
THEX: Mining Metapatterns from Java

Daryl Posnett, Christian Bird, Premkumar Devanbu

Department of Computer Science
University of California, Davis, USA

dpposnett,cabird,ptdevanbu@ucdavis.edu

Abstract—Design patterns are codified solutions to common
object-oriented design (OOD) problems in software develop-
ment. One of the proclaimed benefits of the use of design
patterns is that they decouple functionality and enable dif-
ferent parts of a system to change frequently without undue
disruption throughout the system. These OOD patterns have
received a wealth of attention in the research community since
their introduction; however, identifying them in source code is a
difficult problem. In contrast, metapatterns have similar effects
on software design by enabling portions of the system to be
extended or modified easily, but are purely structural in nature,
and thus easier to detect. Our long-term goal is to evaluate the
effects of different OOD patterns on coordination in software
teams as well as outcomes such as developer productivity and
software quality. we present THEX, a metapattern detector that
scales to large codebases and works on any Java bytecode. We
evaluate THEX by examining its performance on codebases
with known design patterns (and therefore metapatterns) and
find that it performs quite well, with recall of over 90%.

I. INTRODUCTION

Most large software projects have hot spots that undergo
frequent change. One of the challenges of any designer is
to develop a design that accommodates this change with
minimal impact on the rest of the system. One of the purposes
of the object-oriented design paradigm is to enable change
and adaptation through inheritance and delegation. Certain
patterns of object interaction and delegation allow these hot
spots to change in certain ways easily and without changes
rippling throughout the system.

In 1994, Wolfgang Pree presented a system of patterns of
object-oriented interaction that constitute a minimal means
to capture reusable object-oriented design that he named
metapatterns [1]. Metapatterns can be composed in different
ways to create larger patterns, and in fact, most design
patterns, including the now canonical set of design patterns
introduced by Gamma et al. (commonly referred to as the
“Gang of Four” and referenced here as GOF) [2], are instances
of metapatterns or combinations of multiple metapatterns.

We are interested in both examining the evolution of
software design and studying the effect of different design
patterns on outcomes such as software quality, developer
productivity, disruption of changes, and coordination require-
ments in teams. Performing these studies require first that we
have methods of mining the design patterns used in object-
oriented software. Design pattern detection is one possibility,
and the research community has seen no small amount of

effort in developing tools and methods to that end. However,
we have found that in practice, (partly because of somewhat
imprecise nature of the definition the GOF design patterns)
the tools are tricky to use, and often yield imprecise and
variable results. In some cases the computational complexity
of such tools does not scale to large code bases, while others
suffer from high false positive or false negative rates. Some
patterns are easier to detect than others. In particular, many
research endeavors have found that the structural GOF design
patterns are the easiest patterns to detect [3], [4].

Metapatterns, in contrast, are purely structural patterns
of object-oriented interaction and represent a more abstract
level of design. To examine the in vivo use and evolution of
metapatterns, we have developed THEX, a metapattern miner.
THEX uses structural information (including inheritance
graphs, member types, and method signatures) as well as
symbolic execution to identify instances of various types of
metapatterns in Java bytecode. In this paper we present a
short synopsis of metapatterns, a description of techniques
used in THEX, and evaluate the performance of THEX by
examining its performance on two pieces of Java software
that have known instances of metapatterns.

We note that THEX is not a design pattern detector, and
does not compete with these tools. THEX mines metapatterns,
which offer some of the benefits of design patterns: they
decouple classes, and enable certain forms of rapid change
to occur without being as disruptive as other types of
class interaction. Further, THEX is not a means unto itself;
identifying metapattern instances is but one important piece
in enabling further empirical studies of software architecture
and evolution.

We also distinguish this work from earlier work by
Gil et al. on detection of pattern elements they coined
“micropatterns[5].” With a few exceptions, micropatterns
are mechanically recognizable traits of a single class that
represent common programming practice. Most do not model
relationships between classes except in the negative, e.g.
A Sink micropattern is a class whose methods do not
propagate calls to any other class. In general, micropatterns
model common intra-class programming practices whereas
metapatterns model some of the inter-class practices common
to many GOF design patterns. Metapatterns lie between
micropatterns and design patterns both in terms of structural
representation and mechanical identification.

templateMethod(...)
otherMethod(..)
...

