
Putting it All Together:
Using Socio-Technical Networks to Predict Failures

Christian Bird1, Nachiappan Nagappan2, Harald Gall3, Brendan Murphy2, Premkumar Devanbu1

1University of California, Davis, USA
2Microsoft Research

3University of Zurich, Switzerland
{cabird,ptdevanbu}@ucdavis.edu {nachin,bmurphy}@microsoft.com gall@ifi.uzh.ch

Abstract

Studies have shown that social factors in development
organizations have a dramatic effect on software quality.
Separately, program dependency information has also been
used successfully to predict which software components are
more fault prone. Interestingly, the influence of these two
phenomena have only been studied separately. Intuition and
practical experience suggests, however, that task assignment
(i.e. who worked on which components and how much) and
dependency structure (which components have dependencies
on others) together interact to influence the quality of
the resulting software. We study the influence of combined
socio-technical software networks on the fault-proneness
of individual software components within a system. The
network properties of a software component in this combined
network are able to predict if an entity is failure prone with
greater accuracy than prior methods which use dependency
or contribution information in isolation. We evaluate our
approach in different settings by using it on Windows Vista
and across six releases of the Eclipse development environ-
ment including using models built from one release to predict
failure prone components in the next release. We compare
this to previous work. In every case, our method performs as
well or better and is able to more accurately identify those
software components that have more post-release failures,
with precision and recall rates as high as 85%.

1. Introduction
Software failures are becoming increasingly important and

costly. A study by the National Institute of Standards and
Technology in the U.S. estimated that the annual cost of
software bugs is about $59.5 Billion [1]. At the corporate
level, the ability to identify and correct software defects prior
to release saves a company from increased cost, customer
dissatisfaction, and loss of marketshare. As such, there is
a rich history of tools which can automatically identify
software defects before end-users encounter them. It can be
very difficult and expensive to test all of the components
of a large and complex system. However, the complexity
inherent in large software systems can be leveraged to aid
in locating those components which are particularly defect
prone. Encouraging results in prior research indicate that it is
possible to predict which components are likely locations of

defect occurrence using a component’s development history,
and dependency structure.

In this paper, two key properties of software components
in large systems are dependency relationships (which com-
ponents depend on or are depended on by others), and devel-
opment history (who made changes to the components and
how many times). Thus we can link software components
to other components a) in terms of their dependencies, and
also b) in terms of the developers that they have in common.
This linkage has been used to construct software component
networks. Prediction models based on the topological prop-
erties of components within them have proven to be quite
accurate [2], [3], [4]. Components which play key roles and
are central in these networks tend to be more failure prone
than components in the surrounding areas.

We argue that these forms of information should be used
together. The intuition behind our approach is that software
components may be related through important but different
types of relationships. By aggregating these relationships
our ability to predict failures will increase. We do this in
two ways. First, we build each type of network separately
and use network analysis on both to gather metrics for use
in a predictive model. Second, we build a socio-technical
network which combines the nodes and edges from both the
dependency network and the contribution network and use
metrics gathered from this network in a predictive model.

We evaluate our approach by collecting data from Mi-
crosoft Windows Vista and ECLIPSE development and using
logistic regression analysis. Our regression models relate
social network centrality measures of components with the
number of post-release failures. Results of our empirical
study show a strong correlation between the centrality of
software components and the number of post-release failures
and indicate that combining dependency and contribution
data results in prediction models that have higher recall and
precision.

We make the following contributions in this paper:
1) We present (to the best of our knowledge) the first

paper in the software engineering or Computer Sup-
ported Cooperative Work (CSCW) community that
combines the developer and the code level view of
software systems to predict code quality.

2) We present an approach for predicting failure prone
software components using development history and

dependency information that performs better than pre-
vious research.

3) We compare our approach directly with prior network
analysis based prediction methods by evaluating each
on the same data sets.

4) We show that our method works in multiple, diverse
contexts with different processes by using it on large
code bases in both a traditional industrial setting
(Windows Vista) and an open source software (OSS)
setting (Eclipse).

5) We demonstrate how this approach can be used in
practice by accurately predicting failure prone com-
ponents in one release based on models built from
prior releases.

2. Background and Prior Work
Our work arises from two lines of work: studies of social

networks within project teams, and technical networks of
components within systems.

Technical networks have been used in previous work to
build prediction models for failures. Zimmermann et al. [4],
[3] constructed networks from dependency information for
binaries and subsystems in Windows Server 2003. This study
used social network analysis on dependency information
to build prediction models for post-release failures. Their
results indicated that models built on social network metrics
were better indicators of future failures than models based on
standard source code metrics. Their approach leveraged SNA
metrics to capture both local and global effects of network
connectivity on defect-proneness.

Prior work has also shown that software artifact prop-
erties are directly influenced by social network properties
of teams, such as their the email interactions, and their
contribution history. of developers. In earlier work, Bird
et al. [5] constructed email social networks from open
source project mailing lists and found that social network
analysis measures were highly correlated with development
activity. In addition, they found that global connectivity
measures such as betweenness [6] were better indicators of
development activity than local measures such as degree
centrality. Pinzger et al. [2] used contribution history to
construct the networks of binaries and the developers that
contributed to them. They found that measures such as
degree centrality, closeness centrality, and Bonacich power
(see [7], [8], [9], [10] for a survey of these measures) in
contribution networks also had very good predictive power
in determining failure-prone binaries.

