
Talk and Work: a Preliminary Report

David S Pattison, Christian A Bird, Premkumar T Devanbu
Dept. of Computer Science, Kemper Hall,

University of California, Davis,
Davis, California Republic.

pattison,bird,devanbu@cs.ucdavis.edu

ABSTRACT
Developers in Open Source Software (OSS) projects commu-
nicate using mailing lists. By convention, the mailing lists
are used only for task-related discussions, so they are pri-
marily concerned with the software under development, and
software process issues (releases, etc.). We focus on the dis-
cussions concerning the software, and study the frequency
with which software entities (functions, methods, classes,
etc) are mentioned in the mail. We find a strong, striking,
cumulative relationship between this mention count in the
email, and the number of times these entities are included
in changes to the software. When we study the same phe-
nomena over a series of time-intervals, the relationship is
much less strong. This suggests some interesting avenues
for future research.
ACM Categories & Subject Descriptors: D.2.8 [Met-
rics]: Process metrics, K.4.3 [Organizational Impacts]: Co-
mputer-supported collaborative work
General Terms: Human Factors, Measurement
Keywords: Open Source, Data Mining, Information Re-
trieval, Social Networks

1. INTRODUCTION
Developing large, complex software systems is typically

a knowledge-intensive activity, involving sizeable teams of
people. A great deal of effort is spent in co-ordinating the
activities of large teams. One of the key goals of software
design is to moderate the need for co-ordination. The princi-
ples, as advocated by Parnas [7] and more recently by Bald-
win & Clark [2, 1] center around separation of concerns, di-
vision of labor and division of knowledge. Baldwin & Clark
argue that by adopting design rules [1] designers can reduce
the need for communication and co-ordination in large sys-
tems. As a simple example, we should define the interfaces
of functions and modules extra clearly (especially the ones
that are used most often). If we do this, then the discus-
sion overhead of working with these functions will be lower.
In fact, if we modularize the system well, and define the

This work was supported by a grant from the National Science Foundation
Grant no. NSF-SoD-0613949 and software donations from SciTools and
GrammaTech Corporations.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’08, May 10-11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-024-1/08/05 ...$5.00.

interfaces well, then the communication overhead of func-
tions (regardless of how much they are being worked with)
should remain fairly constant. More “popular” functions, if
well-documented, should incur no more discussion overhead
than less popular ones.

But is this really true? This is our research question:

Does the amount of discussion about software entities re-
main relatively independent of the level to which they
are used?

In Open Source Software systems (OSS), most develop-
ment and discussion activity is publicly archived; using data
from several projects, we compare the number of times source-
code entities (functions, methods, classes, etc) are men-
tioned in changes, with the number of times they are men-
tioned in emails. We find a striking relationship, which es-
sentially suggests that the answer to the question above,
surprisingly, is no. Upon closer examination, however, the
plot thickens: although strong throughout the entire project
life, over intervals, the relationship is substantially weaker.
We speculate as to the causes of this odd phenomenon.

In Section 2, we present related work. In Section 3, we
describe our approach to mining relevant data to answer the
research question. In Section 4, we present our results and
briefly summarize threats to validity; finally we conclude
with a discussion of future research.

2. RELATED WORK
There have been many papers relating to the extraction

of data from CVS/SVN repositories (see, e.g., [10, 5]).
Trying to compare discussion to software is not a new

idea. Mockus et. al. [6] used emails to quantify developer
participation. In previous work, [4] we have analyzed social
networks of OSS maling lists. Rigby & Hassan have ana-
lyzed OSS mailing list content for emotional content[8]. To
our knowledge, ours is the first research to study the use of
software entity (function, class etc.) names in emails.

3. DATA MINING
We now describe how relevant information from several

target OSS projects is collected, cleaned and stored. Fig-
ure 1 summarizes the different steps. The approach is sum-
marized only briefly, since details have already been pub-
lished elsewhere [4].

3.1 Source Code Repository Extracting
CVS/SVN and other repositories contain a wealth of infor-

mation regarding what, when, how, and by whom a change

113

was made to the source code. We extract two kinds of in-
formation from this–change logs, “hunks,” (See steps 1,4 in
Figure 1) and a series of snapshots (step 3).

