
CFar: A Tool to Increase Communication, Productivity, and
Review Quality in Collaborative Code Review

Austin Z. Henley
University of Memphis

azhenley@memphis.edu

Kıvanç Muşlu
Microsoft

kivancm@microsoft.com

Maria Christakis
MPI-SWS

maria@mpi-sws.org
Scott D. Fleming

University of Memphis
Scott.Fleming@memphis.edu

Christian Bird
Microsoft Research

cbird@microsoft.com

ABSTRACT
Collaborative code review has become an integral part of the
collaborative design process in the domain of software devel-
opment. However, there are well-documented challenges and
limitations to collaborative code review—for instance, high-
quality code reviews may require significant time and effort for
the programmers, whereas faster, lower-quality reviews may
miss code defects. To address these challenges, we introduce
CFar, a novel tool design for extending collaborative code
review systems with an automated code reviewer whose feed-
back is based on program-analysis technologies. To validate
this design, we implemented CFar as a production-quality tool
and conducted a mixed-method empirical evaluation of the
tool usage at Microsoft. Through the field deployment of our
tool and a laboratory study of professional programmers using
the tool, we produced several key findings showing that CFar
enhances communication, productivity, and review quality in
human–human collaborative code review.

ACM Classification Keywords
D.2.6 Software Engineering: Programming Environments;
H.5.3 Group and Organization Interfaces: Computer-
supported cooperative work

Author Keywords
Programming environments; collaborative design; code
review

INTRODUCTION
To “transcend the individual human mind” [8] remains a chal-
lenging and relevant problem in human–computer interaction.
Central to this problem is the need for interactive systems that
effectively support collaborative design—that is, design activ-
ities that require more knowledge, expertise, and effort than
any one person can contribute [8]. Collaborating designers en-
gage in a myriad of activities that might benefit from computer
support, including brainstorming, documenting ideas, eliciting
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CHI 2018, April 21–26, 2018, Montreal, QC, Canada

© 2018 ACM. ISBN 978-1-4503-5620-6/18/04. . . $15.00

DOI: https://doi.org/10.1145/3173574.3173731

feedback, and exploring solutions. However, effective interac-
tion designs for providing such support are often closely tied
to the particulars of the domain in which a collaborative de-
sign activity takes place. Thus, researchers have investigated
interaction designs for a variety of domains, including product
design [46], urban design [9], interior design [42], architec-
ture [31, 50], computer programming [52], and various forms
of media creation [14, 23, 33].

One particular domain that involves extensive collaborative de-
sign is software development. In software development, design
pervades many activities, including architectural system de-
sign, low-level code design, and software test design to name a
few. Design in this domain is especially challenging, because
modern software is often composed of many thousands or even
millions of inter-related lines of code, requiring the work to be
distributed among many programmers. Effectively designing
software is further complicated by the fact that an individual
programmer’s design changes may have cascading effects that
impact other programmers’ work. To address the challeng-
ing scale and complexity of modern software, programmers
attempt to coordinate their efforts. However, as a software
project grows, the programmers must communicate more and
more, and that communication becomes increasingly expen-
sive due to communication overhead [18]. Thus, software
development is particularly in need of systems that effectively
support collaborative design.

One collaborative design activity in software development that
has become particularly important is collaborative code review.
Many software development organizations apply collaborative
code review as a standard practice, including Microsoft [11],
Google [35], Facebook [28], and many popular open-source
software projects [51]. Following the practice, each code
change must be reviewed and accepted by programmers other
than the author before being merged into the product. Dis-
cussion among the programmers and multiple iterations of
feedback and revision may be necessary before the change
is finally accepted. A large body of evidence points to the
benefits of code reviews for discovering and fixing bugs [7,
11, 26, 27, 40, 43] while also improving design aspects of
the software, such as code readability and maintainability [11,
40]. Moreover, code review also has the collaborative-design
benefit of helping the collaborating programmers maintain an
up-to-date understanding of the evolving software design.

https://doi.org/10.1145/3173574.3173731

Although software projects commonly employ collaborative
code review systems (e.g., Gerrit [1], Phabricator [4], and
CodeFlow [11]), there remain well-documented challenges in
code reviewing that limit its effectiveness. Code reviews are
often time consuming, taking developers over six hours per
week by one estimate [17], and developers under pressure to
produce new code often struggle to find time to thoroughly
review other developers’ code [36]. Yet, less time spent on
reviews has been shown to predict greater numbers of software
bugs [29, 41, 48]. One key reason for this trend is that deeply
understanding another developer’s code can take substantial
time and effort [11, 36, 38]. As a consequence, reviewers
often find only shallow defects, that is, ones that are obvious
or superficial [11]. For example, as a professional programmer
in one study put it, “I’ve seen quite a few code reviews where
someone commented on formatting while missing the fact that
there were security issues or data model issues” [11]. More-
over, programmers, being human, have been shown to miss
even such simple formatting issues in their reviews [13, 45],
for example, because they have an incomplete understanding
of the coding standard or simply fail to notice style violations.

To address these challenges, we designed an extension to col-
laborative code review systems, CFar, that introduces an auto-
mated code reviewer based on program-analysis technologies.
In particular, our automated reviewer inserts issues detected by
the analyses into a human–human collaborative code review,
and in doing so, aims to achieve several key goals. One goal is
to increase communication among the programmers—that is,
to encourage human reviewers toward greater communication
by freeing them from finding shallow defects and allowing
them to spend more time discovering deep defects, that is,
ones that are more challenging or involve higher-level design
issues. Discussion about reviews has been shown to be a key
indicator of review quality [37, 41, 48]—for example, deep un-
derstanding of code and deciding on effective solutions often
requires considerable discussion [11, 38]. Another key goal
is to increase reviewer productivity—that is, to use the auto-
mated detection of defects to reduce the overall time and effort
associated with performing high-quality code reviews. A final
key goal is to reveal more defects during code reviews—that
is, to leverage the automated analyses to reduce the number
of shallow defects that reviewers would otherwise miss and to
facilitate human reviewers in discovering deeper issues.

To validate our design, we conducted a mixed-method em-
pirical evaluation on-site at Microsoft. For the evaluation,
we implemented our design as an extension to an existing
collaborative code reviewing system, CodeFlow [11]. To inte-
grate program analyses into CodeFlow, we leveraged existing
program-analysis infrastructure provided by CloudBuild [25].
Our design implementation was production quality (as op-
posed to a research prototype), enabling us to study profes-
sional programmers using the tool for their actual work. In
particular, our empirical evaluation had two main parts: a field
deployment involving 98 professional programmers across
four teams and a controlled laboratory study of seven profes-
sional programmers. As data, the field deployment provided
both usage logs and survey responses, whereas the lab study
provided task videos and interview responses.

The contributions of this work are as follows:

• a new tool design, CFar, for extending collaborative code
review systems with an automated reviewer that uses pro-
gram analyses to enhance communication, productivity, and
review quality in collaborative code review, and

• the findings of a mixed-method evaluation, comprising a
real-world field deployment at Microsoft and a laboratory
study of professional programmers.

BACKGROUND: COLLABORATIVE CODE REVIEW
Collaborative code review is a quality-assurance process in
which programmers wanting to add code changes to a project
must submit their changes for inspection by other program-
mers on the team [11]. This reviewing process is notable for
being lightweight, taking a relatively little amount of time,
and occurring frequently throughout the development process
(often multiple times per week).