Meneeley et al. [11] created networks that consisted
solely of developers where edges between developers were
based on collaboration on common files. They used social
network analysis to assign values of metrics such as be-
tweenness, degree, and closeness to developers. The value of
a metric for a file was based on the values of the developers
that contributed to that file (such as maximum, sum, or
average of a metric for developers for a file). They evaluated
their approach on an industrial product from Nortel. They

found that a model using these metrics explained 60% of
the variance of failures during the testing phase, but only
2.6% of the post-release failures.

Combining social and technical networks has recently
become a subject of study. Socio-technical networks encode
connections between people, connections between technical
artifacts and connections between people and artifacts. Al-
though we do not include developer social interaction via
email, IM, or other communication media, we do capture
collaboration through joint work artifacts.

Amrit et al. [12] first proposed use of socio-technical
networks which he calls “affiliation networks” in the context
of evaluating Conway’s Law and claimed that important in-
formation is embedded in the topology of these networks. He
posited that “We can use the idea of the affiliation network
to improve current design, execution, and productivity of
software process models”.

Indeed, Valetto et al. [13] do just that by examining socio-
technical networks and measuring the socio-technical con-
gruence, degree of communication and coordination between
developers who are related to the same software component
or dependent software components.

Cataldo et al. [14], [15] looked at time to resolution
for modification requests (MRs) at a commercial software
development company. They found that time to resolution
for an MR, a, with a dependency on another MR, b, was
decreased if those responsible for a had some form of con-
tact (geographical locality, IRC, etc.) with those responsible
for b. They find that developers take 32% less time to
complete tasks when this form of “congruence” is in the
socio-technical network.

3. Theory
In this section we present arguments for combining de-

pendency and contribution topological information when
examining defect proneness.

3.1. Network Definitions

We begin by formally describing the three networks of
binaries that are used in our analysis. To illustrate our
methods, we include a running example of a simple software
system and it’s corresponding networks in figure 1. In these
networks, circles represent software components and boxes
represent developers. A solid edge between two components
is directed and denotes a dependency relationship. A dashed
edge between a developer and a binary is undirected and
denotes a source code contribution from the developer to
the binary.

Contribution Network

The contribution network captures the contributions of
developers to software components within the system. We
use a mapping from source files to software components
along with development logs which include which develop-
ers contributed to which files to build a bipartite network.

AFred Ram

D

E

F

G

(a) Contribution Network

A

B

C

(b) Dependency Network

A

B

C

Fred Ram

D

E

F

G

(c) Socio-technical Network

Figure 1: Examples of software component networks. Circles denote components and rectangles, developers. Solid lines are directed
dependencies and dashed lines are undirected and represent contributions.

Formally, we define this network as follows. Let S be the
set of software components, and D be the set of developers
that made commits to the source code for these components.
The contribution network is then Gc = (Vc, Ec) where the
vertices are Vc = D∪S and Ec ⊂ D×S is the set of edges
such that (d, s) ∈ Ec if developer d contributed to software
component s. Edges are weighted based on the number of
commits made to a software component s by a developer
d. Note that edges in this graph are undirected to allow
for paths flowing in either direction, since developers act as
“bridges” between components. The contribution network
for our example software system is depicted in figure 1a.
More specifics are given in [2].

If two components have the contributions from the same
developer, then the components have “shared authorship”.
The contribution network captures shared authorship be-
tween components, and thus, in a sense captures shared
expertise between components. If Ram authors two com-
ponents, A and F, then he represents a person who has
knowledge and responsibility of both A and F. Components
with many connections are those which share authorial
responsibility with many other components; such compo-
nents might share many cross-cutting concerns [16] with
other components. Components that are on many paths
in a network but have a low number of connections are
likely to lie on organizational boundaries. These are not
subject to a high level of shared authorship, but mediate
between others that have highly shared ownership. Such
components represent critical bottlenecks for expertise flow;
they might also be locations where organizational boundaries
are crossed, and thus be loci for communication breakdowns
or bottlenecks.
Dependency Networks

A dependency network models the dependency relation-
ships between the software components within the system.
Figure 1b shows a simple dependency graph. We use the
software component dependency relationships as applicable
for the domain, language, and granularity of the system (e.g.

callgraphs, class inheritance or coupling in ECLIPSE, library
type and function dependencies within Windows Vista). We
refer to this graph as the dependency graph and denote it
formally as Gd = (Vd, Ed) where the vertices Vd is the set
of software components and Ed ⊂ Vd × Vd is the set of
directed edges, such that (v1, v2) ∈ Ed if component v1 has
a dependency on v2. The example shows a system in which
both A and B are dependent on C and A is also dependent
on B. We refer the reader to prior work ([4]) for more detail
regarding the construction of these networks.

A pure software dependency graph (such as a call graph,
or a systems dependence graph) capture flow of information
and/or control within a large system. In such a graph,
the strength and degree of a component’s connections to
its immediate neighbors (a local property) indicates how
strongly it is coupled with other components. This can be
expected to influence the degree to which a component is
defect prone. Likewise, high closeness centrality (a measure
of the average distance of a component to every other
component) might indicate that a component is in the “core”
part of the system.
Socio-Technical Networks

Prior work [2], [11], [3], [4] indicates that the likelihood
of a component to fail is strongly related to it’s topology
in networks based on different types of relationships. In
fact, the above two networks capture different types of
phenomena that might lead to defect introduction and defect
importance.