Ant Python Apache Postgres

Language Java C++ C++ C++
Messages 73157 66541 101250 132698
w/Patches 2424 393 4051 747
Hunks 200854 253291 123221 1257633
Keyterms 12072 5519 2023 9461
Used Keyterms 2704 1452 1271 5454

Table 1: Descriptive statistics for projects studied

� �

����

�����

	
���
��

��
����

���������

�������

��������

�������
�

�����
�

����������

������

�����
�

��� �����

������

�������

���������

�����

���������

����

���!��"

��������
�

���!��"

������

#���

������

�����
���

�

�

�
�

�

� � 	

�

$����
��

��������

�����
��

Figure 1: A flow chart of the data mining process

In the change logs, we are especially interested in “hunks”,
which are contiguous run lengths of code indicating differ-
ences between successive versions. Hunks are very similar
to diffs and patches. A hunk is a representation of a change
from one version of a file to the next. Here is a sample
unified diff from the Ant project:
@@ 109,2 111,4 @@
-Child(Element e) {
- this.e = e;
+String name = event.getTask().getClass().getName();
+int pos = name.lastIndexOf(".");
+if (pos != -1) {
+ name = name.substring(pos + 1);

This hunk deletes two lines and replaces them with four
new lines. Multiple hunks may be used to represent more
complex changes. The change is represented in a line-oriented
way. Between the @@s there are four numbers, indicating
the offset for the start of the change, change line count, etc.
The lines prefixed by - and + are the most interesting, for
these represent the actual lines added and deleted. We are
specifically interested in the use of the names of program-
ming entities in this range; the greater the use of program-
ming terms in hunks, the more programmer effort is spent
working with those terms.

These hunks will be used later on for comparison against
emails. We now describe how we extract the names of the
modules, or functions, from the source code.

3.2 Keyterm Extraction & Counting
We use the term keyterm to refer to the name of an en-

tity in the source code of the system. These will include
items such as classes, methods, static instance variables, ex-
ceptions, parameter names, local variables names, and so
on. For our purposes, we only need to collect software en-
tity names and simple metrics of these entities (such as line
numbers). Using Understand c© from Scitools, Inc., we ex-
tracted the required information. The Understand tool,
like many fact extractors, is designed to work with complete
versions of the system. However, since the files in the sys-
tem evolve individually, we created monthly and transaction

snapshots of each file and ran Understand on each of these
snapshots as if it were a static release of the source code
(see steps 1, 3, 6 in Figure 1). The keyterm correspond-
ing to every possible software artifact from the entire source
code repository can be placed into the database for future
use.

Understand extracts keyterms naming all Java, C, and
C++ entities, including classes, fields, methods, functions
etc. From this list of keyterms, (in the case of Java) we took
only “fully-qualified” function names, and split this into sep-
arate parts, using each part also as a keyterm. For example,
the method name: difforg.apache.ant.Project.init()

we retrieved the following keyterms: difforg.apache.ant.-
Project.init, org, apache, ant, Project, init. For C++
projects, for example, a full function name would be: PgConn-
ection::Connect() and the following keyterms would be
be extracted: PgConnection::Connect, PgConnection, Con-
nect. Since the long function names are split into their
parts, class names are also in the set of keyterms.

Keyterm Culling. Many keyterms are not particularly info-
rmative, since they occur too often or extremely rarely. For
example, the exceedingly popular functions System.out.-

println occurs in a great many hunks, but is not usually a
hot topic of discussion on the mail. Likewise, some functions
may hardly ever be discussed. To avoid the confounding
effects of these outliers, we chose to only consider words
that are mentioned in at least three different hunks and in at
least three different messages (steps 6,10 in Figure 1). These
outlier thresholds were based on a study of the distributions
of keyterm occurrence frequencies in the different projects
studied.

Counting Keyterms. Once the keyterms have been identif-
ied, we need to count occurrences in both emails and hunks.

After downloading the email archives, we parse each email
for meta-data (steps 2, 7 in Figure 1) and place this relevant
information into the database, as discussed in our earlier
work[4]. For our purposes here, we care about the data
(body field) and only some of the meta data (the timestamp
of the email).

There was one complication; emails often contain patches,
which are essentially verbatim diff outputs. Including this
patch content might bias our results. To ensure that we
only counted discussion of code keyterms, we removed (steps
7,8 in Figure 1) emails that contain patches. For the Ant
project, 73,157 email messages appear on the list serve. Us-
ing previously created scripts that identify patches in email
messages [3], only 2,424 of those email messages contain a
patch. Table 1 contains message and patch counts for all of
the projects examined. Once the emails are filtered, we can
complete the keyterm count (step 9 in Figure 1).

Counting keyterms in Hunks is relatively straightforward:
using the lines prefixed with "+" and "-" in hunks we counted
the number of occurrences of keyterms (step 5 in Figure 1).

Once all keyterms are counted, individual documents from
hunks and messages are compared. This comparison is sim-
ilar to methods presented by, Salton et al. [9]; however,
instead of comparing documents within a single set, we are
comparing documents across two disjoint sets.