The code review process is initiated by the author, who sub-
mits a changeset, the set of all the code files that have been
modified, to be reviewed. Generally, the author selects the
reviewers that have the expertise to review the changes (e.g.,
other programmers on the same team). Each reviewer then
inspects the changes, looking for issues such as bugs, style
violations, potential performance issues, and high-level design
concerns. After completing their inspection, each reviewer
provides this feedback to the author and must approve or reject
the changeset for acceptance into the codebase. It is common
for a review to take several iterations, consisting of reviewers
providing feedback and the author making subsequent changes
each time, before the changes are approved.

To support this code-review process, a number of code re-
view systems with similar basic features have been created and
widely adopted in practice. For example, Gerrit [1] is a par-
ticularly well-known, publicly available code review system,
although many similar systems also exist (e.g., CodeFlow [11],
Phabricator [4], and even GitHub and Visual Studio have such
features). In this paper, we use CodeFlow as a running exam-
ple since it is the system that we extended with CFar (Fig. 1).

One common feature in code review systems enables users
to navigate the files in the changeset and to view differences
between the previous version of the code and the proposed
changes. For example, CodeFlow provides a changeset file
explorer (Fig. 1g) and a code visualization that highlights lines
added and removed (Fig. 1e). Another common feature en-
ables users to attach comments to particular sections of code.
For example, Fig. 1c depicts a reviewer comment, which was
attached to line 236 in the code visualization. Comments may
also have associated discussion threads in which the users
exchange messages regarding the comments. For example,
clicking the curved-arrow button in Fig. 1c would allow the
user to add a discussion message to the comment. Code re-
view systems often provide a variety of ways to explore these
comments, for example, by presenting them within the code
visualization or by providing a tabular listing of comments
(e.g., Fig. 1d). These systems also generally provide support
for managing multiple iterations, for example, by archiving
and organizing previous changesets and comments. Finally,

a

b

c

d
e

f

g

Figure 1. CFar-extended CodeFlow collaborative code review system. Our CFar tool extends the CodeFlow interface (a) with an automated reviewer.
In particular, CFar automatically runs program analyses on the review changeset (g), and based on the results, creates comments (b) that are mapped
to relevant lines in the code visualization (e). These are first-class comments very similar to ones left by human users (c). For example, they appear
along with the user comments in the comment summary listing (d). The CFar reviewer (“OACR”) is also included among the human reviewers in the
reviewer-status listing (f), and for instance, will approve the changeset if all the CFar comments have been addressed.

these tools typically provide features for recording reviewers’
statuses and decisions, for example, whether they have begun
their review or whether they have accepted or rejected the
changeset (e.g., Fig. 1f).

THE CFar TOOL
To increase programmer communication, enhance program-
mer productivity, and reveal more defects during code reviews,
we designed CFar, an automated-reviewer extension to col-
laborative code review systems. CFar stands for CodeFlow
Automated Reviewer (pronounced see-far). In particular, CFar
introduces automated feedback into the code-reviewing pro-
cess, and does so using many of the same features used by
human users. Thus, in many ways, the automated reviewer
appears to human users as a first-class participant in the review.
A key aim of this design is to use the automated feedback to
facilitate collaboration among the human users; however, the
automated reviewer is not itself an intelligent conversational
agent. Rather, the feedback our automated reviewer provides
is based on automated program analyses. Our design was
largely motivated by talking to programmers who use CFar
each day, as well as the programmers who develop it.

For this work, we implemented our CFar design by extending
and harnessing two industrial-strength tools, CodeFlow [11]
and CloudBuild [25], respectively. CodeFlow is a collabora-
tive code review system, similar to Gerrit, that is actively used
by almost 40,000 programmers, creating more than 6300 code

reviews daily. The CFar-extended version of CodeFlow incor-
porates our automated reviewer into the existing interface. To
give our automated reviewer its program-analysis capabilities,
we leveraged the CloudBuild system. CloudBuild is a cloud-
based service providing resource-effective builds, tests, and
program analyses. Over 4000 programmers use CloudBuild
actively, requesting more than 20,000 builds daily.

In the remainder of this section, we will first describe the
essential features of CFar, using our CodeFlow-based im-
plementation as a running example, and then describe some
additional details about our implementation.

Features of CFar
Perhaps the most central feature of CFar is that it automatically
leaves review comments on the changeset code. For example,
Fig. 1b depicts a comment left by the CFar reviewer. The CFar
comments appear as first-class review comments in that they
are inserted into the review using the same basic mechanisms
as the normal human-provided comments. However, the au-
tomated reviews are visually distinct from the human ones.
For example, in our CodeFlow extension, the CFar comments
have a yellow border (Fig. 1b), whereas the human comments
have a blue one (Fig. 1c). Moreover, the automated reviewer is
listed as the reviewer who wrote the comments (e.g., the name
of the program-analysis framework our tool used, “OACR”, in
Fig. 1b). The content of each CFar comment is produced by
an automated program analysis performed by CloudBuild. To
further ensure that the CFar comments appear consistent with

human ones, CFar maps each comment to the relevant section
of code to which the analysis output refers (e.g., the Fig. 1b
comment maps to line 221 in the code visualization). In the
CodeFlow code-diff visualization, each comment is connected
to the relevant section of code by a thin line.

By creating CFar’s analysis output as first-class comments,
they are fully integrated into the normal human–human review
discussion. For example, users can reply to the automated com-
ments (e.g., by clicking the curved-arrow button in Fig. 1b),
wherein they might discuss the rationale for the CFar comment,
explain a proposed plan for addressing the comment, or debate
the best solution for the issue. CFar comments, like user ones,
also have a status (“Active”, “Pending”, “ByDesign”, “Wont-
Fix”, and “Resolved”). Although users can set the status of
a CFar comment in the usual way, CFar will also change the
status automatically under certain circumstances. For example,
if a CFar analysis discovers that a previous comment has been
fixed but the comment status is still Active or Pending, it will
automatically change the status to Resolved. This feature was
added after initial feedback from programmers, saying that
they expected CFar to “follow up” with reviews.

The CFar comments do have one key difference with user
comments: they have features for collecting feedback about
the comment. In particular, each CFar comment has three
buttons (depicted in Fig. 1b)—a check mark to indicate that
the comment was “useful”, an x mark to indicate that the
comment was “not useful”, and a question mark to indicate
that the comment was not understandable. These buttons give
users a convenient way to provide feedback on the quality
of the generated comments. The system records this user
feedback for use, for example, in deciding which analyses
should be run or in identifying analyses that need improvement
(e.g., clearer messages). For each button, the clicks collected
from all users are also summed and displayed as a count next
to the button, for example, to give users a convenient way to
check if there is a consensus about the comment.

The CFar automated reviewer leaves or updates its comments
at the start of every iteration (i.e., every round of changes).
For example, when an author submits a new review (Iteration
1), CFar analyzes the codebase and changeset, and creates an
initial set of comments. When a user, having made changes
to the changeset, advances the code review to a new iteration,
CFar will re-analyze the code, will add any new comments
its analyses reveal, and will update existing CFar comments
based on the changes. When dealing with large, real-world
code bases, automated analyses may take a long time to com-
plete, and CFar provides features for alerting users to the status
of the automated reviewer. For example, our CodeFlow imple-
mentation displayed messages as depicted in Fig. 2. We added
this feature after two programmers indicated to us that they
were unsure of CFar’s current status.