In an effort to understand the differences between the
different prior network based approaches, we implemented
predictive models based on dependency and contribution
networks and performed a manual inspection of the defect-
prone software components that were misclassified by both
models. Figure 1 illustrates a common scenario that we
encountered. Component A represents a defect prone com-
ponent that was not identified by either approach. Figure 1b
shows that the dependency network is small, with A having
two dependencies and no dependents. In addition Figure 1a

shows that only two developers contribute to A and that they
also work on a few other components. However, Figure 1c
shows that the other binaries that Fred and Ram contribute
to have many dependencies and dependents. These binaries
play key roles in the system and a number of them are
defect prone. The fact that Fred and Ram contribute to
these components and A, represents some form of latent
relationship between A and D, E, F, and G. It is only
after considering both kinds of relationships that the import
of A becomes apparent. We found many instances of this
scenario (and also it’s dual, in which components developed
by many developers were connected to another, defect prone,
component via simple dependency relationships) in our
manual inspections.

We therefore lift the level of abstraction by claiming that
binaries have a multitude of relationship types. Common
developers and dependencies are two of a number of pos-
sible software component relationships. These relationships
encode a multi-mode relationship graph [6], with different
types of nodes (developers and software components in
our case) and different types of edges: various forms of
dependencies, and contributions from developers. While
examining the relationships between software components
separately has proven useful, we claim that they should be
considered in concert.

We create a socio-technical network by combining depen-
dency and contribution relationships into on graph. Both of
the above networks deal with information & control flow.
The joint network then, captures the interaction between the
two.

We refer to this network as the socio-technical network,
Ga. One issue in aggregating the vertices and edges is the
fact that Gc is weighted and undirected while Gd is directed
and unweighted. To resolve directedness, we add two di-
rected edges (one in either direction) between a developer d
and a software component s if d contributed to s. To resolve
the issue of weights, we include the number of commits
from d to s as the weight on contribution edges and set the
weight of software dependencies dependencies to 1. Many
social network measures (such as betweenness), convert the
network to an unweighted network prior to analysis. For
those that can operate on both weighted and unweighted,
we perform the analysis on both versions of the network and
use both measures in our model. For instance, degree on the
unweighted contribution network represents the number of
distinct developers who contributed to a component while
the weighted degree is the number of actual commits.

3.2. Social Network Analysis Measures

We calculate network analysis measures on a per compo-
nent basis within the software component networks. These
measures can be broadly divided into two categories. Global
measures examine the position of the component within
the context of the entire network and include betweenness,
Bonacich Power, and eigenvector centrality. Local measures
only take into account the neighborhood of nodes within

one or two hops of software component. These include
measures such as degree, size of the network, and edge
density. We refer the reader to a more thorough review of
social network analysis measures by examining, [7], [8], [9],
[10] and the comprehensive online help in [17]. In these
discussion, an edge between two components represents
a relationship between the component and may represent
different relationship in different types of networks.
Global Measures
Betweenness centrality [7] is a measure of brokerage or
information flow. A geodesic as a shortest path between
two components in a network. Betweenness is the num-
ber of geodesics that a particular component lies on. In
standard SNA, this measure quantifies the degree to which
an individual in a network mediates information flow, and
thus a measure of social status. A component may have few
links, but high betweenness, if a component acts as a bridge
between two otherwise disconnected groups of components.
This may represent a software component that acts as a
point of contact or an interface. It could also represent
a component that is contributed to by a developer who
works on components in disparate parts of the system (e.g.
a developer who makes minor contributions to the gui, but
works mainly on the ECLIPSE compiler and static analysis).
In either case, if many paths of relationships “flow” through
a component, this indicates that many components and/or
developers have an interest in the component.
Closeness centrality [7] measures the distance from a com-
ponent to all other components (and possibly developers) in
the network. Lower values indicate that the component is
farther away from all other nodes.
Reachability [17] is a similar measure to closeness in that
it uses the geodesics from a node to all other nodes. Higher
values indicate a shorter average distance to other nodes in
the network.
Eigenvector Centrality [8] is another measure of the impor-
tance of a component in a network. It is similar to Google’s
PageRank [18] in that connections to high valued nodes
increase a node’s value more than connections to low valued
nodes.
Bonacich Power [9] measures centrality of an component
based on the centrality of other nodes. A node may be
considered central if it is connected to nodes that have
connection to many other nodes. A node may be considered
powerful if it is connected to nodes that have connections
to few other nodes. Binaries that are more central may be
more likely to have post-release failures. We use a positive
Beta value of 0.2.
Structural Holes are gaps in anetwork. If a component, A
has a connection to a neighbor, B, that no other neighbors
are connected to, then A is in a more powerful position over
B than the other neighbors. The absence of an edge between
B and A’s other neighbors represent structural holes. The
following measures quantify properties of structural holes.
We refer the reader to [10] for further detail.

• Effective Size - The number of components that are
connected to a component minus the average number
of edges between these components.

• Efficiency - Normalizes the effective size of the net-
work by the total size of the network.

• Constraint - Measures how strongly a component is
constrained by it’s neighbors. The idea is that neighbors
that are connected to other neighbors can constrain a
component.

• Hierarchy - Quantifies constraint above is distributed
across neighbors. When most of the constrain comes
from a single neighbor, the hierarchy is higher.

