
Characteristics of Useful Code Reviews:
An Empirical Study at Microsoft

Amiangshu Bosu∗, Michaela Greiler†, and Christian Bird†
∗Department of Computer Science

University of Alabama, Tuscaloosa, Alabama
Email: asbosu@ua.edu

†Microsoft Research, Redmond, WA USA
Email: {mgreiler, cbird}@microsoft.com

Abstract—Over the past decade, both open source and com-
mercial software projects have adopted contemporary peer code
review practices as a quality control mechanism. Prior research
has shown that developers spend a large amount of time and
effort performing code reviews. Therefore, identifying factors that
lead to useful code reviews can benefit projects by increasing
code review effectiveness and quality. In a three-stage mixed
research study, we qualitatively investigated what aspects of
code reviews make them useful to developers, used our findings
to build and verify a classification model that can distinguish
between useful and not useful code review feedback, and finally
we used this classifier to classify review comments enabling us
to empirically investigate factors that lead to more effective code
review feedback.

In total, we analyzed 1.5 millions review comments from five
Microsoft projects and uncovered many factors that affect the
usefulness of review feedback. For example, we found that the
proportion of useful comments made by a reviewer increases
dramatically in the first year that he or she is at Microsoft but
tends to plateau afterwards. In contrast, we found that the more
files that are in a change, the lower the proportion of comments
in the code review that will be of value to the author of the
change. Based on our findings, we provide recommendations for
practitioners to improve effectiveness of code reviews.

I. INTRODUCTION

In recent years, many open source software (OSS) and
commercial projects have adopted peer code review [1], the
process of analyzing code written by another developer on
the project to judge whether it is of sufficient quality to
be integrated into the main project codebase. The formal
variant of peer code review, which is better known as software
inspection or Fagan-inspection [2], has been an effective quality
improvement practice for a long time [3]. Even with the benefits
offered by software inspections, their relatively high cost and
formal requirements have reduced the prevalence with which
software teams adopt them [4], [5]. On the other hand, projects
have recently adopted lightweight, informal, and tool-based
code review practices, which researchers have termed modern
or contemporary code review [6].

This modern code review has shown increasing adoption
both in industrial and open source contexts [7], [8], [9] For
example, in January of 2015, more than 50,000 Microsoft em-
ployees practiced tool-based code review. A recent survey [10]
found that on average developers spend about six hours per
week preparing code for review or reviewing others’ code.
Therefore increasing the effectiveness of code review practices
is beneficial for ensuring developers’ time (both the author

and the reviewer) is spent wisely. The main building blocks
of code reviews are comments that reviewers add as feedback
and suggestions for change that the code review author can
address. The usefulness of those comments highly influence
the effectiveness of the code review practices. Comments that
point out bugs, suggest improved ways of solving problems,
or point out violations of team practices can help the author
submit a higher quality change to the codebase, improve the
author’s development skills, or both. Other comments may
contain incorrect information or may ask questions that are not
relevant and require the author’s time to respond to without
improving the code.

As the primary goal of code review is to ensure that a
change is free from defects, follows team conventions, solves
a problem in a reasonable way, and is of high quality [6], we
consider review feedback useful if it is judged useful by author
of the change to enable him or her to meet these goals. We
have observed that one of the top requests from teams using
code review in their development process is a way to track
the effectiveness of code review feedback and identify what
they can do to improve effectiveness. As one team manager
indicated, he’d like to know “was this an impactful review, a
useful comment on the review? You know, not just a comment,
but did it result in a change that wouldn’t have been there
before.” The primary purpose of this paper is to address both
challenges. Our objective is to identify the factors that impact
the usefulness of code reviews, and to derive recommendations
for effectiveness improvements.

To achieve this goal, we conducted a three-stage empirical
study of code review usefulness at Microsoft. In the first stage,
we conducted an exploratory study in which we interviewed
developers to understand their perception of what “useful”
means in the context of code review feedback. In the second
stage, we used our findings from the first stage to build and
verify an automated classifier able to distinguish between
useful and not useful review comments. Finally, we applied
the classifier to ∼1.5 million code review comments from
five Microsoft projects, distinguishing comments that were
useful from those that were not. Using this large-scale dataset,
we quantitatively investigated factors that are associated with
useful review comments.

The primary contributions of this study are:
• An exploratory qualitative analysis of authors’ perceptions

on useful code review comments.

• An empirically validated automatic model for classifying
the usefulness of review comments.

• An empirical study of factors influencing review comment
usefulness.

• A set of implications and recommendations for teams
using code review to achieve a high rate of useful
comments during review.

In this paper we start (Section II) by providing a brief
overview of the code review process at Microsoft. We then
(Section III) introduce the research questions that drive the
three stages of our study. Section IV, V, and VI describes the
methodology and results for the three stages. We then address
the threats to the validity of our findings (Section VII), discuss
the implications of the results (Section VIII), and position our
work relative to prior studies on code review (Section IX).

II. CODE REVIEW AT MICROSOFT

Most Microsoft developers practice code review using
CodeFlow, an internal tool for reviewing code, which is under
active development and regularly used by more than 50,000
developers. CodeFlow is a collaborative code review tool
similar to other popular review tools such as Gerrit [11],
Phabricator [12], and ReviewBoard [13].

The single desktop view of CodeFlow (shown in Figure 1)
features several panes to display important information about
the code review. Such information includes the list the files
involved in the change (A), the reviewers and their status (B),
diff-highlighted content of the file currently selected by the
user (C), a summary of all the comments made during the
review (D), and tabs for the individual iterations (explained
below) of the review (E). Bacchelli and Bird provide a more
detailed description of CodeFlow [6].