Template Class
member_A
member_B
...

hookMethod()
...

Hook Class
...

public void templateMethod(...)
{
 ...
 member_B.hookMethod(...);
 ...
} hookMethod()

...

Hook
Implementation

Class X
...

member_B

hookMethod()
...

Hook
Implementation

Class Y
...

Later
Implementations

Figure 1: UML Diagram of a metapattern

II. METAPATTERNS

Pree defines metapatterns as a “set of design patterns” that
“can describe any framework example design pattern on a
meta-level” Many pattern catalogs, and in particular, most of
the GOF design patterns introduced by Erich Gamma et al.
[2]fall into this category of “framework example design
patterns”[1]. In addition to their structural properties, the
GOF design patterns embody an intent, defined by the design
issue or problem the pattern solves[2]. Metapatterns capture
the structural and compositional aspects of design patterns
without regard to this intent. Consequently, many design
patterns share a common underlying metapattern model. For
example, STATE and STRATEGY GOF patterns have a different
intent but share a common metapattern structure.

Metapatterns are rooted in two structural roles, TEMPLATE

and HOOK. A TEMPLATE is a class with a method t that calls a
method h in the HOOK class (or interface). The terms are also
used without ambiguity to refer to the TEMPLATE and HOOK

methods. The TEMPLATE method must invoke the HOOK method
through some variable or arugment f in the TEMPLATE class.
The cardinality of f defines the cardinality of the instance
relationship between the TEMPLATE and HOOK classes. When
f is a container the TEMPLATE may invoke any number of
HOOK instances and the relationship is 1-N. Alternatively, if
f is a simple instance of HOOK then TEMPLATE may invoke
methods in only one HOOK instance and the relationship is
1-1. In every case, the HOOK method in the HOOK class can be
overridden by methods in one or more HOOK IMPLEMENTATION

(hereafter referred to as HIMP) classes derived from the HOOK

class. Figure 1 shows a UML description of a metapattern.
The four forms of metapatterns are defined as follows:

1) If the HOOK to TEMPLATE relation is purely associative or
aggregative, it is a 1-1 or 1-N CONNECTION metapattern.

2) If TEMPLATE inherits from hook, it is a 1-1 or 1-N
RECURSIVE CONNECTION metapattern.

3) If TEMPLATE and HOOK are the same class, this is a
UNIFICATION metapattern.

4) If TEMPLATE and HOOK are the same class type, but
TEMPLATE references or aggregates one or more instances
of its own type, it is a 1-1 or 1-N RECURSIVE UNIFICATION

metapattern.
In order to detect metapatterns, we must first extract the

templates and hooks and so we present THEX, a Template

and Hook EXtractor.

III. DESCRIPTION OF THEX

Tourwé [6] defined a formalism for metapatterns that we
use as a basis for defining TEMPLATE/HOOK relationships,
and also metapatterns. Listing 1 illustrates a standard 1-
1 (via Template.h) and 1-N (via Template.hooks)
connection metapattern in Java. THEX works specifically
on Java bytecode to identify metapatterns.

A. Finding TEMPLATES and HOOKS
First, we note that all non-final and non-private

instance methods in Java are virtual by default, and may be
overridden in a subclass. Thus, by Pree’s definition, any class
with at least one instance method can be a HOOK and any
instance method can be a HOOK method. This is not useful
for our purposes. Rather, we use the following constraints
to identify a metapattern in Java. We identify the TEMPLATE

and HOOK together. Two classes, TEMPLATE and HOOK, form a
metapattern if:

1) HOOK has at least one subclass that overrides a method
h defined in HOOK

2) TEMPLATE contains at least one member field, local
variable, or argument f , that is either of type or super-
type of HOOK (including Object), an array of type or
super-type of HOOK, or a collection of type or super-type
of HOOK

3) TEMPLATE contains some method m that contains a code
path such that the object that is referenced by f , has
its h method called.

