques-
tions in the survey. In the first we asked how often fixes de-
pended on usage frequency (Table IIID). These results suggest
that how frequently a situation occurs in practice sometimes
influences how engineers design fixes. The second question
was a multiple-choice question about how engineers most often
determine frequency (Table V). In this table, SQM refers to a
usage data collector used in a variety of Microsoft products.
The most common “None of the Above” answer was asking the
product manager. In Table V, we were somewhat surprised to
find that so many engineers write queries over usage data.
However, it still appears that many engineers use ad-hoc meth-
ods for estimating user behavior, including convenience sam-
pling, estimation, and guessing.

Cause Understanding. This factor describes how thoroughly
an engineer understands why a particular bug occurs. In inter-
views, we were surprised how often engineers fixed bugs with-
out understanding why those bugs occurred. Without thorough-
ly understanding a bug, the bug may re-appear at some point in
the future. On the other hand, complete understanding of why a
bug is occurring can be an extremely time-intensive task.

P3 provided an example of fixing a bug without a full un-
derstanding of the problem. The symptom of his bug was that
occasionally an error message appeared to the user whenever
his software submitted a particular job. Rather than understand-
ing why the error was occurring, he fixed the job by simply
resubmitting the job, which usually completed without error.
Rather than understanding the problem, as he explained it, “my
time is better spent fixing the other ten bugs that I had.”

We asked survey respondents why they do not always
make an optimal fix for a bug; 18% indicated that they have not
had “time to figure out why the bug occurred.” This suggests
that lack of cause understanding is sometimes a problem.

Guess 4%

Estimate based on my past experience as a user
of the software I develop

17%

Estimate based on my past experience interact-
ing with users

16%

Collect data by taking a quick convenience sam-
ple (e.g., ask devs on my team)

19%

Collect data by external polling (e.g., ask readers
of my blog)

2%

Estimate based on existing usage data that I
remember seeing in the past (e.g. SQM)

11%

Write a query over existing usage data (e.g.
SQM)

18%

None of the Above 12%

Table V. The most frequent mechanisms used by engineers to

determine usage frequencies

Social Factors. A variety of social factors appear to play a role
in how bugs are fixed, including mandates from supervisors,
ability to find knowledgeable people, and code ownership.

One example of this was P22, who was fixing a bug in a
database system where records were not sorting in memory,
causing reduced performance. The engineer proposed a fix
based on “one week of discussions and bringing new ideas,
[and] discussing [it with my] manager.” Other interviewees
discussed their bugs with mentors (P28), peer engineers (P28),
testers (P39), and development leads (P34).

In the survey we asked how communication with people
helps inform the bug fixe design (Table VI). The results sug-
gest that peer software development engineers (SDEs) and the
people who originally wrote the code related to where the fix
might be applied tend to play the most important role in decid-
ing how a bug gets fixed. We also asked survey participants
about who decides on which bug fix design to implement. Most
participants said they themselves usually decide, while others
said it was sometimes a group decision. Only 6% said their
manager usually or always decides.

We also asked survey respondents how they communicate
with others about bug design. Respondents indicated that they
most often communicate by email (44%), in unplanned meet-
ings (38%), planned meetings (7%), and in the bug report itself
(6%). A few respondents also indicated that they discussed
design during online code review and with instant messaging.
However, in a study run in parallel with this one, we inspected
200 online code review threads at Microsoft, but found no sub-
stantial discussions of bug fix design [19]. We postulate that,
by the time a fix is reviewed, engineers have already discussed
and agreed upon the basic design of that fix.

We asked survey respondents how many people, including
themselves, were typically involved in the bug fixing process.
Table VII shows the results. These results suggest that while
finding the cause of a bug and implementing a solution are
generally 1- or 2-person activities, choosing a solution tends
more often to be a collaborative activity.