In addition to leaving review comments, the CFar automated
reviewer also takes part in the changeset-acceptance pro-
cess. For example, the CFar reviewer appears in CodeFlow’s
reviewer-status listing as “OACR” (Fig. 1f). If CFar detects
that all its analysis comments have been addressed (i.e., nei-
ther Active nor Pending), then it will automatically accept the

Figure 2. Interface displaying CFar’s progress on a build with auto-
mated program analyses and generating/updating analysis comments.

Figure 3. The architecture of CFar-extended CodeFlow. The blue boxes
denote existing technologies used by our system, whereas the green boxes
denote components we built.

changeset. CFar will never reject a changeset; however, if
Active or Pending comments are present, it will display its
decision as pending. The goal of this feature is to make the
CFar reviewer act as any other reviewer, and to follow standard
practices, such as requiring there to be no rejections before
accepting the code changes.

Implementation of CodeFlow Extension
Fig. 3 illustrates the complete architecture of our CFar ex-
tension of CodeFlow. The architecture consists of two main
components: (1) a front-end extension to the CodeFlow user
interface, which provides the UI features described above, and
(2) a back-end web service that invokes a build and processes
the analysis warnings.

The CFar web service serves as the communication channel
between CodeFlow and CloudBuild. Specifically, the CFar
web service listens for events from the CodeFlow web service
that indicate the progress of a code review. These events, for
instance, indicate when a new code review is created, when
a new iteration in an existing review is created, or when a
review is completed. By listening to these events, the CFar
web service also learns the identities of the review participants
such that, for example, the automated code reviewer may be
turned on only for particular groups of programmers when
selectively ignoring all events about other participants.

When a new code review or iteration is created, the CFar
web service first invokes CloudBuild to request a build for
the new changeset (i.e., before performing any analyses). We
implemented CFar to support the popular distributed version-
control system Git. To perform the build for a changeset,

CloudBuild needs access to a Git repository containing the
code. The CFar web service provides this access by cloning
the author’s local repository and uploading it to Azure [3],
a cloud computing service. CloudBuild can then access the
repository on Azure and perform the build.

When the CFar web service requests a CloudBuild build, it
also requests program analyses to be run on the (source or
binary) code of each build target. To run these analyses, Cloud-
Build uses the OACR extensible program-analysis framework.
Development teams can configure OACR to use a variety of
program analyzers, such as PREfast and FxCop. For example,
PREfast [5] performs intraprocedural static analysis on C and
C++ source code to identify code defects, such as reliability,
security, and compliance errors.

In addition to CodeFlow events, the CFar web service also sub-
scribes to CloudBuild events that indicate the status of builds
and analyses. Upon the completion of analyses, the CFar web
service downloads an XML document from CloudBuild that
contains all the analysis warnings returned by OACR. The
CFar web service parses these warnings and collects the sub-
set of warnings to be displayed within the code review. For
example, the CFar web service filters out warnings not directly
applicable to the changeset. The CFar web service then posts
the warnings to the CodeFlow web service, so the warnings
will appear as comments in the code review. The CFar web
service also posts data about its progress to the CodeFlow
service, so it can be displayed as in Fig. 2.

METHOD
To evaluate the extent to which CFar achieves its goals, we
conducted a mixed-method empirical evaluation at Microsoft.
In research contexts with high variability, such as software
engineering, all empirical methods have limitations—for ex-
ample, laboratory experiments generally emphasize control at
the expense of realism, whereas case studies make the opposite
trade-off. A mixed-method approach to investigation aims to
address this issue by applying multiple study designs to the
same research questions with the idea that “the weaknesses of
one method can be compensated for by the strengths of other
methods” [22].

The research questions that we addressed with our mixed-
method empirical evaluation of CFar were as follows:

RQ1: Did CFar increase communication among programmers?
RQ2: Did CFar increase productivity of programmers?
RQ3: Did CFar improve code quality?
RQ4: Did programmers like CFar?

Our mixed-method approach to addressing these questions
comprised two studies: a real-world field deployment of the
tool at Microsoft and a laboratory study of professional pro-
grammers using the tool. For the field deployment, we sac-
rificed control and the ability to observe details of how pro-
grammers used the tool, in exchange for a realistic evaluation
context in which real-world programmers were using the tool
on their actual development tasks. In contrast, for the lab study,
we sacrificed realism, constraining task time, codebase size,
and the tasks to be performed, in exchange for the ability to

control the participants’ tasks, thus facilitating direct compar-
isons, and to directly observe participants as they worked with
CFar. In the remainder of this section, we detail the methods
we used for each of these studies.

Field Deployment
We deployed CFar to 98 programmers across three teams at
Microsoft to be used in the programmers’ code reviews for
15 weeks. In the remainder of the paper, we refer to these
participants as FP-X, where FP refers to Field Participant
and X refers to the participant number (e.g., FP-15 refers to
field-study participant #15). We selected these teams because
they use all of the necessary components for CFar (CodeFlow,
CloudBuild, and OACR), and thus already employ a workflow
of performing code reviews. These teams are located in the
US, with most members co-located in the same offices, and
are composed of predominately male programmers with a
large range of professional experience. Two of the teams work
on customer-facing products while the third team works on
internal productivity services. Additionally, a fourth team
of programmers used the front-end of CFar with their own
analysis and logging capability as back-end. We sent an email
to the programmers explaining how CFar works along with
examples of what it would add to their reviews. Using the
tool was voluntary and could be enabled or disabled for each
programmer and review. The specific program analyses used
by CFar were entirely up to the individual teams. Thus, we
did not modify their existing analysis configurations (e.g., one
team could have been running a security analysis while another
style and concurrency analyses).

By the end of the field deployment, CFar had been used for 354
code reviews that were created by 41 unique review authors
and included 883 unique reviewers. Of those reviews, 30
reviews contained at least one analysis comment, with a total
of 149 analysis comments overall. The number of analysis
comments might have been greater, but the teams studied had
been using the program analyzers in their existing workflow
for some time and, for example, had already configured the
tools to suppress many warnings.

Following the deployment, we emailed the 98 programmers
from the three teams to take part in a survey1, so we could bet-
ter understand their usage and opinions of CFar. The questions
asked whether CFar decreased or increased communication,
productivity, and code quality. Most questions had Likert-scale
responses along with a textbox to provide further explanation.
The survey was anonymous—respondent anonymity has been
shown to increase response rates [49] and leads to more-candid
responses. We also ensured that the survey took only about
10 minutes, as long surveys may deter participation. 33 of the
programmers filled out the survey, yielding a 33.7% response
rate, which is considered relatively high [44]. One possible
reason for our high response rate is that we targeted only actual
users of our tool as opposed to “cold emailing” individuals
with no prior knowledge of the research. During analysis, we
excluded one respondent’s replies because they indicated that
CFar was not enabled on their code reviews.

1https://github.com/human-se/cfar-survey

Lab Study
To gain rich qualitative insights about CFar, we ran a labora-
tory user study of programmers performing two code reviews,
one with and one without our tool. This allowed us to closely
observe programmers as they performed code reviews and
receive feedback from them regarding our tool.