Local Measures
Degree centrality [7] is a basic network measure. In an
undirected unweighted network, degree is simply the number
of edges incident upon an node. Weighted networks use
a sum of the weights of the edges and directed networks
include in-degree, and out-degree based on edge direction.
Ego network measures [17] are based on the neighborhood
for any particular node. The node being evaluated is denoted
ego, and the neighborhood includes ego, the set of nodes
connected to ego an edge, and the complete set of edges
between this set of nodes. The set of nodes connected can
be chosen in the following three ways:
• In-neighborhood - nodes that have an edge directed

towards ego
• Out-neighborhood - nodes that have an edge directed

away from ego towards them
• InOut-neighborhood - nodes that have either of the

above
We create all three ego networks for each node and

compute the following ego network measures:
• Size - The number of nodes in the ego network
• Ties - Number of edges in the ego network
• Pairs - Number of possible directed edges in the ego

network
• Density - Proportion of possible ties that actually are

present (Ties/Pairs)
• Weak Components - Number of weakly connected

components
• Normalized Weak Components - Number of weakly

connected components normalized by size, i.e., (Weak
Components/Size)

• Two Step Reach - The proportion of nodes that are
within two hops of ego

• Reach Efficiency - Two Step Reach normalized by size
of the network. Higher reach efficiency indicates that
ego’s primary contacts are influential in the network.

• Brokerage - Number of pairs of nodes that are con-
nected only by ego. Thus ego acts as the sole broker
for the pair

• Normalized Brokerage - Brokerage normalized by
number of pairs

• Ego Betweenness - Betweenness of ego within its ego
network

Table 1: Correlation of some network metrics with number of
bugs in ECLIPSE 3.3 in each of the three networks. In all cases
shown except eigenvector centrality the socio-technical metrics had
higher values to a statistically significant degree. This is true of the
majority of network metrics. The only metrics out of all that had
a significantly higher value than socio-technical was eigenvector
centrality.

• Normalized Ego Betweenness - Ego Betweenness
normalized by size of the network

Correlation with Failures
As a preliminary study of Windows Vista and Eclipse, we

examined the correlation of all of the above described SNA
measures on the three graphs with failures. In over 90% of
the cases, the SNA measures for the socio-technical network
had higher correlations with post-release failures than the
dependency and contributions networks to a statistically
significant degree. We found only one case, eigenvector cen-
trality, where a metric on a non-socio-technical network had
a higher correlation at a statistically significant level. Due
to space limitations, a comprehensive listing of correlations
is prohibitive. We present a sample of these correlations in
ECLIPSE 3.3 in table 1. Since the metric values were not
normally distributed, a spearman rank-correlation was used.
In both Windows Vista and ECLIPSE, the SNA measures on
the socio-technical networks have much higher levels of cor-
relation with failures than code complexity metrics such as
number of functions, class hierarchy depth, lines of code, or
cyclomatic complexity. This initial result is encouraging that
combining software component relationships will increase
the predictive power of defect prediction models.

Based on the above observations, conjectures, and prelim-
inary results we state the following research hypotheses.

Hypothesis 1 - The role of a software component in the de-
pendency network and its role in the developer contribution
network together influence defect proneness.

Hypothesis 2 - Software components that play key roles in
the joint socio-technical network are more prone to defects
than those that don’t.

Note the difference in these hypotheses. The first exam-
ines the roles played by a component in two networks and
uses information from both. The second looks at a compo-
nent’s properties in the aggregate socio-technical network.
We evaluate these hypotheses on two large software systems
in the following sections.

4. Projects and Data Collection
In an effort to evaluate our approach in multiple con-

texts, we gathered data from two large software engineer-
ing efforts: one commercial, and one open-source project:
Windows Vista and the ECLIPSE integrated development
environment and examined post-release defects in these

Time

Vista Release

Collect product metrics

(commits, code churn, complexity, etc.)

Windows Vista

6 months to

collect failures

Windows Server 2003 –

SP1

Figure 2: Timeline for Windows Vista data collection

systems. We use post-release failures because they are the
most problematic. They clearly were not identified by pre-
release inspection, testing or analysis tools, directly affect
end-users, and are the most expensive to correct. Both
systems have a long development history with large software
teams. In addition, each can be decomposed into a system
of software components: binaries (exe’s, dll’s, etc.) in the
case of Vista and plugins for ECLIPSE. However, there are
important differences between these projects.
Process Differences: Although backed by IBM, ECLIPSE is
an open source project (and thus represents an OSS-hybrid
project [19]) which accepts contributions from volunteers.
These unpaid volunteers can be assigned tasks. However,
there are no monetary or employment repercussions for not
performing tasks (though there are “reputation” repercus-
sions). As an open source project, most developers com-
municate via written electronic channels such as irc, mailng
lists, and a bug tracking system. Developers can come and go
at will. Vista, on the other hand, is developed completely in-
house at Microsoft. The software teams that developed Vista
were clearly delineated and largely static. In addition, most
software teams are geographically collocated and therefore
enjoy face-to-face interaction.
Domain Differences: Windows Vista is an operating system.
Thus it performs tasks ranging from low-level operations
such as scheduling read sequences for hard disks to high-
level operations such as displaying error messages to users.
ECLIPSE is a Java integrated development environment and
has a narrower range of functionality, although it ranges from
static analysis and dynamic compilation to graphical user
interfaces and source code management network protocols.
Language Differences: The majority of ECLIPSE is written
in one programming language: Java. While mostly portable
via use of the JVM, ECLIPSE still needs to deal with multiple
platforms (Linux, OS X, Windows). Windows Vista is a
combination of C, C++, assembly and .NET managed code
(mostly C#). As an operating system, it runs directly on the
hardware, but does support a variety of hardware devices
and configurations.
Similarities: Both software systems are extensible. The

ECLIPSE architecture is very flexible and allows developers
to add functionality in the form of plugins which are depen-
dent on base functions performed by the core ECLIPSE code.
Hardware vendors and third parties extend Vista through the
development of drivers, additional libraries, and binaries, all
of which are also dependent on core functionality provided
by the operating system.