One of the more surprising things we heard from some in-
terviewees was that when they made sub-optimal changes, they
were sometimes hesitant to file new bug reports so that the
optimal changes were reconsidered in the future. The rationale
for not doing so seemed to be at least partly social – respond-
ents were not sure whether other engineers would find a more
optimal fix useful to them as well. For instance, P2 said the
optimal fix to his bug would be a change to the way mobile
applications are built in the build system, but he wasn’t sure
that he would advocate for this change unless other teams
would find it useful as well. Ideally, this is what “feature en-
hancement” bug reports with engineer voting should help with.
However, P2 didn’t fill out a bug report for this enhancement at
all, because he judged the time he spent filling out the report
would be wasted if other engineers didn’t need it. As he put it,

If I had more data… that other teams did it,… if I could …

eyeball it quickly… then I'd [say], “Hey, you know, other

teams are doing this. Clearly, it's a [useful] scenario.”

This led us to become curious why engineers avoid filing
bug reports, so we asked survey respondents to estimate the
frequency of several possible rationales that we heard about
during the interviews (Table VIII). These results suggest that
survey respondents rarely avoid filing bugs for reasons that the
interviewees discussed. We view these somewhat contradictory
findings as inconclusive; more study, likely using a different
study methodology, is necessary to better understand how often
and why engineers do not file bug reports.

V. LIMITATIONS

Although our study provides a unique look at how engi-
neers fix bugs, several limitations of our study must be consid-
ered when interpreting our results.

An important limitation is that of generalizability beyond
the population we studied (external validity). While our results
may represent the practices and attitudes at Microsoft, it seems
unlikely that they are completely representative of software
development practices and attitudes in general. However, be-
cause Microsoft makes a wide variety of software products,
uses many of development methods, and employs an interna-
tional workforce, we believe that our random and stratified
sampling techniques improved generalizability significantly.

Giving interviewees’ and survey respondents’ example
bugs and multiple-fix examples may have biased participants
towards providing answers that aligned with those examples, a
form of expectancy bias (internal validity). However, we
judged the threat of participants unable to recall implicit or

N
ev

er

R
ar

el
y

So
m

et
im

e
s

U
su

al
ly

A
lw

ay
s

Peer SDEs 1% 4% 27% 47% 17%

Peer SDETs 4% 15% 37% 30% 8%

My manager 9% 25% 40% 20% 3%

My product manager 22% 30% 29% 9% 1%

The people who
wrote the code 2% 10% 36% 40% 9%

Other experts
(e.g., architects) 9% 30% 32% 10% 3%

Table VI. Who is helpful to communicate with when choosing

an optimal fix

1 2 3 to 5 6 to 10 11+

finding the
cause of a bug 49% 38% 11% 0% 0%

choosing a
solution 24% 43% 31% 1% 0%

implementing
the solution 77% 16% 5% 0% 0%

Table VII. How many people are involved in bug fixing activities

explicit design decisions outweighed this threat. Future re-
searchers may be able to confirm or refute our results by using
a research method that is more robust to expectancy bias.

Still, some interviewees struggled with remembering the
design decisions they made, and were generally unable to artic-
ulate implicit decisions. This type of memory bias is inherent in
most retrospective research methods. However, we attempted
to control memory bias by asking opportunistic interviewees to
recall their most recently fixed bugs, asking firehouse inter-
viewees to discuss a bug they just fixed, and asking survey
respondents to look at bugs they had recently fixed.

To meet our goal of not significantly interrupting partici-
pants’ workdays, we kept our interview and survey short,
which means we were unable to collect contextual information
that may have helped us better explain the results. For example,
in the interviews, we did not ask questions about the gender or
team structure, which may have some effect on bug fix designs.

Similarly, a consequence of keeping the survey short is
that participants may have misunderstood our questions. For
example, in our survey, we asked engineers whether they ever
avoided filing a bug report; this question could be interpreted
conservatively to mean, “when do you not report software fail-
ures?”, when our intent was for “bug reports” to be interpreted
broadly to include enhancements. While we tried to minimize
this threat by piloting our survey, as with all surveys [14], we
may still have miscommunicated with our respondents.

VI. IMPLICATIONS

The findings we present in this paper have several implica-
tions, a handful of which we discuss in this section.

Additional Factors in Bug Prediction and Localization.
Previous research has investigated several approaches to pre-
dicting future bugs based previous bugs [20] [21], including
our own [3]. The intuition behind these approaches appears
reasonable: how engineers have fixed bugs in the past is a good
predictor of how they should fix bugs in the future. However,
the empirical results we present in this paper suggest a host of
factors can cause a bug to be fixed in one way at one point in
time, but in a completely different way at another. For exam-
ple, a bug fixed just before release is likely to be fixed differ-

ently than a bug fixed during the planning phase. As a result,
future research in prediction and localization may find it useful
to incorporate, when possible, these factors into their models.