The workflow in CodeFlow is relatively straightforward. An
author submits a change for review and reviewers are notified
via email and can examine the change in the tool. If they
would like to provide feedback, they highlight a portion of
the code and type a comment which is then overlayed in the
user interface with a line to the highlighted code as shown in
Figure 1-F and seen by all involved in the review. For example,
the comment shown is for the highlighted portions of line 66.
These comments can start threads of discussion and are the
interaction points for the people involved in the review. Each
such thread has a status that participants can modify over the
course of the review. The status is initially ‘Active’, but can be
changed to ‘Pending’, ‘Resolved’, ‘Won’t Fix’, and ‘Closed’
by anyone. There is no proscribed universal definition for each
status label and no enforced policies to enforce resolving or
closing threads of discussion. Many teams find these useful for
tracking work status and decide which labels to use and how
to use them independently. The author may take feedback
in comments, update the change, and submit the updated
change for additional feedback. In CodeFlow parlance, each
updated change submitted for review is termed an iteration
and constitutes another review cycle. It is not unusual to see
two, three, or four iterations before a change is ready to check
into the source code repository. In the review shown, there
are five iterations (indicated by the tabs labeled “1”, “2”, etc.),
with the original change in iteration 1, an updated change in

Fig. 1: Example of Code Review using CodeFlow

iteration 2, and the final change in iteration five. Reviewers
can continue to provide feedback in the form of comments on
each iteration and this process repeats until the reviewers are
happy with the change. Once a reviewer is comfortable that
a change is of sufficient quality, he or she indicates this by
setting their status to “signed off”. After enough people sign
off (sign off policies differ by team), the author checks the
changes into the source code repository.

III. RESEARCH QUESTIONS

The goal of our study is to derive insight regarding what leads
to high quality reviews in an effort to help teams understand
the impact of and change (if needed) their code reviewing
practices and behaviors so that their reviews are most effective.

We accomplish this by identifying how characteristics of
reviewers performing the review, of changes under review,
and of temporal aspects of the review, influence usefulness of
review comments.

We decompose this high level objective into three concrete
research questions.

RQ1. What are the characteristics of code review comments
that are perceived as useful by change authors?

RQ2. What methods and features are needed to automat-
ically classify review comments into useful and not
useful?

RQ3. What factors have a relationship with the density of
useful code review comments?

Each of the following three sections focuses on one research
question. We describe the study methods and findings separately
for each. These three questions represent high level steps
in our study. We first aimed to understand what constitutes
usefulness from the developer perspective (RQ1), then we used
these insights as we set out to build an automatic classifier
to distinguish between useful and not useful code review
comments (RQ2). Finally we used this classifier to classify over
one million comments that we then investigated quantitatively
to help uncover the characteristics of reviewers and their team
and the code under review that influence the usefulness of code
review comments (RQ3). Figure 2 shows an overview of our
three-stage research methodology.

Fig. 2: Three-stage Research Method

IV. QUALITATIVE EXPLORATORY STUDY ON COMMENT
USEFULNESS

In the first phase, we conducted an exploratory qualitative
study to understand what code review comment usefulness
means to developers. Further, with the help of the interviewees
we identified signals suited to distinguish between useful
and not useful code review comments. In the following
subsections, we describe the study method and our findings.
We deliberately focused on understanding comment usefulness
from the perspective of the authors of source code changes
because they are the people that actually make changes to the
code based on feedback and they are the primary target for
code review comments.

A. Developer Interviews
We chose interview research because interviewing is a

frequently used exploratory technique used to gain insight into
the opinions and thoughts of the participants – which cannot
be obtained by quantitative measures, such as data mining [14].
We conducted semi-structured individual interviews with seven
developers, selected from four different Microsoft projects
based on their varying level of development / code-review
experiences. Semi-structured interviews allowed us to combine
open-ended questions to elicit information on their perception
on code reviews and comments with specific questions revealing
the perceived usefulness of individual code review comments.
Each interview lasted 30 minutes and was structured into three
phases. First (≈ 5 minutes), we asked the interviewee about
their job role, their experience, and what role comments play
during code reviewing. In the second phase (≈ 20 minutes),
we showed the interviewee 20 ∼ 25 randomly selected review
comments from recently submitted code reviews for which the
interviewee was the author. We asked the interviewee to rate
the usefulness of each comment and categorize it based on a
classification scheme adopted from a prior study to identify the
types of issues detected during code reviews [15] (see 3 for the
list of categories). We used the ratings from the author because
they are the only ones with the “ground truth” of the usefulness
of the comment (i.e. the author is the best judge of whether
the comment was helpful to him or her and/or the change).
For each of these comments, we asked the interviewees to

1) rate the comment on a 3-point scale (1- Not useful, 2-
Somewhat useful, and 3- Useful),

0%

10%

20%

1.D
oc

um
en

tat
ion

2.V
isu

al
Rep

res
en

tat
ion

3.O
rga

niz
ait

on

4.S
olu

tio
n A

pp
roa

ch

5.R
es

ou
rce

6.V
alid

ati
on

7.L
og

ica
l

8.S
yn

ch
ron

iza
tio

n

9.S
up

po
rtin

g l
ibr

ary

10
.Defe

ct

11
.API c

alls

12
.Fa

lse
 Pos

itiv
e

13
.O

the
r

Pe
rc

en
ta

ge
 o

f o
ve

ra
ll

 c
om

m
en

ts

Not Useful Somewhat Useful Useful

Fig. 3: Distribution of comment categories

2) briefly explain why they selected that particular rating for
the comment, and

3) assign the comment to a comment category (e.g., comment
about documentation, functional, and structure).

To assist with the classification, we supplied the interviewee
with a printed copy of the comment classification scheme
including a brief description for each category. In the last
phase (≈ 5 minutes), we asked the interviewee if they could
indicate other types of useful comments that were not covered
in the interview. Prior to our interviews we performed pilot
interviews with a separate set of developers to assess whether
the question were clear and timing was appropriate. During
the interviews, we wrote down all answers, categories and
ratings of the review comments on a printed interview form and
immediately after the interview completed the notes with further
details and observations. We used purposeful sampling until
we reached saturation (new interviews were not providing any
new information). During the interviews, the seven participants
rated and categorized 145 review comments.

B. Insights from the Interviews

Prior literature has found that the primary goal of code
reviews is most often to improve the quality of software by
identifying defects, identify better approaches for a source code
change or help to improve the maintainability of code [16].
There are, however, other secondary benefits of code reviews
such as knowledge dissemination, and team awareness [6].
We found similar sentiments at Microsoft, as developers at
Microsoft consider a code review effective if the review
comments help to improve the quality of code. On the other
hand, comments whose sole purpose can be attributed to
knowledge dissemination and team awareness are perceived as
less useful by developers.

Figure 3 shows the distribution of comments categorized by
the interviewees and their ratings. The interviewees rated almost
69% comments as either useful or somewhat useful. Most of
the comments identifying functional defects (categories from
5 to 11 in Figure 3) were rated as ‘Useful’. More than 60%
of the “Somewhat Useful” comments belong to the first four
categories: documentation in the code, visual representation
of the code (e.g. blank lines, indentation), organization of the
code (e.g. how functionality is divided into methods), and
solution approach. These four all belong to the class termed
“evolvability defects” as classified by Mantyla et al. [15] and

represent issues that affect future development effort rather
runtime behavior.