Constraint 1 restricts the HOOK to classes that are actually
being subclassed. Constraints 1 and 2 are easily detected in a
purely structural manner by reconstructing the class hierarchy
in a code base and recording the methods and member fields
defined in each class. Constraint 3 is more difficult. We
track data flow via symbolic execution [7] in bytecode by
extending the ASM library [8] and performing some minor
inter-procedural analysis to detect which referenced object
has its h method called. We report metapattern reference type
as one of FIELD, LOCAL, or ARGUMENT, prioritized as listed,
depending on which types are contained in the data trace of

class Template {
Hook h;
java.util.List hooks;
void templateMethod() {

Hook v = h;
v.hookMethod();
((Hook) hooks.get(4)).hookMethod;

}
}
interface Hook {

void hookMethod();
}
class HookImp implements Hook {

void hookMethod() {
System.out.println("Hook Imp");

}
}

Listing 1: An example java Hook and Template metapattern

Pattern TEMPLATE HOOK HIMP Metapatterns

Command INVOKER COMMAND CONCRETE COMMAND CONNECTION
Composite COMPOSITE COMPONENT COMPOSITE,LEAF RECURSIVE CONNECTION
Decorator DECORATOR COMPONENT DECORATOR,COMPONENT, RECURSIVE CONNECTION

CONCRETE DECORATOR
Factory Method CREATOR CREATOR CONCRETE CREATOR UNIFICATION

CREATOR PRODUCT CONCRETE PRODUCT CONNECTION
Observer SUBJECT OBSERVER CONCRETE OBSERVER CONNECTION
Prototype CLIENT PROTOTYPE CONCRETE PROTOTYPE CONNECTION
State CONTEXT STATE CONCRETE STATE CONNECTION
Strategy CONTEXT STRATEGY CONCRETE STRATEGY CONNECTION
Template Method ABSTRACT CLASS ABSTRACT CLASS CONCRETE CLASS UNIFICATION (2)
Composite COMPOSITE COMPONENT LEAF,COMPOSITE RECURSIVE CONNECTION
Visitor ELEMENT(COMPOSITE) VISITOR CONCRETE VISITOR CONNECTION

Table I: Metapatterns in the Huston Design Patterns.

the object referenced by f . We say “the object referenced by
f” because often the method call to h is not made directly
through f itself. Consider a method that has a local variable
l, of type HOOK. If the method only makes the call l.h(), then
the class interaction is considered a metapattern with respect
to l, i.e. it’s a LOCAL metapattern. However, if f is assigned
to l and then the call l.h() is made, then l references the
same object that f references and the class interaction is a
metapattern with respect to f and the metapattern is of type
FIELD. We report all three types for completeness and the
researcher may filter the output depending on their particular
interests.

THEX detects metapatterns even if f is not of type HOOK.
In many cases, we observed metapatterns in which f was cast
from a super-type to type HOOK prior to making the call to h,
especially when collections were used prior to Java 1.5, where
all collections hold instances of type java.lang.Object.
We also found instances where the field f of the TEMPLATE

class was accessed via a “getter” method, e.g. one might see
a statement of the form:

Hook getf() { return f; }
void templateMethod() {

Hook v = getf();
v.h();

}

We detect getter methods by identifying methods that
return the object that f references along all possible code
paths (in a conservative manner), and use knowledge of such
getter methods when detecting a call to a hook method via
the object referenced by f .

We note that constraint 2 limits 1-N patterns to cases
where f is either an array of type or super-type HOOK or
a java.util.Collection of type or super-type HOOK.
This is because if f is an arbitrary object with a method that
returns an object of type HOOK, it is difficult to determine
if f represents a container for instances of HOOK or if f is
some other type of object not tightly associated with HOOK. In
practice, we observed that the majority of Java-based software
uses arrays and collection classes (generic or otherwise) to
hold instances of type (or super-type of) HOOK. THEX will
not detect a metapattern if f is an idiosyncratic or custom
container class for HOOK.