Limits of Bug Prediction and Localization. Although in-
corporating some factors, such as development phase, into his-
torical bug prediction may improve the accuracy of these mod-
els, some factors appear practically outside the reach of what
automated predictors can consider. For example, when analyz-
ing past bugs, it seems unlikely that an automated predictor can
know whether or not a past fix was made with an engineer’s
full knowledge of why the bug occurred.

Refactoring while Fixing Bugs. The results of our study
suggest that engineers frequently see code that should be refac-
tored, yet still avoid refactoring. One way that this problem
could be alleviated is through wider spread use of refactoring
tools, which should help engineers refactor without spending
excessive time doing so and at minimal risk of introducing new
bugs. At the same time, such tools remain buggy [22] and diffi-
cult to use [23], so more research in that area is necessary.

Usage Analytics. In our study, it appeared that engineers
often made decisions about how to fix bugs without a data-
driven understanding of how real users use their software.
While a better understanding would clearly be beneficial, gath-
ering and querying that data appears to be time consuming.
Microsoft, like many companies, has been gathering software
usage data for some time, but querying that data requires engi-
neers to be able to find and combine the right data sources, and
write complex SQL queries. We envision a future where engi-
neers, while deciding the design of a bug fix, can quickly query
existing usage data with an easy-to-use tool. To build such a
tool, research is first needed to discover what kinds of ques-
tions engineers ask about their usage data, beyond existing
“questions engineers ask” studies [24].

Fix Reconsideration. Engineers in our study reported
needing to reconsider bug fixes in the future, but sometimes
used ad-hoc mechanisms for doing so, such as writing TODOs
in code. Some of these mechanisms may be difficult to keep
track of; for example, which TODOs should be considered
sooner rather than later. Engineers need a better mechanism to
reconsider fixes in the future, as well the time to do so.

N
ev

er

R
ar

el
y

So
m

et
im

e
s

U
su

al
ly

A
lw

ay
s

The bug is unlikely to ever be fixed 30% 31% 30% 7% 1%

Whether or not the bug gets fixed has little impact on the software I’m developing 41% 26% 25% 4% 1%

I don’t know where to file the bug or who to report it to 52% 27% 13% 6% 0%

Filing this bug dilutes the urgency of bugs I think are more important to fix 61% 20% 13% 3% 1%

A bug puts pressure on a colleague to fix the problem; I don’t want to add to his or her
workload 72% 16% 8% 1% 0%

Adding another report makes it look like the software is of poor quality or that the team is
behind 80% 12% 5% 1% 0%

Table VIII. Frequency of reasons for not filing bugs

VII. CONCLUSION

In this paper, we have described a study that combined op-
portunistic interviews, firehouse interviews, meeting observa-
tion, and a survey. Our results describe a multi-dimensional
design space for bug fixes, a space that engineers navigate by,
for example, selecting a fix that is least disruptive whenever a
release looms near. While our study has not investigated a new
practice, we have taken the critical first step towards under-
standing a practice that engineers have always engaged in, an
understanding that will enable researchers, practitioners, and
educators to better understand and improve bug fixes.

ACKNOWLEDGMENT

Emerson Murphy-Hill was a Visiting Researcher and Mi-
crosoft when this work was carried out. Thanks to all partici-
pants in our study, as well as Alberto Bacchelli, Andy Begel,
Nicolas Bettenburg, Rob DeLine, Jeff Huang, Ekrem Koca-
guneli, Tamara Lopez, Patrick Morrison, Shawn Phillips, Juli-
ana Saraiva, and Jonathan Silitto.

VIII. BIBLIOGRAPHY

[1] Andreas Zeller, "Causes and Effects in Computer

Programs," in Fifth Intl. Workshop on Automated and

Algorithmic Debugging, Sept. 2003.

[2] Albert Endes, "An analysis of errors and their causes in

system programs," in International Conference on

Reliable Software, 1975, pp. 327-336.