On the other hand, most of the ‘Not useful’ comments are
either false positives (e.g., when a reviewer incorrectly indicates
a problem in the code, perhaps due to lack of expertise) or
don’t fall into a predefined category, which we therefore label
as ‘Other’. Although, most of the review comments (≈ 73%)
fell into one of the categories from Mantyla et al.’s study, we
identified four additional categories based on recurring labels
interviewees gave to comments in the ‘Other’ category. The
new categories were: 1) questions from reviewers, 2) praise
for the implementation, 3) suggestions for alternate output or
error messages, and 4) discussions on design or new features.
The interviewees did not consider comments from the first two
categories useful, while in most of the cases they considered
the last two categories as useful comments.

Based on the interviewee answers and additional post-
interview analysis of the rated comments we gained insights
about participants’ perception of usefulness and identified
suitable signals, as described below. We first describe our
insights regarding the three usefulness ratings.

1) ‘Useful’ comments
– Authors consider identification of any functional is-

sues [15] as useful review comments. However, most
of the review comments are unrelated to any types of
functional defects.

– Sometimes reviewers identify validation issues or al-
ternate scenarios (i.e. corner cases) where the current
implementation may fail. If the author lacks knowledge
about particular execution environments or scenarios, an
experienced reviewer may help him through validating the
implementation. Authors indicated that review comments
related to such validations are very useful.

– Code review is very useful for the new members to learn
the project design, constraints, available tools, and APIs.
Authors that were new to the team considered comments
with suggestions regarding APIs to use, designs to follow,
team coding conventions, etc. to be useful.

2) ‘Somewhat Useful’ comments
– Many of the review comments identify what some devel-

opers refer to as “nit-picking issues” (e.g., indentation,
comments, style, identifier naming, and typos). Some of
the interviewees rated nit-picking issues as ‘Somewhat
useful’, while others rated those as ‘Useful’. As a rationale
for those ratings, interviewees indicated that resolving nit-
picking issues may not be essential, but the identification
and resolution of nit-picking issues help long-term project
maintenance.

– Sometimes review feedback / questions help the authors
to think about an alternate implementation or a way to
refactor the code to make it more comprehensible (even
if the current implementation may be correct). Authors
consider those comments ‘Somewhat useful’.

3) ‘Not Useful’ comments
– Sometimes reviewers comment on a code segment not to

point out an issue in the code, but rather to ask questions
to understand the implementation. Those comments may

be useful to the reviewers for knowledge dissemination,
but are not considered useful by the author as they do not
improve the code.

– Some of the review comments praise code segments.
Those comments may help building positive impressions
between the team members, and encourage good coding,
but interviewees rated those as ‘Not useful’.

– Some comments pointed out work that needed to occur
in the future, but not during the current development
cycle. In a few cases, these comments were about code
that was not related to the change at all, but simply
existed in the changed files. If immediate actions based
on these comments are not foreseeable, authors rated such
comments as not useful.

During the classification of the useful/not useful comments
by the interviewees, we looked for signals that could be used to
automatically classify comment usefulness. We observed that
useful comments very often trigger changes in close proximity
to the comment-highlighted lines (recall that a comment is
associated with a highlighted portion of the code) in subsequent
iterations. We refer to these comments that appear to induce a
change in the code as change triggers. Therefore, automatically
identifying these change triggers can provide a valuable feature
for classifying the usefulness of review comments.

We found that examining the status of comments can give
some indication of comment usefulness. When a comment
was marked as ‘Won’t Fix’, authors often also perceived the
comment as not useful (though occasionally authors flag useful
comments as ‘Won’t Fix’ to defer a change). On the other
hand, most of the times that the status was set to ‘Resolved’,
it indicated that the author perceived the comment as useful
and addressed it.

The insights gathered from the interviews were crucial for
our understanding of review authors’ perception of usefulness.
In the next research phase, we leverage our findings as they
allow us to manually classify a large amount of review
comments independent from developers. Further, we identified
two valuable features (whether a comment has changes in
close proximity in subsequent iterations and comment status)
that can be computed automatically and used in an automated
classifier for useful comments.

V. AUTOMATED CLASSIFICATION OF COMMENT
USEFULNESS

In the second phase of the study, we built upon the findings
from the interviews to create an automated classifier to
distinguish between useful and not useful comments. The
purpose behind this is that an accurate automatic classifier
allows us to classify a large number of review comments,
enabling a large scale quantitative study of review comment
effectiveness (as we conduct and describe in Section VI),
as manual classification of code review comments is time
consuming and does not scale. Note that our goal in building a
classifier is not to predict comment usefulness at the time that
the comment is written. Such a classifier would not be useful
to developers (an author of a change under review likely wants
to read every comment on the review) and the features that

such a classifier could use are constrained (e.g., the status of
the comment isn’t known at the time a comment is made).

In order to build a classifier, we have to first identify potential
signals (metrics), then select a classification approach, and
finally implement, train and evaluate the classifier. A crucial
part of training and evaluating a classifier is obtaining a standard
dataset which contains information about whether or not a code
review comment is useful, a so called oracle. Relying on the
145 comments rated during the interviews is not sufficient
as that dataset is too small to build a reliable classifier. To
rectify this, we manually analyzed and separately validated
an additional 844 comments to enhance the oracle. In the
following, we describe the manual classification, the oracle
generation process, the selected signals and their calculation,
the classifier, and the validation of our model. We end this
section by highlighting the results of the classification approach.

A. Manual Classification
Based on our insights from the developer interviews, we

manually classified 844 review comments from five projects
across Microsoft: Azure, Bing, Exchange, Office, and Visual
Studio.

We classified each of the comments into one of the two
categories: Not Useful, and Useful. Although our exploratory
interviews included three classifications, authors in those
interviews indicated that Somewhat Useful comments still were
valuable enough to improve their code. For example, as we
observed disagreements between authors related to how they
classify nit-picking comments (Section IV-B), we discussed
with them how to rate nit-picking comments. Since nit-picking
comments are useful for long-term project maintenance and
often led to changes in the code, we agreed to rate them as
‘Useful’. Similar discussions happened for the other types of
somewhat useful comments, thus we consider comments that
would fall into the Somewhat Useful category as described in
Section IV-B to be useful.