Data collection: Windows Vista
We use a binary as the level of granularity for software

components in Windows Vista. A binary is an executable
(.exe), a library (.dll), or a driver (.sys). Vista comprises
over 4,000 binaries. Microsoft collects software failure data
at the granularity level of binaries.

Our Windows Vista development data is drawn from the
Vista source code repositories for all activity prior to release.
A few thousand engineers contributed to the source code for
Windows Vista during the development phase. We do not
include changes to non-source portions of source files that
are updated for building.

We measure post-release failures, on a per binary basis,
for the six months following release, as shown in figure 2.

We also identify dependencies between binaries in Vista.
Microsoft has developed an automated tool called MaX [20]
that tracks dependency information at the function level,
including calls, imports, exports, RPC, COM, and registry
access. We used MaX to generate a system-wide dependency
graph from both x86 and .NET managed libraries. We lift
the dependencies from the function level to the binary level
because our measure of failures is mapped to individual
binaries.

Data collection: ECLIPSE
We mined development, dependency and defect data from

the ECLIPSE project spanning from from 2001 to 2008. We
focus on the 6 major releases for which we have complete
pre-release development data and post-release bugs for (2.0
– 3.3). The CVS logs contain the developer contribution data
used to construct the contribution network. We also gathered
defect data in the form of bug records from the ECLIPSE
bugzilla database and “linked” bugs to their source code

Re
le

as
es

1.0 2.0 2.1 3.0 ...

2.0 Dev Data

June 2002Nov 2001 March 2003 June 2004

Eclipse Timeline

2.0 Defect Data

2.1 Dev Data 2.1 Defect Data

3.0 Dev Data

Figure 3: Data collection timeline for ECLIPSE

introduction by using techniques such as examining the log
messages to find bug fixing changes [21]. We restrict the set
of bugs to those that were opened after the release date for
each release. As shown in figure 3, for each release Ri, we
examine the development activity from the date of release
for Ri−1 to the date of release for Ri.

We use plugins as the level of granularity for software
components (specifically, jars within plugins, as some plug-
ins are composed of multiple jars) in ECLIPSE because the
quality of the defect data is not as reliable at the source file
level due to the low number of defects that most source code
files have. In addition the majority of bug fixes are tied to
multiple source files, but the same plugin. The number of
plugin jars per release ranged from 90 in 2.0 to 250 in 3.3.
We used only the plugins that are part the ECLIPSE project
and exist in the ECLIPSE CVS repository.

We obtained the source files for each of the releases
from the public ECLIPSE CVS repository and used the
static analysis tool Understand from SciTools1 to identify
program dependencies. The dependencies are determined at
the class level, and we use a mapping from classes to files
and then to plugins to determine plugin dependencies. A
class A may depend on a class or interface B if A inherits
or implements from B, has a field of type B, calls a method
in B, imports B, or creates an instance of B.

We calculate the dependencies between all classes in
ECLIPSE and then lift the dependencies to the plugin level.

We used UCINET [17] to calculate each of the social
network analysis measures described in section 3.2 on the
contribution and dependency data collected for Windows
Vista and each ECLIPSE release our study.

5. Methods and Analysis
In this section, we describe our data collection methods

and analysis techniques.

5.1. Logistic Regression
We used logistic regression to examine the relationship

between social network analysis metrics and post-release
failures. Logistic regression is used to produce an estimated
probability that a binary dependent variable will have a par-
ticular value. In our case, we categorize binaries into failure

1. http://www.scitools.com/products/understand

prone and not failure prone based on their number of post-
release failures. We use social network metrics as predictor
variables in the logistic model to predict if a binary is failure
prone or not. One of the problems encountered when using
network metrics within the model is multicollinearity. Use of
logistic regression with multiple predictor variables makes
an assumption that the predictors are all independent. In
practice, we found that some measures have high levels of
correlation. For instance, many binaries with high between-
ness also have high degree. Unconstrained use of correlated
predictor variables in regression models results in highly
overtrained models with low quality parameter estimates and
poor predictive power on new data [22].

We use principal component analysis (PCA) [23] to rectify
this problem. PCA transforms the predictors’ values for the
set of training observations into a new set of observations in
orthogonal dimensions (principal components) with no co-
variance. Each principal component is a linear combination
of the predictor variables and the components are ordered
by the amount of variance in the initial predictors that they
capture. To avoid overfitting, we use only the minimum
number of principal components that capture 95% of the
variance in observations.

We train logistic models using four data sets for each
software system: measures on the dependency network, the
contribution network, all of the measures from both net-
works, and the measures from the socio-technical network.