We emailed 36 programmers from one of the three teams to
which we had deployed our tool. This team was selected
due to their close proximity to us (within walking distance).
These programmers already had experience with CodeFlow,
CloudBuild, and OACR. Of them, seven programmers (six
male, one female) took part in the lab study. We refer to
these participants as LP-X, where LP refers to Lab Participant
and X refers to the participant number (e.g., LP-3 refers to
lab-study participant #3). All participants held bachelor’s de-
grees. Additionally, three also held a master’s degree and one
a PhD degree. On average, the participants had 15 years of
programming experience (SD = 10). They reported perform-
ing an average of 25 code reviews per week (SD = 44.8) and
requesting an average of three reviews per week (SD = 1.6).

The code we asked participants to review was from an actual
project at their company and from commits that had been pre-
viously made by other programmers. We selected code from
a project with which all of our participants would be famil-
iar. We ensured that none of the participants had previously
reviewed the code or committed changes to it by checking
the commit logs as well as by asking them at the start of the
lab session. Our goal was to enhance validity of our study by
choosing actual commits to review and by ensuring the code
was not completely foreign to the participants.

The participants took part in individual lab sessions lasting ap-
proximately one hour. First, participants were read a summary
of the study and then filled out a background questionnaire.
Next, they were asked to complete two code reviews, with 25
minutes to complete each. Analysis comments were added to
one of the reviews, but not the other. The order of the reviews
was the same for all participants but which review received
the analysis comments was chosen randomly. If participants
did not complete a review within 25 minutes, they were asked
to stop. To better understand the participants’ behaviors, we
asked them to “think aloud” [24] as they performed the re-
viewing tasks. After completing the two code reviews, each
participant took part in a semi-structured interview regarding
their thoughts on the CFar tool. As data, we collected audio
and screen-capture video of each participant’s session.

RESULTS
To address our research questions, we analyzed the usage logs
and survey responses from the field deployment, and the task
videos and interview responses from the lab study. We now
report the results of our analyses for each research question.

RQ1 Results: Increased Communication
As Fig. 4 shows (left bar), over half of the survey respondents
(61%) reported that CFar enhanced their team’s collaboration.
Moreover, as the same figure shows (right bar), nearly half of
the programmers (45%) reported that CFar inspired more con-
versations. In contrast, only a handful of respondents indicated

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Overall, I feel that the
analysis comments

enhanced collaboration
among developers.

The analysis comments
inspired fewer or more

conversations with other
developers than I would

typically have?

P
er

ce
nt

ag
e

of
 re

sp
on

de
nt

s

Strongly disagree

Strongly agree

Agree

Neutral

Disagree

Significantly more

More

Neutral

Fewer

Figure 4. Field-deployment survey responses regarding the impact of
CFar on programmer communication during code reviews (RQ1). The
green portion of each bar denotes responses that support CFar’s effec-
tiveness; red denotes responses against; and gray denotes neutral re-
sponses.

that CFar either had no effect or reduced collaboration and
that it reduced communication (14% and 7%, respectively).

In the field-deployment survey, we also asked programmers
an open-ended question about which analysis comments they
discuss with other programmers. 40% of the respondents said
that they communicate with other programmers about all of
the analysis comments. However, during the field deployment,
participants wrote a reply to only 9% of the analysis comments.
Although these results at first seem contradictory, they may
be explained by the fact that each team in our study worked
in an open-plan office, and tended to engage in in-person
discussions (as opposed to using CodeFlow). For example,
LP-4 described situations in which he will go talk to the review
author before even looking at a review:

LP-4: “If the change is anything above a minor bug fix... if it typically
touches more than 5 or 10 files or has some kind of design thing, I go
talk to them.”

As Fig. 5 shows, CFar inspired conversation topics that ranged
from shallow defects to deep issues. For example, the Coding
Style category would have tended toward shallow defects.
In contrast, the Refactoring, Code Smells, and High-Level
Design categories would have tended toward deeper design
issues. The Implementation Details category likely contained
a mix of shallow defects (e.g., minor bugs) and deeper issues
(e.g., subtle security vulnerabilities and concurrency errors).

Programmers also made statements in their open-ended re-
sponses that further indicate that CFar led to additional con-
versations. As one programmer explained:

FP-14: “Having some comments helped start the conversations that might
be missed until last minute, so their addition is a net positive.”

Another programmer recounted a situation in which CFar
caused him to talk to a fellow programmer:

FP-33: “I followed up with the tool owner to understand whether there
was a performance impact or not. I probably would not have if it hadn’t
been called out in the review.”

0% 10% 20% 30% 40% 50%

Other

High-level design

Code smells

Refactoring

Implementation details

Coding style

Percentage of respondents
Figure 5. Field-deployment survey results indicating the programmer-
conversation topics inspired by CFar during code reviews. The Other
category consisted of “unit tests”, “performance issues”, “educating ju-
nior programmers”, and “build-breaking issues” (none received more
than two responses).

Additionally, two more programmers provided their thoughts
on why the comments enhanced communication:

FP-6: “Different programmers have different perspectives about the same
problem or issue or solution. It’s beneficial to talk with others and
acquire inspiration.”

FP-13: “The auto-generated code review comments have prompted me
to ask questions of fellow programmers about how best to resolve the
problem at a point in development where it still feels productive to
do the right thing rather than the expedient thing. As a result, the
discussions I’ve had have been more in depth and just more usefully
focused on what the right solution is.”

RQ2 Results: Increased Productivity
As Fig. 6 shows (left bar), a considerable number of the survey
respondents (38%) indicated that CFar increased their produc-
tivity. One reason reported by programmers was that it largely
freed them from having to provide feedback about shallow
bugs. A number of programmers remarked on this fact:

FP-33: “Anything that can be automated should be. Reviewers should
focus on critical thinking and bots should do the mindless clerical
work.”

LP-7: “I wouldn’t even have to look for those things. I would just look
for higher-level things.”

LP-1: “When you are thinking the same thing that [the tool] has already
pointed out, you don’t need to focus so much on that part anymore. I
also learn about things I didn’t see in the review.”

Interestingly, these remarks also suggest an interrelationship
between productivity and code quality. In particular, by freeing
the programmers from dealing with shallow defects, they were
able to invest more effort into finding and discussing deep
defects. One programmer commented on the importance of
this benefit:

LP-4: “Maybe earlier in my career I would have gone right into the code
and found logical issues and fine grained stuff. But those are not as
interesting. I want to provide design feedback.”

Another productivity benefit that programmers cited was that
CFar delivered feedback quickly and early in the code-review
process. For example, one programmer elaborated on this
productivity benefit:

FP-6: “The instant feedback—I didn’t have to wait for anyone’s com-
ments.”

Several others explained that, even though they were already
using program-analysis tools in later parts of their workflow,
CFar helped them save time by delivering the analysis feed-
back sooner:

FP-24: “Saves me time to fix the same issue [now, rather than] very late.”
FP-13: “I’m glad to have had the warnings pulled earlier in my develop-

ment loop so I can address them earlier.”
FP-21: “Many comments are things that I would have to fix anyway,

so I like knowing about those things sooner (in Code Review) rather
than later (when I’m trying to check-in or after). Having CodeFlow
automatically give me extra information and/or an early heads-up about
things to fix is a good time saver.”