For the manual analysis, we randomly selected reviews with
at least two iterations and two comments. Multiple iterations
allow us to determine if a comment is in proximity to, and thus
likely caused, a code change (i.e., we can tell if a comment
in iteration 1 caused a code change or not based on the code
submitted in iteration 2).

We read each comment thread and examined the code that
the comment thread was referring to in an effort to understand
the question or concern raised by the reviewer and how the
author responded to it. If the author did not participate in the
comment thread, we also examined the subsequent iteration(s)
to determine if the suggested changes were implemented by the
author. Our assessment of comment usefulness was primarily
based on insights drawn from interviews such as the categories
that comments fell into, the topics addressed in the comments
and the types of action that the comments suggested. For
example, if the author pointed out a valid defect and a suggested
fix, we classified it as useful, whereas a question about how
the changed component was tested was termed not useful.

To assess validity and subjectivity, we used inter-rater
reliability. A sample of one hundred comments was selected
randomly from the set of 844 comments and each of the three

authors classified the hundred comments independently, using
the findings from Section IV-B as a guide. Our classifications
differed for only three out of the hundred. Since we used
more than two raters for the transcriptions we calculated inter-
rater reliability using Fleiss’ Kappa [17] on the individually
coded responses. The inter-rater reliability kappa κ value was
0.947, which Landis and Koch classify as “almost perfect
agreement” [18]. Thus we have confidence that the ratings are
valid and consistent.

We combined the comment classifications from the inter-
views and the manual classification into one dataset that we
used as our oracle to build our comment usefulness classifier.

B. Attributes of Useful Comments
Based on the insights from the interviews and our manual

analysis, we identified eight attributes of comments which we
anticipate distinguish useful from not useful comments.

Some of these attributes of comments are not known at the
time that the comment is made such as whether a comment
will be a change trigger. Using attributes that are not available
until a review is complete would be a problem if we were
trying to build a predictor of comment usefulness to be used
at the time a comment was made. However, since our goal is
to classify the usefulness of a large number of comments in
an effort to enable an empirical investigation of what leads to
useful comments, this is not an issue for our study.

The first attribute we considered was the thread status
(discussed in Section IV-B). Further, to measure the engagement
and activity of a comment we count the number of participants
commenting on one thread (including the author), the number
of comments constituting the thread, whether or not there was
a reply from the author to a comment, and the number of
iterations in the code review.

In addition, we hypothesize three more signals that may be
good candidates for our classifier: from the interviews we saw
that a comment that was a change trigger was often deemed
useful. We also observed anecdotally that ‘Useful‘ comments
frequently contained a different set of keywords (e.g., ‘fixed’,
‘bug’ or ‘remove’) than ‘Not useful’ comments. Finally we
believe that the sentiment of a comment (i.e. whether or not
a comment is formulated in a positive or negative tone) may
related to comment usefulness.

C. Attributes calculation
While the first set of signals can be derived easily from

the code review data itself, the latter three signals (i.e. if a
comment is a change trigger, the keywords in a comment, and
comment sentiment) require additional work to compute. We
briefly describe our approaches below.

Change trigger. From the manual analysis and interviews, we
observed that most changes triggered by a comment happen in
close proximity to the comment-highlighted line(s). To see if a
comment triggered a change we look at differences between the
file containing the comment and versions of the file submitted
in subsequent iterations of the code review. For example, if a
comment is made on a particular line of code in foo.cs in the
first iteration of a code review, then we track the position of
that same line of code in subsequent versions of foo.cs in the

subsequent iterations, even if the location of the line is affected
by other additions or deletions. If there was a change in any
later iteration that is in close proximity to the line of code
associated with the comment then the comment is considered
a change trigger.

Sometimes review comments trigger changes before or
after the code highlighted by the comment, as illustrated
by Figure 4(a). We investigated this by varying the level of
proximity in our analysis (i.e., the number of lines a change
is away from the code associated with a comment). At the
lowest level, we only associated changes on the same line as
the highlighted code, while at the highest level, we considered
changes within ten lines of the comment. Based on analysis of
the false positives (sometimes changes close to a comment are
not related to the comment) and false negatives (if a change is
more than a few lines away from the comment, we might not
categorize it as a change trigger) at each level of proximity,
we found that the best results occurred when we associated
code changes to comments that were at most one line away
from the change.

Keyword-based Classifier. As Naive Bayes classifiers have
been used to successfully classify natural language in different
domains (e.g. filtering spam emails [19]), we implemented
such a classifier based on the multi-variate Bernoulli document
model [20] to classify comments. As the training corpus,
we used comments from our previously established oracle.
We performed standard pre-processing of the corpus [21] by
removing white-space, punctuation, and numbers, converting
all words to lower case, applying a Porter-stemmer [22] to
generate stems of the words and removing common English
stop-words. We also limited keywords to those appearing in at
least ten comments. After these steps, there were 349 unique
keywords. After the Naive Bayes model is trained using our
oracle, the frequencies of each keyword in a new comment
are fed into the model to generate a classification of useful or
not useful. This classification is then used as a feature in our
main classifier.

Comment sentiment. Sentiment analysis has been widely used
to classify natural language text [23]. To use the sentiment of
a comment as a probable predictor of usefulness, we used the
Microsoft Research Statistical Parsing and Linguistic Analysis
Toolkit (MSR-Splat) [24] service to calculate the sentiment
of the comments. MSR-Splat calculates the probability of
a comment having a positive sentiment as a floating point
number between 0.0 and 1.0. Similar to prior literature [23], we
categorized the comments based on sentiment probability into
five categories, each category spanning a 0.2 probability range
from the previous category: extremely negative, somewhat
negative, neutral, somewhat positive, and strongly positive.
The sentiment category for the text of the comment was used
as an input feature for our main classifier.

D. Classification process and validation
After calculating the attributes (section V-B) for the com-

ments in our oracle, we used a classification tree algorithm1 [25]
to build a decision tree model based on the discussed features

1 A machine learning technique in which the goal is to predict the value
of a target variable based on several input variables

(a) Changes at three lines after the comment highlighted lines

(b) Two comments within a close proximity

Fig. 4: Identifying changes triggered by review comments

(Section V-B) of the comments in our oracle. To validate our
tree-based model, we employed 10-fold cross-validation [26]
and repeated the process 100 times.