THEX first identifies all possible HOOK classes (i.e. classes
that fulfill constraint 1). Next THEX considers every class in

turn to be a TEMPLATE class and then examines all member
fields and methods. Each member field is a candidate HOOK

and all methods of TEMPLATE are examined to see whether
constraint 3 is met (in practice, each method is examined only
once and all member fields, arguments, and local variables
are tracked at once during the symbolic execution). If THEX
identifies a matching TEMPLATE/HOOK pair that meets all three
constraints, it outputs the classes along with the HIMP class,
the trace of f (including reference type), and the TEMPLATE and
HOOK methods (often, there is more than one HOOK method).

B. Metapatterns Classification
After all TEMPLATE/HOOK metapattern pairs have been

identified, THEX uses inheritance and equality relationships
to classify the metapatterns. Each TEMPLATE/HOOK metapattern
is identified as one of UNIFICATION, CONNECTION, or, RECURSIVE

CONNECTION metapatterns. If the TEMPLATE class and the HOOK

class are the same class then the pattern is a UNIFICATION

metapattern; If the template inherits from the hook and
is distinct from the hook then we identify a RECURSIVE

CONNECTION metapattern and the remaining metapatterns are
classified as CONNECTION metapatterns. At any given time,
THEX is only examining one method in a candidate TEMPLATE

class, and each method only needs to be examined once. This
means that THEX runs in time linear to the total number of
methods in the system and that memory usage is linear in the
number of classes and fields and constant in the size of the
largest method in the system. The benefit of this is that THEX
scales nicely. We were able to identify metapatterns in the
entire Eclipse code base in under 30 minutes. Further, THEX
exists as a completely self contained jar file and only needs
access to the bytecode in order to run. This allows a user to
run THEX on any software that compiles to bytecode (code
written in Scala or Jython, for instance) and an application
can be examined in toto with required libraries, which may
be cumbersome when source code is required.

IV. EVALUATION AND USES

Our tool is designed to extract metapatterns based on our
specification hence there exists no oracle that we can use to
evaluate recall and precision directly. Instead we use software
with known examples of design patterns and evaluate the
ability of our tool to locate metapatterns within the design
patterns. To compare results, we relate metapattern roles to

Distinct classes 155
Distinct HOOK- TEMPLATE class pairs 149

Distinct CONNECTION metapatterns 115
Distinct RECURSIVE CONNECTION metapatterns 19
Distinct UNIFCATION metapatterns 15

Mean HIMP classes per HOOK class 6.03
Mean HOOK methods per HOOK class 4.34
Mean TEMPLATE methods per TEMPLATE class 3.40

Design pattern instances in P-MARt 21
Design pattern instances containing metapatterns* 17
Design pattern instances with found metapatterns 16

Classes participating in at least one metapattern 138
Classes participating in at least one design pattern 116

Classes participating in at least one metapattern 25
but not in any design pattern
Classes participating in at least one design 3
pattern but not in any metapattern

Table II: Summary metapattern data for JHotDraw 5.1 (*Factory

Method and Singleton do not contain metapatterns in JHotDraw)

design pattern roles. We first run THEX on the relatively
simple Huston Design Pattern Catalog which contains short
Java examples for each GOF design pattern [9]. Next we
examine the results of running THEX on JHotDraw 5.1. In
each case, we manually inspect the design pattern instances
to determine what metapatterns exist and calculate recall by
noting how many metapatterns THEX actually detects.
Metapatterns in the Huston Patterns. In all, there are 70
fairly small classes in the Huston catalog and the structure
of the design patterns used are fairly canonical. We present
the design pattern to metapattern role mappings that THEX
detected in in Table I. This table also reflects the mappings
presented by Hayashi et al. in their work on detecting
design patterns using metapatterns [10]. THEX identified
every metapattern in the design pattern instances. THEX also
identified other metapatterns that were not part of design
pattern instances. Due to the small size of the codebase we
were able to manually examine all combinations of variables
and methods that might induce a metapattern. From this
analysis we conclude that THEX has a recall of 100% and
precision of 100% on the Huston design patterns data set.
Metapatterns in JHotDraw. The P-MARt repository contains
a database of manually identified design patterns in several
small open source projects[11]. One such project is JHotDraw
5.1 and the database contains 21 design pattern instances. We
compared metapatterns extracted from JHotDraw 5.1 with
THEX to the P-MARt identified design patterns by examining
the TEMPLATE/HOOK combination in each instance.