In contrast to the productivity benefits expressed by these
programmers, several (19%) indicated that CFar decreased
their productivity. From the lab study, several participants
expressed that the analysis comments cause them to want to
view relevant code that is not included in the code review, and
so they must open a code editor to view it (CodeFlow does
not currently support this). Another reason cited for CFar
having a negative productivity impact was an overload of CFar
comments:

FP-29: “The comments simply get in the way of someone trying to do a
review.”

FP-28: “Too much noise.”

RQ3 Results: Improved Code Quality
As Fig. 6 shows (right bar), nearly half of the survey respon-
dents (48%) indicated that CFar helped increase the quality of
code. Moreover, only one programmer responded that the use
of CFar decreased code quality.

During the field deployment, CFar posted a variety of analysis
warnings as comments in code reviews, summarized in Fig. 7.
All warnings concerned shallow defects, and in particular,
program behavior, code style, and API usage. For example, the
most common warning is about parameters that have not been
validated or null checked. Other popular warnings include
those regarding API usage. Four of the warning types shown
in Fig. 7 are about using suitable XML or string libraries.

One reason why these CFar comments improved code quality
is that programmers did not simply ignore them, but rather,
acted on them. Recall that each review comment in our CFar-
extended CodeFlow has a status (i.e., Active, Resolved, By-
Design, etc.). At the end of the field deployment, only 3% of
the analysis comments remained Active (i.e., unaddressed) in
the completed code reviews, whereas 97% had their statuses
changed either by a programmer or by CFar itself, which auto-
matically sets the status of an analysis comment to Resolved
if the corresponding code issue has been fixed. Furthermore,
in the field-deployment survey, 33% of the respondents said
that they responded to all analysis comments no matter what
code issue they concern.

In addition to responding to CFar comments, the programmers
also indicated that they understood the CFar comments. Recall
that each CFar comment has buttons (useful, not useful, or
do not understand) that users could click to provide feedback
on the comment. During the field deployment of CFar to
the fourth programmer team, which used the front-end com-
ponent of our architecture, we collected this user feedback.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

The analysis comments
decreased or increased

my productivity?

The analysis comments
decreased or increased
the quality of the code?

P
er

ce
nt

ag
e

of
 re

sp
on

de
nt

s

Increased

Neutral

Neutral

Increased

Decreased
Decreased

Significantly increased

Figure 6. Field-deployment survey results regarding the impact of CFar
on programmer productivity (RQ2) and code quality (RQ3). The green
portion of each bar denotes responses that support CFar’s effectiveness;
red denotes responses against; and gray denotes neutral responses.

There were 119 votes in total, of which 74 were useful and
45 not useful. No programmer indicated not understanding
a comment. This is particularly encouraging given that prior
research has found that one of the biggest barriers to adopting
program analysis is the difficulty to understand the generated
warnings [21]. Displaying the warnings in CFar as comments
placed directly on top of the relevant code may have aided
programmer understanding and avoided this common barrier.

Many of the programmers offered explanations in the survey
as to how CFar assisted them in finding and addressing code
issues. For example, one programmer provided his rationale
as to why CFar helped him:

LP-6: “...in code reviews you can only do so much. You cannot really
go through all the details and go through all the dots to find the bugs.
These kinds of comments make it really useful.”

Several other participants brought up that CFar uncovered
issues that a human reviewer would not have:

FP-24: “Some errors are just too hard for a human to notice.”
LP-5: “These are often things people don’t catch but are supposed to in

code reviews or things you would make a comment on anyway.”
FP-18: “Warnings make me think of something that I otherwise wouldn’t

have.”
FP-30: “Things I might have missed earlier would be pointed out, and I’d

go look at that piece of code in more detail.”

While there was a generally strong consensus that CFar en-
hanced code quality, some programmers provided neutral or
negative responses. A potential reason for the high number of
neutral responses is that programmers were required to change
their workflow in order to utilize CFar’s features. Those that
did overcome this barrier expressed issues with the program
analyses used by CFar:

FP-13: “So far I’ve only seen warnings about potential hazards that turned
out not to be problems so code quality has been unaffected.”

FP-32: “I dislike the comments I see because they’re all redundant. . . ”

RQ4 Results: Found Useful
As Fig. 8 shows (left bar), all but one of the field-deployment
survey respondents indicated that they found the CFar com-

0%
5%

10%
15%
20%
25%
30%
35%
40%

P
ro

po
rti

on
 o

f p
os

te
d

w
ar

ni
ng

s

Figure 7. Field-deployment log results regarding the types of analysis
warnings that CFar posted as review comments. The chart shows only
the top-ten most commonly-posted warnings.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

I found the analysis
comments unuseful or

useful?

I dislike or like having
analysis warnings

displayed as review
comments?

P
er

ce
nt

ag
e

of
 re

sp
on

de
nt

s Very useful

Useful

Strongly like

Like

Unuseful

Neutral

Dislike

Figure 8. Field-deployment survey results regarding the usefulness of
the CFar tool. The green portion of each bar denotes responses that
support CFar’s effectiveness; red denotes responses against; and gray
denotes neutral responses.

ments useful. Moreover, the figure (right bar) shows that a
strong majority of respondents liked the CFar comments (only
one participant did not). These sentiments were echoed by the
lab-study participants: all seven participants in the lab study
indicated that they found the analysis comments useful and
held a favorable opinion of CFar.

Beyond the programmer opinions addressed in our other re-
search questions, our participants also provided feedback on a
variety of additional aspects that they liked about CFar. Two
participants made comments showing their general enthusiasm
for the tool’s potential:

FP-13: “It seems like the auto-generated comments I’ve seen are the tip
of the iceberg... I’m optimistic that there’s a lot of untapped potential.”

LP-3: “I think this is an awesome space that I would love to see even more
static analysis done to make my job of code reviewing even easier.”

Another participant reported a great example of when CFar
can help educate programmers:

FP-22: “Currently, I have seen [CFar] comment on certain API usages.
This has led to some wonderful learning opportunities that would not
have surfaced otherwise.”

Although the majority of participants indicated that CFar was
useful, a couple participants contradicted the others. In partic-
ular, they tended to be critical of the CFar comments:

FP-32: “Too many useless comments.”
FP-11: “The comments I have seen have been too trivial.”

DISCUSSION
Overall, the results of our empirical evaluation of CFar were
favorable. A considerable proportion of the programmers re-
ported that CFar increased their communication and enhanced
collaboration during code reviews (RQ1 results). Furthermore,
many programmers reported that CFar increased their produc-
tivity, with a key reason being that it freed them from dealing
with many shallow defects (RQ2 results). In addition to pro-
ductivity gains, many also reported that CFar helped increase
the quality of their code, largely because it caught issues a hu-
man would miss (RQ3 results). Lastly, nearly all programmers
reported finding CFar useful, and a majority indicated that
they liked having the automated code reviewer (RQ4 results).

However, in addition to this strongly favorable feedback, some
programmers also pointed out limitations of the CFar tool. In
particular, their comments suggested opportunities for improv-
ing CFar with respect to the quantity and quality of feedback
produced. Here, we discuss these limitations in more detail
along with promising approaches for addressing them.