Finally, to validate our model via review participants, we sent
five developers (three of them were not part of the interviews)
a list of review comments they received for their recent code
reviews and asked them to classify each comment as ‘Useful’
or ‘Not Useful’. We then compared these classifications with
the classifications produced by the decision tree. The results
of this validation are discussed below (Section V-F).

E. Effects of individual attributes
We examined each of the features individually to understand

the decision characteristics of attributes and the strength of
relationship with usefulness. Due to space restriction we
report some interesting observation, but omit detail correlation
outcomes.

If a comment triggered changes within one line distance
to comment-highlighted lines, it was highly likely to be
useful (precision: 88% and recall: 78%). If the author did
not participate in a comment-thread, it was more likely to be
useful (88%) than those threads where the author did (49%). A
manual investigation of comments showed that absence of the
author in a comment-thread very often indicated an implicit
acknowledgment by the author and a useful comment. On
the other hand, author participation indicated either a useful
comment with explicit acknowledgment (e.g., ‘done’, ‘fixed’,
and ‘nice catch’) from the author or a not useful question /
false positive, which the author responded to.

Comment-threads with only one comment or participant were
more likely to be useful (88%), than those with more than
one comment or participant (51%). The explanation is similar
as the explanation for author participation, as participation
of several engineers indicated a discussion which might or
might not be useful. No discussion often indicated implicit
agreement. Our keyword based classification also showed
promising results. Table I shows keywords, which belonged
to at least 15 comments in our oracle and are at least twice
more likely to be in a particular class of comments (i.e. either
useful or not useful) than the other. We found that comments

TABLE I: Keywords distribution

Useful Not Useful
assert, int, big, expand, least,
nit, space, log, fix, match, ac-
tion, line, rather, please, cor-
rect, should, remove, may be,
move

leave, yes, message, store, doesn’t, keep,
result, first, let, default, actual, which,
why, current, happen, time, else, exist,
reason, type, work, how, item, want,
really, not, fail, test, already

with command verbs (assert, expand, fix, remove, and move)
or request (e.g., please, should, may be) are more likely to be
useful. On the other hand, questions (e.g., why, which, and
how), acknowledgment (e.g., yes, already) or denial (doesn’t,
and not) are more likely to be in not useful comments.

Most of the comments (83%) are made during the first two
iterations. Comments made after the first two iterations are less
likely to be useful. Also, comments where a change within
one line of the comment highlighted text could be detected
where much more likely to be useful. Most of the comments
(92%) with Won’t fix status are Not Useful, while most of the
comments with Resolved/ Closed status are (≈ 80%) Useful.

Finally, although majority (51%) of the comments had
‘Extremely Negative’ tones, only 57% of those comments
were useful. On the other hand, comments with ‘Neutral’ or
‘Somewhat Negative’ tones were more likely to be ‘Useful’
(≈ 79% were considered useful).

F. Model performance
Figure 5 shows the decision tree model built from our oracle.

The root node of the tree is ChangeTrigger 1 (i.e. changes
within one line distance to a comment-highlighted line).

Comment status is the second most important attribute for the
classification. These two most important signals were evident
to us during the first stage of this study (Section IV-B), and
our model provides confirmation. The other useful attributes
for the model are number of comments, iteration number, and
sentiment group.

Based on one hundred 10-fold cross-validations of the
decision tree model, our model had a mean precision of 89.1%,
mean recall of 85.1%, and mean classification error of 16.6%.
Finally, the review participants that we contacted rated 97 out
of the 125 comments as Useful. Our model classified 105 of
those review comments as ‘Useful’, of which 91 were correct.
In this step, our model had 86.7% precision, and 93.8% recall.

VI. EMPIRICAL STUDY OF FACTORS INFLUENCING REVIEW
USEFULNESS

The ultimate goal of our study is to understand the influences
of different factors on the usefulness of code reviews feedback.
Specifically, we investigate two types of factors: 1) character-
istics of the reviewers and their team and 2) characteristics of
the changeset under review. The selection of those factors was
guided by prior studies on software inspection [27], [28], and
suggestions for code review practices [29], [16]. To identify
the influence of each factor on the usefulness of code review
comments we used our trained decision tree to classify review
comments in useful and not useful comments (as described in
Section V-C) and then examined the relationship of various
factors with usefulness. In total, we analyzed ≈ 1.5 million
comments from 190,050 review requests from five major

TABLE II: Comment usefulness density

Project Domain # of
Reviews

of
Comments

of
Useful

Comments
Usefulness

Density

Azure Cloud
software

15,410 126,520 86,914 68.6%

Bing Search engine 92,987 664,619 426,513 64.2%
Visual Studio Development

tools
12,802 113,208 75,378 66.6%

Exchange Email server 29,272 246,566 155,971 63.3%
Office Office suite 33,351 299,919 204,045 68.0%

Total 190,050 1,496,340 979,440 65.5%

Microsoft projects, i.e., Azure, Bing, Visual Studio, Exchange
and Office, the same projects that the comments used to train
the decision tree were drawn from. We selected those projects as
they represent a wide range of domains, development practices,
and include both services and traditional desktop applications.
Each project has a substantial code base, comprising millions
of lines of code. Based on these data sets, we examine the
relationship of comment usefulness density (i.e. the proportion
of comments in a review that are considered useful) with a
number of factors related to the reviewers and what is being
reviewed. Table II provides summary information for each of
the five projects, including the overall comment usefulness
density. Interestingly, all projects have a similar comment
usefulness density between 64% and 68%. In this section, we
explore the influence of the two aforementioned factors on
comment usefulness.

A. Reviewer characteristics

Prior studies on software inspection found wide variation
in the effectiveness of different inspectors (i.e., the person
examining the code), even when they are using the same
technique on the same artifact [27]. Similarly Rigby et al.
suggested using experienced members or co-developers as
reviewers [29]. Since those studies suggest that reviewer
characteristics can have an influence on review usefulness, we
studied the following three aspects of reviewer characteristics:
1) experience with the artifacts in the review, 2) experience in
the organization, and 3) being in the same team as the change
author. We also examined one aspect of the project the reviews
belongs to: how the effectiveness of comments in an entire
project changes over time.