We evaluate the ability of network measures to identify
failure prone software components in two ways. As with
prior work, for a particular software system, we randomly
select two thirds of the software components to train the
logistic prediction model. The model then predicts which
of the components in the remaining one third are fault
prone and the predictions are evaluated using the standard
information retrieval (IR) measures of precision, recall, F-
score, and ROC curve [24]. This procedure is repeated 50
times with different random splits and the mean of each IR
metric is reported. We can determine if one data set yields
better predictive power than another for a particular software
system by performing a standard t-test on the IR results for
both data sets.

In practice, it is not possible to use a predictive model
in this way because it requires that you already have the

Release Network Precision Recall F-Score Nagel.

Vista
Dependency 0.707 0.547 0.617 0.284
Contribution 0.774 0.650 0.706 0.506
Combined 0.787 0.681 0.730 0.504
Socio-technical 0.769 0.705 0.736 0.520

2.0
Dependency 0.667 0.779 0.705 0.532
Contribution 0.808 0.854 0.824 0.702
Combined 0.826 0.814 0.813 0.909
Socio-technical 0.755 0.859 0.800 0.747

2.1
Dependency 0.693 0.753 0.710 0.626
Contribution 0.675 0.780 0.719 0.607
Combined 0.755 0.777 0.758 0.805
Socio-technical 0.747 0.809 0.770 0.689

3.0
Dependency 0.631 0.737 0.673 0.494
Contribution 0.681 0.683 0.673 0.353
Combined 0.745 0.756 0.743 0.616
Socio-technical 0.767 0.777 0.769 0.600

3.1
Dependency 0.579 0.718 0.634 0.391
Contribution 0.639 0.646 0.629 0.295
Combined 0.693 0.796 0.735 0.689
Socio-technical 0.820 0.800 0.806 0.668

3.2
Dependency 0.698 0.780 0.731 0.495
Contribution 0.614 0.720 0.654 0.371
Combined 0.835 0.866 0.846 0.816
Socio-technical 0.792 0.784 0.785 0.572

3.3
Dependency 0.693 0.743 0.711 0.433
Contribution 0.725 0.669 0.688 0.356
Combined 0.742 0.780 0.754 0.686
Socio-technical 0.820 0.831 0.823 0.727

Table 2: Results of 50 random splits on one release. Bold values
indicate that they are higher than the contribution and dependency
networks to a statistically significant degree.

classification of two thirds of the software components and
that the two thirds represent a random sample. Rather, one
would expect to train a fault prediction model on one release
of a software system to predict the failure prone binaries in
the next release. The data from six releases of ECLIPSE can
be used to evaluate our approach in exactly the way that a
practitioner would use it.
Evaluating Regression Results

We use five IR measures to assess the quality of the
predictive models: precision, recall, the F score, Nagelkerke
coefficient of determination, and area under the ROC curve.
All measures range from 0 to 1 with higher values indicating
better performance.
Precision quantifies the type I errors by measuring the
proportion of binaries that were classified as failure prone
that actually were observed to be failure prone. Precision is
calculated as follows:

Precision =
true positives

true positives+false positives

Recall measures the proportion of binaries that are actually
failure prone that are classified as failure prone (type II
errors). This is calculated as:

Recall =
true positives

true positives+false negatives

These two measures present a tradeoff as it is possible
to sacrifice one to improve the other. A traditional method
of assessing both precision and recall is the use of a metric
known as the F score. It is calculated as the harmonic mean
of the precision and recall for a particular model.

F score =
2·precision·recall
precision+recall

Release Network AUC Precision Recall F-Score Nagel.

2.1
Dependency 0.867 0.750 0.688 0.717 0.505
Contribution 0.867 0.596 0.918 0.723 0.685
Combined 0.804 0.618 0.850 0.716 0.860
Socio-technical 0.889 0.775 0.775 0.775 0.721

3.0
Dependency 0.809 0.789 0.625 0.698 0.598
Contribution 0.795 0.764 0.688 0.724 0.581
Combined 0.830 0.754 0.708 0.730 0.699
Socio-technical 0.864 0.753 0.761 0.757 0.668

3.1
Dependency 0.776 0.691 0.667 0.679 0.448
Contribution 0.744 0.656 0.716 0.685 0.313
Combined 0.860 0.732 0.732 0.732 0.540
Socio-technical 0.878 0.765 0.815 0.789 0.579

3.2
Dependency 0.810 0.734 0.663 0.697 0.376
Contribution 0.775 0.673 0.750 0.710 0.260
Combined 0.910 0.900 0.759 0.824 0.623
Socio-technical 0.866 0.766 0.847 0.805 0.642

3.3
Dependency 0.804 0.759 0.710 0.733 0.471
Contribution 0.765 0.654 0.609 0.631 0.351
Combined 0.857 0.684 0.870 0.766 0.782
Socio-technical 0.927 0.827 0.847 0.837 0.558

Table 3: Results of training a model on data from release r − 1

to predict failure prone components in release r.

Nagelkerke coefficient of determination for a logistic re-
gression is similar to the R2 coefficient of determination
in a linear regression model in that it measures explained
variation and predictive discrimination.
Area under ROC curve (AUC): Receiver operating charac-
teristic (ROC) curves are a non-parametric way to evaluate
2-class discriminant models. The curve plots the true positive
rate against the false positive rate. The ideal discriminant has
a 100% true positive rate, a zero false positive rate; random
guessing essentially yields a diagonal line. The area under
this curve (AUC) provides a measure of the quality of the
discriminant function. For more details, see [25].