Reducing Information Overload in CFar
One limitation of CFar revealed by our results was that sev-
eral programmers reported feeling overwhelmed by the size
and/or number of CFar comments. For instance, several pro-
grammers indicated that this issue hindered their productivity
(RQ2 results) and overall perception of the usefulness of CFar
(RQ4 results). Additionally, one of the field-deployment sur-
vey questions asked for the programmers’ opinions about the
quantity of CFar comments. The programmers were some-
what divided in their opinions on this question. On the one
hand, 31% of the programmers indicated that there were too
few comments, and several of them indicated that they would
like to see more comments from different types of program
analyses. However, on the other hand, 19% of programmers
reported that there were too many CFar comments, supporting
the idea that information overload was a problem.

One possible approach for addressing the information-
overload problem in CFar is to provide additional support
for efficiently eliding CFar comments using filtering criteria
based on characteristics of the program analyses. In our study,
each development team could enable and disable program ana-
lyzers using OACR; however, using these features was tedious
and time consuming, for example, because to update the CFar
comments required rerunning the entire build and analysis. It
stands to reason that more-usable program-analysis filtering
and eliding features within the code-review system could ad-
dress this problem. Indeed, several programmers expressed
wanting greater support for filtering CFar comments:

FP-28: “Must be able to turn off comments by category / type.”

FP-14: “If we started to have more detailed analysis in CodeFlow, I’d
like to see it able to be filtered out so human comments can be given
priority. Too many comments would definitely detract from use and
usefulness of the tool.”

FP-32: Suggested “static code analysis vs. not code analysis” as types of
filters to add to CFar.

As it happens, CodeFlow already provides comment-filtering
features (e.g., for filtering by author), and it would be relatively
straightforward to extend those features with filters specific to
program analyses.

In addition to reducing the number of warnings to alleviate in-
formation overload, the individual warnings themselves could
be reduced in size. In particular, their textual content could be
shortened or elided. The warnings from the program-analysis
back-end used by our tool were originally designed to be dis-
played in a long list, much like compiler warnings; however,
CFar fundamentally changes the context in which the warn-
ings are displayed by annotating code with them. A prior study
using eye-tracking also observed programmers having diffi-
culties reading automated analysis warnings [16], and other
researchers proposed visualizations to improve comprehen-
sion [15]. Such approaches could be applied to our CFar tool
to further help address the problem of information overload.

Improving CFar Comment Relevance
Several programmers expressed concern about how the pro-
gram analyses used by the automated code reviewer need to
be configured correctly for each team. Our tool already uses a
team’s current configuration for OACR; however, the program-
mers may be more concerned now that the analysis warnings
are displayed in their code reviews, as opposed to a log file that
is easy to ignore. In fact, the programmers of one of the teams
we studied had ignored the OACR log file for six months until
we deployed the automated code reviewer to them. Several
programmers also provided feedback, voicing their concerns
as to how important proper configuration is:

FP-14: “However each team or programmer may have different styles,
so it would have to be only the most important things to highlight or
people would ignore them or stop using [the tool] as it would get in the
way.”

LP-2: “There are a lot of rules I don’t ever want turned on. They are just
too chatty. I’d be like, ‘that’s a stupid rule; let’s turn that off.’ There’s
a ton of bad ones. There’s a ton of good ones too.”

LP-7: “The question is will [the static analyses] be used right by the
team. . . It’s a function of, even if OACR has it, will they enable it or
do the work to keep it clean?”

One possible way to configure an automated code reviewer
for the ever-changing needs of a team or project is to leverage
feedback from the programmers themselves. Such data may
be collected by checking the status of analysis comments (e.g.,
Resolved versus WontFix) or by counting the CFar comment
feedback (recall from Fig. 1b; useful, not useful, or do not un-
derstand). If these data indicate that a certain type of analysis
comment is consistently not fixed or disliked by programmers,
then comments of this type could be excluded from future
code reviews of the particular team. Other researchers have
proposed similar ideas, such as Google’s Tricorder tool [45],
which removes analyses that are deemed unhelpful; however,
Tricorder does so globally rather than per team.

RELATED WORK
Similar to our work, several prior researchers have explored
integrating program analyses into code-reviewing tools. For
instance, researchers at Google integrated warnings from the
FindBugs static analyzer into their Mondrian code-review sys-
tem [10]. However, this effort ran into scaling problems, which
caused stale or delayed analysis warnings, and produced many
automated comments that were never addressed by program-
mers [45]. To address these issues, researchers at Google built
Tricorder [6, 45], a program analysis ecosystem that scales
and has features that enable programmers to write custom ana-
lyzers and that detect ineffective analyzers and remove them
from the system. Tricorder analysis warnings are posted in
Google’s internal code-reviewing tool, which has features sim-
ilar to CodeFlow [11]. Like our CFar tool, Tricorder has been
empirically shown to help reveal code defects [45]; however,
unlike CFar, Tricorder’s creators have made no claims about
(and thus not empirically evaluated) Tricorder’s influence on
programmer communication and productivity in code reviews.

Similar to Google’s efforts, VMware also proposed a tool
called Review Bot [12, 13] for integrating program analy-
sis with code reviewing. A preliminary empirical evaluation
of Review Bot demonstrated the tool’s potential for finding
defects—the programmers stated that they would fix 93%
of Review Bot’s automatically generated review comments.
However, similar to the work at Google, the claims and eval-
uation did not specifically address the issues of programmer
communication and productivity during code reviews.

In addition to the Google and VMware tools, several other
code-review tools have been proposed that incorporate pro-
gram analyses; however, these other tools either have no re-
ported evaluations or the results were negative. One of the
earliest code-review tools that incorporated static analyses
was NASA JPL’s SCRUB [34]. More recently at Facebook,
a program analyzer, Infer [20, 19, 2], was incorporated into
the collaborative code review tool, Phabricator [4]. Lastly,
Octopull [32] incorporated static program analyses into the
GitHub platform’s interface. However, no empirical evalua-
tions have been published for SCRUB and Phabricator/Infer,
and in an evaluation involving CS undergraduate students,
Octopull showed no significant effect [32].

THREATS TO VALIDITY
Every empirical study has threats to validity [30], and we ap-
plied a mixed-method approach to reduce some of the threats
to our investigation. For both our studies, a key threat to exter-
nal validity [47] was that we studied programmers and tools
from a single software organization; thus, our findings may not
generalize to other software organizations. Furthermore, most
of our participants were male, which may prevent our findings
from generalizing. Reactivity effects also posed a threat to
external validity in both our studies. That is, the programmers
may have acted differently than they normally would, because
they knew they were being observed or guessed that the re-
searchers had created CFar. This may have occurred in our
survey, since most of the open-ended responses were positive.

Our two studies each had their own key threats to validity as
well. The use of a Likert-style survey in the field deployment

created a threat to construct validity [39], and to help mitigate
this threat, we asked respondents to provide open-ended expla-
nations to clarify each of their answers. The use of controlled
tasks and a controlled working environment in the lab study
created a threat to ecological validity. We sought to offset this
threat by triangulating the results with the field deployment
in which participants used the tool on their everyday work in
a real-world setting. Moreover, we further sought to mitigate
the threat in the user study by using code that was actually
submitted for review at the company and that was taken from
a project familiar to all of the participants.

CONCLUSION
In this paper, we introduced the novel CFar tool design for ex-
tending collaborative code review systems with an automated
code reviewer that uses program analyses to enhance commu-
nication, productivity, and review quality in human–human
collaborative code review. Our mixed-method empirical evalu-
ation of CFar produced several key findings:

• RQ1 (communication): 45% of programmers who used
CFar for their work indicated that the tool increased com-
munication, and over 60% indicated that it enhanced col-
laboration. (Only 7% and 14% of participants, respectively,
disagreed with these benefits.)