1) Do reviewers that have prior experience with a software
artifact give more useful comments?: We investigated two
aspects of experience: first, experience in changing, and second
experience in reviewing an artifact. We used a source code file
as the level of granularity for experience. We compared the
density of useful comments for developers who had previously
made changes to the files in a review to the density of useful
comments made by developers who had not made changes. The
developers who had made prior changes to files in a change
under review had a higher proportion of useful comments
in four out of the five projects (all but Exchange which
shows marginal increases), but we did not see a difference in
effectiveness based on the number of times that a developer
had worked on a file. That is, comments from developers who
had changed a file ten times had the same usefulness density
as from developers how had only changed a file once. In detail,
experience in changing a file at least once increases the density
of useful comments from 66% to 74% for Azure, from 60%

Fig. 5: Decision Tree Model to Classify Useful Comments

40%
50%
60%
70%
80%

0 5 10 15 20
Reviewers’ Number of Prior Reviews in the File

U
se

fu
ln

es
s

D
en

si
ty

Azure Bing Exchange Office Visual Studio

Fig. 6: Prior experience reviewing the artifact vs. comment
usefulness density

to 71% for Bing, from 66% to 70% for Visual Studio, from
67% to 72% for Office and from 62% to 63% for Exchange.

Our analysis of the effect of experience in reviewing a
file showed strong effects on the density of useful comments
(Figure 6). For all the five projects, reviewers who had reviewed
a file before were almost twice more useful (65% -71%) than
the first time reviewers (32% -37%). Comment usefulness
densities also show an increasing trend with the number of prior
reviews up to around five reviews, after which the usefulness
density plateaued between 70% and 80%.

Based on these results, we conclude that developers who
have either changed or reviewed an artifact before give more
useful comments. One possible explanation for these results
is that reviewers who have changed or reviewed a file before
have more knowledge about the design constraints and the
implementation. Therefore, they are able to provide more
relevant comments. Also, a first time reviewer may not know
the design and context, they may ask questions to understand
the implementation, or identify false issues based on their
incorrect assumption. Unsurprisingly, first time reviewers of
an artifact are providing less valuable feedback.

We assume that review experience shows more drastic effects
on comment usefulness than change experience because many
teams have a practice of letting new developers first review the
code before they are allowed to change the code. Therefore, a
developer who makes the first change to a file has most likely
already reviewed it before.

We calculated a reviewer’s experience based on his or her
tenure at Microsoft. In four out of the five projects (all but

Exchange), reviewers that spend more time in the organization
have a higher density of useful comments. The effect is
especially visible for new hires, who in the first three months
had the lowest density of useful comments. During the first
three quarters, the usefulness density increases the most, and
stays relatively stable after the first year. The first year at
Microsoft is often considered “ramp up” time for the new
hires. During that time employees become more familiar with
the code review process, project design, and coding practices
at Microsoft. After the ramp up period, they can be as useful
reviewers as their senior Microsoft peers. In detail, we saw
for Azure an increased density of useful comments from 60%
to 66%, for Bing from 62% to 67%, for Visual Studio from
60% to 70% and for Office from 60% to 68% after the first
year. For Exchange, we could not see a steady trendline, and
usefulness ratios vary between 60% to 65%.

2) Do reviewers from the same team give more useful
comments?: We hypothesize that a reviewer may give more
useful comments to member of his or her own team because
they are familiar with that person, their abilities, and are more
invested in the quality of the code that the team ships. A team
in this sense is a group of usually four to ten developers all
working under the same manager or developer lead (i.e., each
project in our analysis comprises many teams). We found that
roughly three quarters (76%) of review comments come from
reviewers on the same team as the author. Although cross-
team reviewers were less frequent, we found that reviewers
from different teams gave slightly more useful comments than
reviewers from the same team in all the five projects. As
Table III shows however, the magnitude of the difference
is quite small (under 1.5% for all but one project) and is
statistically significant only because of the large sample used
(over one million comments in total). Based on this, we
conclude that there is no noticeable difference in comment
usefulness density between reviewers who are on the same
team or on different teams than the author.

3) How do comment usefulness densities vary over time?:
Porter et al. found in their study on software inspection that
effectiveness and defect discovery rates vary over different time
periods [28]. We investigated whether reviewers are becoming

TABLE III: Usefulness density vs. team

Reviewer and Author
in the same team

Azure Bing Visual
Studio Exchange Office

Yes 68.0% 67.8% 66.0% 62.5% 66.7%
No 69.4% 68.6% 69.1% 63.7% 66.9%

65.0%

67.5%

70.0%

72.5%

Time Period

U
se

fu
ln

es
s

D
en

si
ty

(a) Office

61%

62%

63%

64%

65%

Time Period

U
se

fu
ln

es
s

D
en

si
ty

(b) Bing

Fig. 7: Temporal Trends of Usefulness density

more efficient in making comments on the same project over
time by looking at the the comment usefulnesss density of the
entire project for different periods of time. We found that for
four out of the five projects the density of useful comments
increases over time and we suspect this can be attributed to both
increased experience with the project, similar to our findings
in Section VI-A1 and also refinement of the code reviewing
process (more training of developers, better tracking of code
review data, etc.). Figure 7 (a) shows the temporal trend for a
snapshot of time for the Office project. Even though the long
term trend shows an increase density of useful comments, for
three out of the five projects we noticed peaks and valleys in the
density of useful comments for limited periods. For example,
Figure 7:(b) shows a temporary drop for the Bing project.
Examining trends of usefulness density can help managers
determine whether or not code review practices are improving.
For example, during times where the usefulness density drops,
managers can be alerted and can easily “drill-down” to the
specific reviews, reviewers, changes, or components, that are
contributing to the drop and can take corrective action.

B. Changeset characteristics
Porter et al. found that software inspection effectiveness

depends on code unit factors such as code size, or functional-
ity [28] and Rigby et al., suggested that reviews should contain
small, incremental and complete changesets [29]. Therefore,
we investigated whether size of the changeset or type of file
under review has any effect of review usefulness.

1) Do larger code reviews (i.e., with higher number of files)
get less useful comments?: Figure 8 illustrates how comment
usefulness density change with the number of files in a change
under review. The trendline shows that as number of files in the
change increases, the proportion of comments that are useful
drops. This result supports Rigby’s recommendation for smaller
changesets. Developers have indicated that if there are more
files to review, then a thorough review takes more time and
effort. As a result, reviewers may opt for cursory review of
large changesets and may miss some changes. This may lead

60%

65%

70%

0 10 20 30 40
Number of Files in the Changeset

U
se

fu
ln

es
s

D
en

si
ty

Azure Bing Exchange Office Visual Studio

Fig. 8: Usefulness density vs. Number of files

to false positives or more questions to the author in an effort
to understand the change, causing lower usefulness densities.