6. Results
We now discuss the results of using the above described

analysis on our data.
In order to compare the predictive accuracy of the metrics,

we calculated the values of recall, precision, F score, and
Nagelkerke coefficient of determination for logistic regres-
sion on 50 random splits on each model for Vista and
ECLIPSE. Table 2 shows the averages for each of these
values per model. Bold values indicate that a wilcoxon test
found the values for that model to be statistically higher
than the dependency and contribution models at the p < .05
level. P-values were adjusted using Benjamini Hochberg
adjustment for multiple hypothesis testing [26].
Vista Results

For our analysis on Windows Vista, both the combined
and socio-technical models have better recall than the depen-
dency and contribution models. This indicates that they have
a lower false negative rate, i.e. are able to detect failure prone
binaries better. Only the combined model has statistically
significantly higher levels of precision. The socio-technical
model has a similar number of false positives, i.e. non-
failure prone binaries that are classified as failure prone,
as the contribution model. In addition the F score of the

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curves for Release 3.0

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Socio−Technical
Combined
Dependency
Contribution

(a) Release 3.0

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

ROC Curves for Release 3.1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

(b) Release 3.1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curves for Release 3.2

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

(c) Release 3.2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Curves for Release 3.3

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

(d) Release 3.3

Figure 4: ROC curves for prediction models trained on data from release r − 1 to predict failure prone components in release r. The
blue solid line is Socio-technical, green dashed line is Combined, red dot-dash line is Contribution, and black dotted line is Dependency.

combined and socio-technical models both exceed that of the
dependency and contribution models. Lastly, the Nagelkerke
coefficient of determination is higher in the socio-technical
model. This indicates that the socio-technical model best
captures the variance in the number of post-release failures
in the binaries. We note that neither the dependency network
model nor the contribution network model were superior to
either the combined or socio-technical models for any of the
evaluation metrics.

The recall for the combined and socio-technical models in
Vista exceeds the previous work by 3% and 5% respectively
which is substantial given the thousands of binaries that
shipped in Windows Vista.

Based on these findings, we conclude that in the case of
Windows Vista, hypotheses 1 and 2 are supported.

ECLIPSE results
The results for our random splits within ECLIPSE are

also shown in table 2. With the exception of release 2.0,
the combined and socio-technical models perform markedly
better than the dependency and contribution models. The
improvement in this case is more dramatic. For instance,
the increase in f-score exceeds 8% in all cases after release
2.0. The Nagelkerke coefficient is much better for both
the combined and socio-technical models in every release
of eclipse. As with Vista, there is no evaluation metric
in any release in which the dependency or contribution
models perform statistically better that the combined or
socio-technical models. We therefore conclude that with the
exception of release 2.0, hypotheses 1 and 2 are supported
for the ECLIPSE project.

Prediction Across Releases
We also evaluated our approach more realistic setting, mir-

roring the way a prediction model might be used in an actual
system history, using older releases to predict fault-prone
components in a new release. We built logistic prediction
models on release r−1 in order to predict fault prone plugins
in release r. This type of predictive modeling is complicated
by changing network size. As an example, betweenness of

a node is based on the number of geodesics that a node lies
on. As a network’s size increases, the number of geodesics
increases quadratically. Betweenness may be normalized by
dividing all values by the maximum possible betweenness,
but in practice, this over-inflates the betweenness for nodes
in small networks. We overcome this practice through the
use of standard scores (also known as z-scores) [27]. For
every metric, m in a particular release, we standardize it by
subtracting the mean from each observation, i, to center it
around zero and dividing the result by the standard deviation.

zmi =
xmi − µm

σm

The distribution of the result always has mean 0 and
standard deviation 1. We can then compare values of net-
work metrics on software components in different networks
more easily. Two binaries from different releases that have
betweenness values two standard deviations higher then the
mean will both have a standard score of 2.0. These standard
scores are used to build the logistic prediction models as
described in section 5.1.

Table 3 contains the results. We do not show results for
release 2.0 because we didn’t have access to development
and defect data for the 1.0 release. In this case, there was no
random splitting, so there was no repeated model building
and we cannot claim that a particular model performed better
than another to a statistically significant degree. Rather the
evaluation metrics in which for the combined or socio-
technical models which had superior results than both the
dependency and contribution models are shown in bold. In
a further effort to illustrate the difference in performance
between the models, we show the ROC curves for the models
across releases in figure 4. Note that with the exception of
the Combined model in release 2.1, both the combined and
socio-technical models outperform the other models.

This is an important result in that it demonstrates that
when our approach is used in a real-world setting as practi-
tioners would use it, it continues to perform well.

7. Conclusion
In this paper we have shown that the topological prop-

erties of software component networks can be used to
identify which components will have the most post-release
failures. We further concluded that when multiple types of
relationships are used in predictive models (dependency and
contributions in our case), the predictive power is increased.
We have evaluated our improved techniques in both a
standard industrial setting in the case of Windows Vista and
in an OSS context in the case of ECLIPSE— products in
entirely different domains. This is evidence that the approach
of using socio-technical networks to predict failure prone
binaries is not process or domain specific and gives strong
external validity to our approach. Further, we have shown
that our approach is useful to practitioners in that defect
prediction models can be trained on one release in order to
be used in the next.