• RQ2 (productivity): 38% of programmers who used CFar
indicated that it increased their productivity (versus only
19% who disagreed), and multiple participants indicated
that a key reason was that it freed them from dealing with
shallow defects.

• RQ3 (code quality): 48% of programmers who used CFar
indicated that it helped increase code quality (versus one
who disagreed), and several expressed that a key reason was
that it identified defects that a human reviewer would miss.

• RQ4 (user opinions): All but one programmer who used
CFar found it useful, and 69% expressed that they liked the
tool (versus only one programmer who did not).

We hope that CFar and our findings represent a substantial
step toward more efficient and more effective collaborative
code review systems. A promising direction for future work is
to explore novel ways in which a human may interact with an
automated code reviewer. For instance, to debug an analysis
comment, a review participant might require more information
than that provided by the analysis warning. In such cases, the
automated reviewer could display, upon request, the code parts
that are to blame for the warning and even suggested fixes. Our
tool design and implementation elicited considerable optimism
from programmers at Microsoft, which revealed an even larger
opportunity for tools to improve code reviewing. Tools like
CFar could continue to help programmers, as was the case for
one of our participants:

LP-4: “I can use my time and energy in some other place of the code that
is more important.”

Acknowledgment
This material is based upon work supported by Microsoft
and the National Science Foundation (NSF) under Grant No.
1302117.

REFERENCES
1. Accessed Jan 2018. Gerrit.
https://www.gerritcodereview.com/.

2. Accessed Jan 2018. Infer. http://fbinfer.com/.

3. Accessed Jan 2018. Microsoft Azure.
https://azure.microsoft.com.

4. Accessed Jan 2018. Phabricator.
https://www.phacility.com/.

5. Accessed Jan 2018. PREfast. https:
//msdn.microsoft.com/en-us/library/ms933794.aspx.

6. Accessed Jan 2018. Tricorder.
https://github.com/google/shipshape.

7. A. Frank Ackerman, Lynne S. Buchwald, and Frank H.
Lewski. 1989. Software Inspections: An Effective
Verification Process. IEEE Softw. 6, 3 (May 1989), 31–36.

8. Ernesto Arias, Hal Eden, Gerhard Fischer, Andrew
Gorman, and Eric Scharff. 2000. Transcending the
Individual Human Mind—Creating Shared
Understanding Through Collaborative Design. ACM
Trans. Comput.-Hum. Interact. 7, 1 (March 2000),
84–113.

9. Ernesto Arias, Hal Eden, and Gerhard Fisher. 1997.
Enhancing Communication, Facilitating Shared
Understanding, and Creating Better Artifacts by
Integrating Physical and Computational Media for
Design. In Proceedings of the 2nd Conference on
Designing Interactive Systems: Processes, Practices,
Methods, and Techniques (DIS ’97). ACM, 1–12.

10. Nathaniel Ayewah, David Hovemeyer, J. David
Morgenthaler, John Penix, and William Pugh. 2008.
Using Static Analysis to Find Bugs. IEEE Softw. 25, 5
(Aug. 2008), 22–29.

11. Alberto Bacchelli and Christian Bird. 2013. Expectations,
Outcomes, and Challenges of Modern Code Review. In
Proceedings of the 35th International Conference on
Software Engineering (ICSE ’13). IEEE Computer
Society, 712–721.

12. Vipin Balachandran. 2013a. Fix-it: An Extensible Code
Auto-Fix Component in Review Bot. In Proceedings of
the 13th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM ’13).
IEEE Computer Society, 167–172.

13. Vipin Balachandran. 2013b. Reducing Human Effort and
Improving Quality in Peer Code Reviews Using
Automatic Static Analysis and Reviewer
Recommendation. In Proceedings of the 35th
International Conference on Software Engineering (ICSE
’13). IEEE Computer Society, 931–940.

14. Patti Bao, Elizabeth Gerber, Darren Gergle, and David
Hoffman. 2010. Momentum: Getting and Staying on
Topic During a Brainstorm. In Proceedings of the 28th
International Conference on Human Factors in
Computing Systems (CHI ’10). ACM, 1233–1236.

15. Titus Barik, Kevin Lubick, Samuel Christie, and
Emerson R. Murphy-Hill. 2014. How Developers
Visualize Compiler Messages: A Foundational Approach
to Notification Construction. In Proceedings of the 2nd
IEEE Working Conference on Software Visualization
(VISSOFT ’14). IEEE Computer Society, 87–96.

16. Titus Barik, Justin Smith, Kevin Lubick, Elisabeth
Holmes, Jing Feng, Emerson Murphy-Hill, and Chris
Parin. 2017. Do Developers Read Compiler Error
Messages?. In Proceedings of the 39th International
Conference on Software Engineering (ICSE ’17). ACM,
575–585.

17. Amiangshu Bosu and Jeffrey C. Carver. 2013. Impact of
Peer Code Review on Peer Impression Formation: A
Survey. In 2013 ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement
(ESEM ’13). IEEE Computer Society, 133–142.

18. Frederick P. Brooks, Jr. 1975. The Mythical Man-Month
(1st ed.). Addison-Wesley.

19. Cristiano Calcagno and Dino Distefano. 2011. Infer: An
Automatic Program Verifier for Memory Safety of C
Programs. In Proceedings of the 3rd International
Symposium on NASA Formal Methods (NFM ’11 LNCS),
Vol. 6617. Springer, 459–465.

20. Cristiano Calcagno, Dino Distefano, Jérémy Dubreil,
Dominik Gabi, Pieter Hooimeijer, Martino Luca, Peter W.
O’Hearn, Irene Papakonstantinou, Jim Purbrick, and
Dulma Rodriguez. 2015. Moving Fast with Software
Verification. In Proceedings of the 7th International
Symposium on NASA Formal Methods (NFM ’15 LNCS),
Vol. 9058. Springer, 3–11.

21. Maria Christakis and Christian Bird. 2016. What
Developers Want and Need from Program Analysis: An
Empirical Study. In Proceedings of the 31st IEEE / ACM
International Conference on Automated Software
Engineering (ASE ’16). ACM, 332–343.

22. Steve Easterbrook, Janice Singer, Margaret-Anne Storey,
and Daniela Damian. 2008. Selecting Empirical Methods
for Software Engineering Research. In Guide to
Advanced Empirical Software Engineering. Springer,
Chapter 11, 285–311.

23. W. Keith Edwards and Elizabeth D. Mynatt. 1997.
Timewarp: Techniques for Autonomous Collaboration. In
Proceedings of the 15th International Conference on
Human Factors in Computing Systems (CHI ’97). ACM,
218–225.

24. K. Anders Ericsson and Herbert A. Simon. May 1980.
Verbal Reports as Data. Psychological review 87, 3 (May
1980), 215–251.

25. Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets,
Erica Lan, Erik Mavrinac, Wolfram Schulte, Newton
Sanches, and Srikanth Kandula. 2016. CloudBuild:
Microsoft’s Distributed and Caching Build Service. In
Proceedings of the 38th International Conference on
Software Engineering—Companion Volume. ACM,
11–20.

https://www.gerritcodereview.com/
http://fbinfer.com/
https://azure.microsoft.com
https://www.phacility.com/
https://msdn.microsoft.com/en-us/library/ms933794.aspx
https://msdn.microsoft.com/en-us/library/ms933794.aspx
https://github.com/google/shipshape

26. Michael E. Fagan. 1976. Design and Code Inspections to
Reduce Errors in Program Development. IBM Syst. J. 15,
3 (Sept. 1976), 182–211.

27. Michael E. Fagan. 1986. Advances in Software
Inspections. IEEE Trans. Softw. Eng. 12, 1 (Jan. 1986),
744–751.

28. Dror Feitelson, Eitan Frachtenberg, and Kent Beck. 2013.
Development and Deployment at Facebook. IEEE
Internet Computing 17, 4 (July 2013), 8–17.

29. Andre L. Ferreira, Ricardo J. Machado, Jose G. Silva,
Rui F. Batista, Lino Costa, and Mark C. Paulk. 2010. An
Approach to Improving Software Inspections
Performance. In Proceedings of the 26th IEEE
International Conference on Software Maintenance
(ICSM ’10). IEEE Computer Society, 1–8.

30. Nahid Golafshani. 2003. Understanding Reliability and
Validity in Qualitative Research. The Qualitative Report
8, 4 (Dec. 2003), 597–606.

31. Tovi Grossman and Ravin Balakrishnan. 2008.
Collaborative Interaction with Volumetric Displays. In
Proceedings of the 26th International Conference on
Human Factors in Computing Systems (CHI ’08). ACM,
383–392.

32. Reinier M. Hartog. 2015. Octopull: Integrating Static
Analysis with Code Reviews. Master’s thesis. Delft
University of Technology.

33. Otmar Hilliges, Lucia Terrenghi, Sebastian Boring, David
Kim, Hendrik Richter, and Andreas Butz. 2007.
Designing for Collaborative Creative Problem Solving. In
Proceedings of the 6th Conference on Creativity and
Cognition (C&C ’07). ACM, 137–146.

34. Gerard J. Holzmann. 2010. SCRUB: A Tool for Code
Reviews. Innov. Syst. Softw. Eng. 6, 4 (Dec. 2010),
311–318.

35. Niall Kennedy. 2006. Google Mondrian: Web-based
Code Review and Storage. (2006). Accessed Nov 2017.

36. Oleksii Kononenko, Olga Baysal, and Michael W.
Godfrey. 2016. Code Review Quality: How Developers
See It. In Proceedings of the 38th International
Conference on Software Engineering (ICSE ’16). ACM,
1028–1038.

37. Oleksii Kononenko, Olga Baysal, Latifa Guerrouj, Yaxin
Cao, and Michael W. Godfrey. 2015. Investigating Code
Review Quality: Do People and Participation Matter?. In
Proceedings of the 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME ’15).
IEEE Computer Society, 111–120.

38. Thomas D. LaToza, Gina Venolia, and Robert DeLine.
2006. Maintaining Mental Models: A Study of Developer
Work Habits. In Proceedings of the 28th International
Conference on Software Engineering (ICSE ’06). ACM,
492–501.

39. Mark S. Litwin. 1995. How to Measure Survey Reliability
and Validity. SAGE Publications.

40. Mika V. Mantyla and Casper Lassenius. 2009. What
Types of Defects Are Really Discovered in Code
Reviews? IEEE Trans. Softw. Eng. 35, 3 (May 2009),
430–448.

41. Shane McIntosh, Yasutaka Kamei, Bram Adams, and
Ahmed E. Hassan. 2014. The Impact of Code Review
Coverage and Code Review Participation on Software
Quality: A Case Study of the Qt, VTK, and ITK Projects.
In Proceedings of the 11th Working Conference on
Mining Software Repositories (MSR ’14). ACM,
192–201.

42. Kumiyo Nakakoji, Yasuhiro Yamamoto, Takahiro Suzuki,
Shingo Takada, and Mark D. Gross. 1998. From
Critiquing to Representational Talkback: Computer
Support for Revealing Features in Design.
Knowledge-Based Systems 11, 7 (Dec. 1998), 457–468.

43. Mehrdad Nurolahzade, Seyed Mehdi Nasehi,
Shahedul Huq Khandkar, and Shreya Rawal. 2009. The
Role of Patch Review in Software Evolution: An
Analysis of the Mozilla Firefox. In Proceedings of the
Joint International and Annual ERCIM Workshops on
Principles of Software Evolution and Software Evolution
Workshops (IWPSE-Evol ’09). ACM, 9–18.

44. Teade Punter, Marcus Ciolkowski, Bernd G. Freimut, and
Isabel John. 2003. Conducting On-line Surveys in
Software Engineering. In Proceedings of the 2003
International Symposium on Empirical Software
Engineering (ISESE ’03). IEEE Computer Society,
80–88.

45. Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma
Söderberg, and Collin Winter. 2015. Tricorder: Building
a Program Analysis Ecosystem. In Proceedings of the
37th International Conference on Software Engineering
(ICSE ’15). IEEE Computer Society, 598–608.

46. N. Shyamsundar and Rajit Gadh. 2001. Internet-based
Collaborative Product Design with Assembly Features
and Virtual Design Spaces. Computer-Aided Design 33, 9
(Aug. 2001), 637–651.

47. Janet Siegmund, Norbert Siegmund, and Sven Apel. 2015.
Views on Internal and External Validity in Empirical
Software Engineering. In Proceedings of the 37th
International Conference on Software Engineering (ICSE
’15). IEEE Computer Society, 9–19.

48. Patanamon Thongtanunam, Shane McIntosh, Ahmed E.
Hassan, and Hajimu Iida. 2015. Investigating Code
Review Practices in Defective Files: An Empirical Study
of the Qt System. In Proceedings of the 12th Working
Conference on Mining Software Repositories (MSR ’15).
IEEE Computer Society, 168–179.

49. Pradeep K. Tyagi. 1989. The Effects of Appeals,
Anonymity, and Feedback on Mail Survey Response
Patterns from Salespeople. Journal of the Academy of
Marketing Science 17, 3 (June 1989), 235–241.

50. Alonso H. Vera, Thomas Kvan, Robert L. West, and
Simon Lai. 1998. Expertise, Collaboration and
Bandwidth. In Proceedings of the 16th International
Conference on Human Factors in Computing Systems
(CHI ’98). ACM, 503–510.

51. Wikipedia. 2017. Gerrit (software). (2017). Accessed Feb
2017.

52. Yunwen Ye, Yasuhiro Yamamoto, and Kumiyo Nakakoji.
2007. A Socio-technical Framework for Supporting
Programmers. In Proceedings of the the 6th Joint Meeting
of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on The Foundations of
Software Engineering (ESEC-FSE ’07). ACM, 351–360.

	Introduction
	Background: Collaborative Code Review
	The CFar Tool
	Features of CFar
	Implementation of CodeFlow Extension

	Method
	Field Deployment
	Lab Study

	Results
	RQ1 Results: Increased Communication
	RQ2 Results: Increased Productivity
	RQ3 Results: Improved Code Quality
	RQ4 Results: Found Useful

	Discussion
	Reducing Information Overload in CFar
	Improving CFar Comment Relevance

	Related Work
	Threats to Validity
	Conclusion
	References