2) Do the types of files under review have any effect on
comment usefulness?: We grouped the files into four groups
based on the purpose of the file: 1) Source code (e.g., C#,
C++, Visual Basic or C-header files), 2) Scripts (e.g., SQL
or command line scripts), 3) Configuration (e.g., .Config or
.INI) files), and 4) Build (e.g., Project or make files). We
observed that source code files had the highest density of
useful comments (70%). On the other hand, build files had
the lowest comment usefulness densities (65%). As notable
outliers, Visual studio solution files (a type of configuration
file) (57%) and make files (53%) had a low proportion of useful
comments. We expect that this may be due to the complexity
of the these files (e.g., McIntosh et al. have demonstrated the
complexity of build files [30]) where the impact of changes
on the overall system are sometimes harder to assess than for
source code. Code reviewing tools and practices also often
emphasize the review of code, whereas review of configuration
files and build files are given less attention.

VII. THREATS TO VALIDITY

All projects selected for this study belong to the same
organization practicing code reviews using the same tool. While
the tool itself may be specific, prior work has shown that most
reviewing performed today follows a similar workflow. Code
reviews via CodeFlow are similar to the processes based on
other popular tools such as Gerrit, ReviewBoard, GitHub pull
requests, and Phabricator. Many companies and open source
projects that practice review are using tools such as these rather
than email. Like CodeFlow, these tools facilitate feedback from
reviewers about the change, often allowing reviewers to indicate
specific parts of the change [7], [31].

Most of the attributes calculated for this study can be
also calculated for code reviews conducted with these other
tools. Also, prior study results suggest that there are large
similarities between the code review practices of different
OSS and commercial projects [7]. We have attempted to
mitigate threats to external validity by including projects in
this study that represent diverse product domains and platforms.
Nonetheless, some biases remain; all projects are large-scale,
relatively mature, and come from the same company.

We attempted to validate the model training data and
the results of the model’s classification in multiple ways,
checking consistency with inter-rater reliability, using k-fold
cross validation, and comparing classification results with

ratings from the authors that received the comments. While
the model achieves high levels of accuracy with precision and
recall values between 85% and 90%, the mean classification
error rate is around 15%. It is possible that those incorrect
classifications may have altered our results, however this can
only lead to incorrect findings and conclusions if there is a
systematic relationship between the comments that the model
incorrectly classifies and the factors examined in phase three
of our study (if, for example, our model incorrectly classifies
the usefulness of comments in large reviews far more than
those with fewer files). We have no reason to believe such a
relationship exists, but have no empirical evidence.

Lastly, a common misinterpretation of empirical studies
is that nothing new is learned (e.g., “I already knew this
result”). However, such wisdom has rarely been shown to be
true and is often quoted without scientific evidence. This paper
provides such evidence: Most common wisdom and intuition
is confirmed (e.g., “prior experience in artifacts help useful
reviews”) while some is challenged (e.g., “reviewers from the
same team are more useful”).

VIII. IMPLICATIONS OF THE RESULTS

The results of this study have several implications for both
code review participants and researchers.

Reviewer Selection: This study showed that experience
with the code base is an important factor to increase the
density of useful comments in code reviews. Therefore, we
suggest that reviewers should be selected carefully. Automatic
review suggestion systems can help to identify the right set of
developers that should be involved in a review. Few studies [32],
[33] have attempted to suggest reviewers for code changes,
and in some popular code review tools such as Crucible and
CodeFlow automatic reviewer suggestion features already exist.

However, such tools should be used with caution. As our
results suggest that new hires and reviewers with limited
experience provide feedback with limited utility, one might
be tempted to exclude them from the reviewing process. Due
to the knowledge dissemination aspects of code review [6],
we recommend including inexperienced reviewers so that they
can gain the knowledge and experience required to provide
useful comments to change authors. Rather than excluding the
inexperienced, authors of changes should include at least one
or two experienced reviewers to ensure useful feedback.

Managing changesets: Our results suggest that review
effectiveness decreases with the number of files in the change
set. Therefore, we recommend that developers submit smaller
and incremental changes whenever possible, in contrast to
waiting for a large feature to be completed. Special care should
be taken when non-code files, such as configuration or build
files, are included in reviews, as these elicit less useful feedback.
Reviewers should be encouraged to give them more attention
and authors can be of help by providing more details of the
changes to these files in the change description prior to sending
the change out for review.

Identifying weak areas: As comment usefulness density
can be calculated and compared along various dimensions such
as types of files or particular modules of a system, this measure
can be used by teams to identify areas where code reviews are

less effective. Teams can also continuously monitor themselves
and address issues when they arise. For example, one team that
we talked to indicated that they have been manually reading
through the comments in reviews each week to see if there are
patterns that need to be addressed. Our classifier can help by
automatically identifying the less useful comments which can
speed up the process of determining areas of code experiencing
problems or can reduce the number of comments that team
members need to read. Project management can also identify
weak reviewers and take necessary steps to help them become
efficient.

IX. RELATED WORK

Prior studies exist that have examined the effects of different
factors on the effectiveness of traditional Fagan-inspection [2].
Porter et al. studied the effect of three types of factors (i.e.
code unit, reviewer, and team) on inspection effectiveness. They
found code unit factors (e.g., code size, and functionality) and
reviewer factors (e.g., presence of certain reviewers) as the
most influential factors [28]. Although tool-based contemporary
code review practices differ a lot from the traditional inspection
techniques [7], we also observed the effect of changeset size
and reviewer experience in this study.

Most of the earlier studies examined traditional software
inspection techniques, only a few recent studies have examined
informal code review practices. Rigby has published a series of
studies examining informal peer code review practices in OSS
projects [34], [35], and comparing the review process between
commercial and open source projects [7]. In the later study,
Rigby and Bird found that despite differences between different
projects, many of the characteristics of contemporary code
review practices (i.e. review interval, number of comments,
number of reviewers) were very similar [7]. Bacchelli and
Bird investigated the purposes and outcomes (i.e., accept or
reject) of modern code reviews and found that although finding
defects is the primary motivation, only a fraction of review
comments finds defects. On the other hand, code reviews
provide additional benefits such as knowledge dissemination,
team awareness, and identifying better solutions [6]. Baysal et
al. found a variety of factors (such as review size, component,
reviewer characteristics, or author experience) to have signifi-
cation effects on code review response time and outcome [36].