[3] Sunghun Kim, Thomas Zimmermann, Whitehead, James

Jr., and Andreas Zeller, "Predicting Faults from Cached

History," in Proceedings of ICSE, 2007, pp. 489--498.

[4] Lucia, F. Thung, D. Lo, and Lingxiao Jiang, "Are faults

localizable?," in Working Conference on Mining Software

Repositories, june 2012, pp. 74 -77.

[5] M. Leszak, D.E. Perry, and D. Stoll, "A case study in root

cause defect analysis," in Proceedings of ICSE, 2000, pp.

428 -437.

[6] Andrew J. Ko and Parmit K. Chilana, "Design,

discussion, and dissent in open bug reports," in

Proceedings of iConference, 2011, pp. 106--113.

[7] Silvia Breu, Rahul Premraj, Jonathan Sillito, and Thomas

Zimmermann, "Information needs in bug reports:

improving cooperation between developers and users," in

Proceedings of the Conference on Computer Supported

Cooperative Work, 2010, pp. 301-310.

[8] Christian Bird et al., "Fair and balanced?: bias in bug-fix

datasets," in Proceedings of ESEC/FSE, 2009, pp. 121--

130.

[9] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar

Pasupathy, and Lakshmi Bairavasundaram, "How do

fixes become bugs?," in Proceedings of FSE, 2011, pp.

26--36.

[10] Jorge Aranda and Gina Venolia, "The secret life of bugs:

Going past the errors and omissions in software

repositories," in Proceedings of ICSE, 2009, pp. 298--

308.

[11] Diomidis Spinellis et al., "Evaluating the Quality of Open

Source Software," Electronic Notes on Theoretical

Computer Science, vol. 233, pp. 5--28, Mar. 2009.

[12] M.A. Storey, J. Ryall, R.I. Bull, D. Myers, and J. Singer,

"TODO or to bug," in Proceedings of ICSE, may 2008,

pp. 251--260.

[13] John Anvik, Lyndon Hiew, and Gail C. Murphy, "Who

should fix this bug?," in Proceedings of ICSE, 2006, pp.

361--370.

[14] Forrest Shull, Janice Singer, and Dag I.K. Sjoberg, Guide

to Advanced Empirical Software Engineering.: Springer-

Verlag New York, Inc., 2007.

[15] Baruch Fischhoff and Ruth Beyth, "'I knew it would

happen': Remembered probabilities of once-future

things.," Organizational Behavior & Human

Performance, vol. 13, pp. 1--16, Feb. 1975.

[16] C.B. Seaman, "Qualitative methods in empirical studies

of software engineering," IEEE Transactions on Software

Engineering, vol. 25, pp. 557 -572, jul/aug 1999.

[17] Everett M. Rogers, Diffusion of Innovations, 5th Edition,

5th ed.: Free Press, aug 2003.

[18] T. Punter, M. Ciolkowski, B. Freimut, and I. John,

"Conducting on-line surveys in software engineering," in

Proceedings of Empirical Software Engineering, sept.-1

oct. 2003, pp. 80 - 88.

[19] Alberto Bacchelli and Christian Bird, "Expectations,

Outcomes, and Challenges of Modern Code Review,"

Microsoft Research, MSR-TR-2012-85 2012.

[20] T.J. Ostrand, E.J. Weyuker, and R.M. Bell, "Predicting

the location and number of faults in large software

systems," IEEE Transactions on Software Engineering,

vol. 31, pp. 340--355, Apr. 2005.

[21] Ahmed E. Hassan and Richard C. Holt, "The Top Ten

List: Dynamic Fault Prediction," in Proceedings of the

International Conference on Software Maintenance,

2005, pp. 263--272.

[22] G. Soares, R. Gheyi, and T. Massoni, "Automated

Behavioral Testing of Refactoring Engines," IEEE

Transactions on Software Engineering, 2012.

[23] Emerson Murphy-Hill, Chris Parnin, and Andrew P.

Black, "How we refactor, and how we know it," in

Proceedings of ICSE, 2009, pp. 287--297.

[24] Thomas Fritz and Gail C. Murphy, "Using information

fragments to answer the questions developers ask," in

Proceedings of ICSE, 2010, pp. 175--184.