4. RESULTS
We studied the relationship between the amount of “talk”

concerning keyterms, and amount of “work” with the same

114

Spearman Correlation= 0.579914798379817
Count Hunks

C
ou

nt
 M

es
sa

ge
s

10 100 1000 10000 1e+05

10
10

0
10

00
10

00
0

1e
+

05

Spearman Correlation= 0.680524729707099
Count Hunks

C
ou

nt
 M

es
sa

ge
s

5 10 50 100 500 1000 5000 10000

10
10

0
10

00
10

00
0

1e
+

05

Spearman Correlation= 0.763089989265917
Count Hunks

C
ou

nt
 M

es
sa

ge
s

10 100 1000 10000 1e+05

10
10

0
10

00
10

00
0

1e
+

05

Figure 2: Cumulative counts of keyterm occurrence on hunks (x-axis) and emails (y-axis), for projects (left
to right) Postgres, Apache, and Python. Correlation in all cases is very high and highly significant.

keyterms. Both of these were measured as simple occurrence
counts. We studied this relationship in two ways: cumula-
tively over the entire life of the project, and sequentially,
comparing talk and work over successive time periods.

4.1 Talk & Work: Cumulative
There is a strong relationship between the hunk counts

(representing work) and email counts (representing talk) in
all four projects studied. Figure 2 shows the scatter plots of
the counts for Postgres, Apache, and Python. Since the data
is heavily left skewed, and has a high range, we use a log-log
plot. Ant shows similar (even stronger) correlation, but is
omitted due to space reasons. Table 2 gives the correlations
of all the different projects.

The consistency of this behavior across different projects
is quite striking. The prima facie interpretation is that,
cumulatively over the life of each project, if a keyterm is
frequently mentioned in hunks (i.e, it is frequently a subject
in code changes) then it is frequently discussed in emails.
For example, the function apr_thread_exit is used in hunks
15 times, and mentioned in messages 52 times, whereas the
function apr_thread mutex lock is used in hunks 176 times
and mentioned in email 179 times. Likewise apr_thread -
mutex unlock is used 285 times and mentioned 219 times.

This result suggests an overall, consistent relationship be-
tween work and talk: the more a keyterm is used in code,
the more it needs to get discussed. This finding suggests an
obvious next step: is this result consistent over time?

4.2 Talk & Work: Intervals
The next study we did was to check if there is a consistent

relationship between “work” and “talk” for keyterms during
successive intervals. To study this, we broke down the avail-
able lifespan of each project into 3 month intervals. For each
3 month interval, we gathered data on keyterm occurrence
in hunks and in emails, and did the same analysis. To our
surprise, the results were quite different (See figure 3). In
this plot, each keyterm might give rise to several points on
the graph, corresponding to hunk use and message counts
at different intervals.

In two of the four projects, viz., Ant and Python we
found strong correlations; however, Apache and Postgres
were much lower. Even the strongest correlation in this
experiment, Ant, was not as strong as it was in the first
experiment. However, the results in Python and Ant are
still significant. We show the same 3 projects as before in
figure 3, omitting Ant for reasons of space. The results are
summarized in Table 2. While all correlations are statisti-

cally significant, due to the very large number of samples,
the magnitude of the correlation is substantially lower for
the interval case.

Cumulative 3 Month
Correlation P-value Correlation P-value

Ant 0.841 0.000 0.435 0.000
Python 0.763 0.000 0.155 0.000
Apache 0.681 0.000 -0.099 0.000
Postgres 0.580 0.000 0.067 0.000

Table 2: Table of hunks and messages correlations
for projects and different time intervals

4.3 Discussion
The above results leave us in a quandary. The cumulative

data show such a strikingly strong relationship between use
in hunks and mentions in messages, whereas the interval
data show a weaker relationship. It is quite puzzling that a
relationship that is weak in pieces should cumulatively turn
into a strong one. Why does this happen? The conclusive
answer is left for future work, but we offer a tentative theory
in the ensuing discussion.

The implication here is that there is somehow a cumula-
tive conservation of the “ talk

work
” ratio. If a function is used a

lot, there is a lot of discussion about it at some point in time,
but not necessarily at the same time when it is used. Perhaps
this is because very useful functions are carefully designed,
and are therefore a subject of a lot of discussion earlier in
their life cycle. On the contrary, if they are used heavily
without prior careful discussion and design, then they be-
come troublesome later, and get discussed a lot. This the-
ory would explain why the relationship may be weaker over
intervals, but is strong when cumulated.