While most of the studies on modern code reviews have
examined the code review process and factors that affect review
interval or outcome, we are not aware of any study that has
explored the factors influencing the effectiveness of modern
code review.

X. CONCLUSION

In this study, we have identified a set of factors affecting
the usefulness of code reviews. We provided recommendations
to both practitioners and researchers to improve code reviews.
It is our hope that the insights discovered in this study will
be helpful to improve code review process as well as to build
better code review tools.

REFERENCES

[1] P. Rigby, B. Cleary, F. Painchaud, M. Storey, and D. German, “Contem-
porary peer review in action: Lessons from open source development,”
Software, IEEE, vol. 29, no. 6, pp. 56–61, Nov 2012.

[2] M. E. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Systems Journal, vol. 15, no. 3, pp. 182 –211, 1976.

[3] M. Fagan, “A history of software inspections,” in Software pioneers.
Springer, 2002, pp. 562–573.

[4] L. G. Votta Jr, “Does every inspection need a meeting?” in ACM SIGSOFT
Soft. Eng. Notes, vol. 18. ACM, 1993, pp. 107–114.

[5] P. M. Johnson, “Reengineering inspection,” Comm. of the ACM, vol. 41,
no. 2, pp. 49–52, 1998.

[6] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 2013 International
Conference on Software Engineering. IEEE Press, 2013, pp. 712–721.

[7] P. C. Rigby and C. Bird, “Convergent contemporary software peer review
practices,” in Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2013, 2013, pp. 202–212.

[8] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of
code review coverage and code review participation on software quality:
A case study of the qt, vtk, and itk projects,” in Proceedings of the 11th
Working Conference on Mining Software Repositories. ACM, 2014, pp.
192–201.

[9] V. Balachandran, “Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommenda-
tion,” in Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press, 2013, pp. 931–940.

[10] A. Bosu and J. C. Carver, “Impact of peer code review on peer impression
formation: A survey,” in 2013 ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement, 2013, pp. 133–142.

[11] “Gerrit code review.” [Online]. Available: https://code.google.com/p/
gerrit/

[12] “Phabricator.” [Online]. Available: http://phabricator.org/
[13] “Review board.” [Online]. Available: https://www.reviewboard.org/
[14] T. R. Lindlof and B. C. Taylor, Qualitative communication research

methods. Sage, 2010.
[15] M. Mantyla and C. Lassenius, “What types of defects are really discovered

in code reviews?” Software Engineering, IEEE Transactions on, vol. 35,
no. 3, pp. 430–448, May 2009.

[16] J. Cohen, E. Brown, B. DuRette, and S. Teleki, Best Kept Secrets of
Peer Code Review. Smart Bear, 2006.

[17] J. L. Fleiss, “Measuring nominal scale agreement among many raters.”
Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

[18] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” biometrics, pp. 159–174, 1977.

[19] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz, “A bayesian
approach to filtering junk e-mail,” in Learning for Text Categorization:
Papers from the 1998 workshop, vol. 62, 1998, pp. 98–105.

[20] A. McCallum, K. Nigam et al., “A comparison of event models for
naive bayes text classification,” in AAAI-98 workshop on learning for
text categorization, vol. 752. Citeseer, 1998, pp. 41–48.

[21] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE

[21] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Transactions on Software Engineering, vol. 28, no. 10, pp. 970–983,
2002.

[22] M. F. Porter, “Snowball: A language for stemming algorithms,” http:
//www.tartarus.org/\∼{}martin/PorterStemmer, 2001.

[23] A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Passonneau,
“Sentiment analysis of twitter data,” in Proceedings of the Workshop on
Languages in Social Media. Association for Computational Linguistics,
2011, pp. 30–38.

[24] C. Quirk, P. Choudhury, J. Gao, H. Suzuki, K. Toutanova, M. Gamon,
W. tau Yih, L. Vanderwende, and C. Cherry, “Msr splat, a language
analysis toolkit,” in Proceedings of NAACL-HLT 2012. Association
for Computational Linguistics, June 2012. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=173539

[25] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and regression trees. CRC press, 1984.

[26] L. Breiman and P. Spector, “Submodel selection and evaluation in
regression. the x-random case,” International statistical review/revue
internationale de Statistique, pp. 291–319, 1992.

[27] J. Carver, “The impact of background and experience on software
inspections,” 2003.

[28] A. Porter, H. Siy, A. Mockus, and L. Votta, “Understanding the sources
of variation in software inspections,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 7, no. 1, pp. 41–79, 1998.

[29] P. Rigby, B. Cleary, F. Painchaud, M.-A. Storey, and D. German, “Con-
temporary peer review in action: Lessons from open source development,”
IEEE Software, vol. 29, no. 6, pp. 56–61, 2012.

[30] S. McIntosh, M. Nagappan, B. Adams, A. Mockus, and A. E. Hassan, “A
large-scale empirical study of the relationship between build technology
and build maintenance,” Empirical Software Engineering, pp. 1–47, 2014.

[31] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of
the pull-based software development model,” in Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014, pp.
345–355.

[32] J. B. Lee, A. Ihara, A. Monden, and K.-i. Matsumoto, “Patch reviewer
recommendation in oss projects,” in Software Engineering Conference
(APSEC, 2013 20th Asia-Pacific. IEEE, 2013, pp. 1–6.

[33] G. Jeong, S. Kim, T. Zimmermann, and K. Yi, “Improving code review
by predicting reviewers and acceptance of patches,” Research on Software
Analysis for Error-free Computing Center Tech-Memo (ROSAEC MEMO
2009-006), 2009.

[34] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software
peer review practices: a case study of the apache server,” in Proceedings
of the 30th international conference on Software engineering. ACM,
2008, pp. 541–550.

[35] P. C. Rigby and M.-A. Storey, “Understanding broadcast based peer
review on open source software projects,” in Proceedings of the 33rd
International Conference on Software Engineering. ACM, 2011, pp.
541–550.

[36] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey, “The influence
of non-technical factors on code review,” in Reverse Engineering (WCRE),

2013 20th Working Conference on. IEEE, 2013, pp. 122–131.