References
[1] “The economic impacts of inadequate infrastructure for soft-

ware testing,” National Institute of Standards and Technology
(NIST) Planning Report 02-3, May 2002, http://www.nist.
gov/director/prog-ofc/report02-3.pdf.

[2] M. Pinzger, N. Nagappan, and B. Murphy, “Can developer-
module networks predict failures?” in SIGSOFT ’08/FSE-
16: Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering. New
York, NY, USA: ACM, 2008, pp. 2–12.

[3] T. Zimmermann and N. Nagappan, “Predicting subsystem
failures using dependency graph complexities,” pp. 227–236,
2007.

[4] T. Zimmermann and N. Nagappan, “Predicting defects using
social network analysis on dependency graphs,” in Proc. of
the International Conference on Software Engineering, 2008.

[5] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swami-
nathan, “Mining email social networks,” in Proceedings of the
3rd International Workshop on Mining Software Repositories,
2006.

[6] S. Wasserman and K. Faust, Social network analysis: Methods
and applications. Cambridge University Press, 1994.

[7] L. C. Freeman, “Centrality in social networks I. Conceptual
clarification,” Social Networks, vol. 1, pp. 215–239, 1979.

[8] B. Ruhnau, “Eigenvector-centrality – a node-centrality?” So-
cial Networks, vol. 22, no. 4, pp. 357 – 365, 2000.

[9] P. Bonacich, “Power and centrality: A family of measures,”
The American Journal of Sociology, vol. 92, no. 5, pp.
1170–1182, 1987. [Online]. Available: http://www.jstor.org/
stable/2780000

[10] R. S. Burt, Structural holes: The social structure of competi-
tion. Cambridge, MA: Harvard University Press, 1995.

[11] A. Meneely, L. Williams, W. Snipes, and J. Osborne, “Pre-
dicting failures with developer networks and social network
analysis,” in Proceedings of the 16th ACM SIGSOFT Inter-
national Symposium on Foundations of software engineering.
ACM, 2008.

[12] C. Amrit, J. Hillegersberg, and K. Kumar, “A Social Network
Perspective of Conway’s Law,” in Proceedings of the CSCW
Workshop on Social Networks, Chicago, IL, USA, 2004.

[13] G. Valetto, M. Helander, K. Ehrlich, S. Chulani, M. Wegman,
and C. Williams, “Using software repositories to investigate
socio-technical congruence in development projects,” Min-
ing Software Repositories, 2007. ICSE Workshops MSR ’07.
Fourth International Workshop on, pp. 25–25, 2007.

[14] M. Cataldo, P. Wagstrom, J. Herbsleb, and K. Carley, “Iden-
tification of coordination requirements: implications for the
Design of collaboration and awareness tools,” Proceedings of
the 2006 20th anniversary conference on Computer supported
cooperative work, pp. 353–362, 2006.

[15] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-
technical congruence: a framework for assessing the impact
of technical and work dependencies on software development
productivity,” in ESEM ’08: Proceedings of the Second ACM-
IEEE international symposium on Empirical software engi-
neering and measurement. New York, NY, USA: ACM,
2008, pp. 2–11.

[16] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. S. Jr.,
“N degrees of separation: Multi-dimensional separation
of concerns,” in International Conference on Software
Engineering, 1999, pp. 107–119. [Online]. Available:
citeseer.nj.nec.com/tarr99degrees.html

[17] S. Borgatti, M. G. Everett, and L. C. Freeman, “UCINET 6
for Windows: Software for Social Network Analysis. Harvard,
MA, Analytic Technologies,” 2002.

[18] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pager-
ank citation ranking: Bringing order to the web,” Stanford
University, Tech. Rep., 1998.

[19] J. Berkus, “The 5 types of open source projects,” 2007, march
20, 2007 http://www.powerpostgresql.com/5 types.

[20] A. Srivastava, J. Thiagarajan, and C. Schertz, “Efficient
Integration Testing using Dependency Analysis,” Microsoft
Research, Tech. Rep. MSR-TR-2005-94, 2005.

[21] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do
changes induce fixes?” in MSR ’05: Proceedings of the
2005 international workshop on Mining software repositories.
New York, NY, USA: ACM, 2005, pp. 1–5.

[22] D. E. Farrar and R. R. Glauber, “Multicollinearity in
regression analysis: The problem revisited,” The Review of
Economics and Statistics, vol. 49, no. 1, pp. 92–107, 1967.
[Online]. Available: http://www.jstor.org/stable/1937887

[23] J. Jackson, A user’s guide to principal components. Wiley-
Interscience, 2005.

[24] F. W. Lancaster, Information Retrieval Systems: Characteris-
tics, Testing, and Evaluati on, 2nd ed. Wiley, 1979.

[25] A. Bradley, “The use of the area under the ROC curve
in the evaluation of machine learning algorithms,” Pattern
Recognition, vol. 30, no. 7, pp. 1145–1159, 1997.

[26] Y. Benjamini and Y. Hochberg, “Controlling the False Dis-
covery Rate: A Practical and Powerful Approach to Multiple
Testing,” Journal of the Royal Statistical Society. Series B
(Methodological), vol. 57, no. 1, pp. 289–300, 1995.

[27] S. Dowdy, S. Wearden, and D. Chilko, Statistics for research,
3rd ed. John Wiley & Sons, 2004.