As a preliminary investigation into this working hypothe-
sis, we looked at the Apache portability run-time functions
which are well used and designed functions in the Apache
software platform; these functions form a portability layer
that is used to keep the core HTTPD software relatively easy
to port. All the functions in this layer have a name that
begins with “apr ” and are easy to identify. For all these
functions, we computed the ratio mentions in emails

mentions in hunks+1
and

then grouped the values by 3 month intervals and studied
the changes. While we have not yet completed the analy-
sis, we show an especially telling sample for a popular string
printing function (Figure 4). The x-axis shows the year and
interval with in the year; the y-axis is the ratio above. This
plot suggests that the ratio of email mentions to hunk use

115

Spearman Correlation= 0.0667737927909195
Count Hunks

C
ou

nt
 M

es
sa

ge
s

0 10 100 1000 10000 1e+05

0
10

10
0

10
00

10
00

0

Spearman Correlation= −0.0987906628571979
Count Hunks

C
ou

nt
 M

es
sa

ge
s

0 5 10 50 100 500 1000

0
10

10
0

10
00

10
00

0

Spearman Correlation= 0.154576441897735
Count Hunks

C
ou

nt
 M

es
sa

ge
s

0 10 100 1000 10000 1e+05

0
10

10
0

10
00

10
00

0

Figure 3: Three-month interval counts of keyterm occurrence on hunks (x-axis) and emails (y-axis), for
projects (left to right) Postgres, Apache, and Python. The relationship is substantially weaker in this case.

for this popular apr function was extremely high in the early
period, in fact, just when the portability layer per se was
being defined. Afterwards, the ratio drops. Later on, this
important utility function does continue to be used in hunks,
but it was not discussed nearly as much.

This suggests a tentative observation: although the level
of discussion surrounding the use of a function may vary
with time, good engineering principles dictate that the de-
sign of more important and useful functions must be well
discussed. On the contrary, well-used functions that were
not subject to good initial review and discussion will later
become troublesome and require lots of discussion.

Further study is clearly warranted.

1999 2000 2001 2002 2003 2004 2005

0
40

80

Time

T
al

k/
W

or
k

Figure 4: talk
work

ratio over time for the apache porta-
bility layer function apr snprintf. Notice initial peak
followed by low values over the duration.

5. THREATS TO VALIDITY
We have only studied a small portion of OSS projects and

it is entirely possible that these results may not generalize
to all projects.

We also assume that the developer email lists are the
only possible medium of communication between developers,
whereas individuals can contact each other through other
mediums such as irc, or direct emails; however, in most
cases, community norms dictate that substantive discussions
do occur on the mailing list.

6. CONCLUSION
We studied the relationship between the use of keyterms in

hunks and the mentions of those same keyterms in email dis-
cussions. We found a striking, strong relationship between
the two when the occurrence counts are cumulated over the
life of the project, but a much weaker relationship when bro-
ken into 3 month intervals. This leads to a puzzling set of
irregular relationships cumulatively leading to a much more
regular relationship. We speculate on why: more popular
and useful functions may undergo a careful review and dis-
cussion period where they are discussed heavily, after which,
thanks to good design, they can be used without much fur-
ther ado. If not carefully designed first, such functions might

eventually become troublesome and require much discussion
later on. Thus overall, work and talk become closely related.

7. REFERENCES
[1] C. Baldwin and K. Clark. Design Rules: Vol 1. MIT

Press, 2000.

[2] C. Y. Baldwin and K. B. Clark. Managing in an age of
modularity. Harvard Business Review, pages 84–93,
September-October 1997.

[3] C. Bird, P. Devanbu, and A. Gourley. Detecting patch
submission and acceptance in oss projects. In
Workshop on Mining Software Repositories, 2007.

[4] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and
A. Swaminathan. Mining email social networks.
Proceedings of the 2006 international workshop on
Mining software repositories, pages 137–143, 2006.

[5] L. Lopez, J. M. Gonzalez-Barahona, and G. Robles.
Applying social network analysis to the information in
cvs repositories. In Proceedings of the International
Workshop on Mining Software Repositories, 2004.

[6] A. Mockus, J. D. Herbsleb, and R. T. Fielding. Two
case studies of open source software development:
Apache and mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):309–346, July
2002.

[7] D. Parnas. The criteria to be used in decomposing
systems into modules. Communications of the ACM,
14(1):221–227, 1972.

[8] P. Rigby and A. Hassan. What Can OSS Mailing Lists
Tell Us? A Preliminary Psychometric Text Analysis of
the Apache Developer Mailing List. Proceedings of the
Fourth International Workshop on Mining Software
Repositories, 2007.

[9] G. Salton, A. Wong, and C. S. Yang. A vector space
model for automatic indexing. Commun. ACM,
18(11):613–620, 1975.

[10] T. Zimmermann and P. Weiβgerber. Preprocessing
CVS data for fine-grained analysis. In In Proceedings
of the International Workshop on Mining Software
Repositories, 2004.

116