One STATE pattern is not detected by our tool. The HOOK

method call in standard. StandardDrawingView
calls tool().mouseDown() which in turn calls
fEditor.tool(). Strictly speaking this is not a meta-
pattern according to our definition as the TEMPLATE does not
contain the member variable of the correct type. However
it behaves somewhat like a metapattern since the end result

is to invoke a method on fEditor.tool, which could
be considered a compound attribute of the TEMPLATE class,
and a multi-level inter-procedural analysis would have made
detection possible.

We summarize our results in Table II. All but 3 classes that
fulfill design pattern roles also fulfill metapattern roles. In
16 of 17 design pattern instances we find either the expected
metapattern or a variant. We could not perform an analysis
of precision due to the size of the code base. However, these
results indicate a 94% recall rate.

We have presented THEX, a tool for extracting metapatterns
from Java bytecode. In practice, THEX quickly and accurately
finds metapattern design motifs. We plan to use the results
of THEX on evolving code bases to empirically evaluate the
effect of design decisions on software engineering outcomes.
In addition, we plan to make THEX available under the GPL
and hope that others will be able to make use of THEX to
detect and study metapatterns in their own research.

REFERENCES

[1] W. Pree, “Meta patterns-a means for capturing the essentials of
reusable object-oriented design,” Lecture Notes in Computer
Science, vol. 821, no. 150, pp. 19–27, 1994.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design pat-
terns: elements of reusable object-oriented software. Addison-
wesley Reading, MA, 1995.

[3] N. Shi and R. A. Olsson, “Reverse engineering of design pat-
terns from java source code,” in 21st IEEE/ACM International
Conference on Automated Software Engineering, 2006, pp.
123–134.

[4] Y.-G. Guéhéneuc and G. Antoniol, “Demima: A multilayered
approach for design pattern identification,” IEEE Trans.
Software Eng., vol. 34, no. 5, pp. 667–684, 2008.

[5] J. Gil and I. Maman, “Micro patterns in Java code,” in
Proceedings of the 20th annual ACM SIGPLAN conference
on Object oriented programming systems languages and
applications, vol. 40, no. 10. ACM New York, NY, USA,
2005, pp. 97–116.

[6] T. Tourwé and T. Mens, “Automated support for framework-
based software,” in Software Maintenance, 2003. ICSM 2003.
Proceedings. International Conference on, 2003, pp. 148–157.

[7] J. King, “Symbolic execution and program testing,” Commu-
nications of the ACM, vol. 19, no. 7, p. 394, 1976.

[8] E. Bruneton, R. Lenglet, and T. Coupaye, “ASM: a code
manipulation tool to implement adaptable systems,” Adaptable
and extensible component systems, 2002.

[9] V. Huston, “Huston design patterns,” accessed January, 2007.
[Online]. Available: http://www.vincehuston.org/dp

[10] S. Hayashi, J. Katada, R. Sakamoto, T. Kobayashi, and
M. Saeki, “Design Pattern Detection by Using Meta Patterns,”
IEICE Transactions on Information and Systems, vol. 91, no. 4,
2008.

[11] Y. G. Guéhéneuc, “P-mart: Pattern-like micro architecture
repository,” accessed January, 2010. [Online]. Available:
http://www.ptidej.net/downloads/pmart/

http://www.vincehuston.org/dp
http://www.ptidej.net/downloads/pmart/

	Introduction
	Metapatterns
	Description of Thex
	Finding Templates and Hooks
	Metapatterns Classification

	Evaluation and Uses
	References

