
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Does reviewer recommendation help
developers?

Vladimir Kovalenko, Nava Tintarev, Evgeny Pasynkov, Christian Bird, and Alberto Bacchelli

Abstract—Selecting reviewers for code changes is a critical step for an efficient code review process. Recent studies propose
automated reviewer recommendation algorithms to support developers in this task. However, the evaluation of recommendation
algorithms, when done apart from their target systems and users (i.e., code review tools and change authors), leaves out important
aspects: perception of recommendations, influence of recommendations on human choices, and their effect on user experience.
This study is the first to evaluate a reviewer recommender in vivo. We compare historical reviewers and recommendations for over
21,000 code reviews performed with a deployed recommender in a company environment and set out to measure the influence of
recommendations on users’ choices, along with other performance metrics. Having found no evidence of influence, we turn to the
users of the recommender. Through interviews and a survey we find that, though perceived as relevant, reviewer recommendations
rarely provide additional value for the respondents. We confirm this finding with a larger study at another company. The confirmation of
this finding brings up a case for more user-centric approaches to designing and evaluating the recommenders. Finally, we investigate
information needs of developers during reviewer selection and discuss promising directions for the next generation of reviewer
recommendation tools. Preprint: https://doi.org/10.5281/zenodo.1404814

Index Terms—Code Review, Reviewer Recommendation, Empirical Software Engineering.

F

1 INTRODUCTION

CODE Review, i.e., manual inspection of source code
changes, has become a standard step in software en-

gineering [1], [2]. The inspection approaches have evolved
over the last decades and these days developers com-
monly conduct change-based code reviews using dedicated
tools [2], [3]. This lightweight, change- and tool-based ap-
proach to code review, commonly used in the software
industry, is also referred to as Modern Code Review (MCR)
in literature [2], [4], [5], [6].

Code review tools provide developers with a conve-
nient environment to read and discuss code changes. The
tools have evolved to support the reviewers with more
features, such as integration with bug trackers and contin-
uous integration tools [7], [8], [9]. The research community
has proposed techniques that utilize historical data about
development activity to optimize the code review process
and tools further. A notable example of such technique is
automatic reviewer recommendation — the focus of this study.

Automatic reviewer recommendation consists in having
an algorithm that identifies the optimal reviewer(s) for a
given changeset and provides a suggestion accordingly.
Selecting the right reviewers for a changeset, as previous
studies reported [2], [10], is a critical step in the code review
process, because the knowledge and ability of reviewers can

• V. V. Kovalenko is with the Software Engineering Research Group, Delft
University of Technology, Delft, The Netherlands.
E-mail: V.V.Kovalenko@tudelft.nl

• N. Tintarev is with the Web Information Systems Group, Delft University
of Technology, Delft, The Netherlands.

• E. Pasynkov is with JetBrains GmbH, Munich, Germany.
• C. Bird is with Microsoft Research, Microsoft, Redmond, USA.
• A. Bacchelli is with ZEST, University of Zurich, Zürich, Switzerland.

Manuscript received . . . ; revised . . .

dramatically impact the quality of a review [2]. The com-
mon idea behind the automatic reviewer recommendation
is modeling developers’ experience to identify those devel-
opers who are the most experienced with the code under
review. This expertise is thought to ensure their capability of
providing good feedback [2], and it is commonly identified
by analyzing the history of developers’ code changes as well
as participation in prior code reviews.

Academic researchers have proposed several approaches
and models for automatic reviewer assignment and re-
viewer recommendation. Examples include recommenda-
tions based on prior reviewers of files with similar paths
in the same project [5], on cross-project work experience
of potential reviewers and estimation of their expertise in
specific technologies [11], and on analysis of the history of
file changes at line level [12]. Most approaches demonstrate
high accuracy, sometimes as high as 92% for top-5 [12].

The analysis and the comparison of the performance
of reviewer recommendation approaches have been largely
based on evaluating how well these approaches can pro-
duce recommendations that match the historical records
of actual reviewers. In practice, the evaluation consists
in measuring how precisely the reviewer recommendation
approach would have recommended the developers who
actually did the review for a given changeset in the past,
given the information available in the moment the review
was requested. This evaluation is based on the assumption
that reviewers who did review the code under the change
before are (among) the best candidates to review it. Such
an offline evaluation [13], performed on a historical dataset
of reviews, is convenient because it enables the parallel
comparison of multiple algorithms on the same data, does
not require human input, and does not interfere with the
observed phenomenon.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

Reflecting on the primary goal of a reviewer recom-
mendation system, we see that such a system should help
developers making their choice of a reviewer for a change-
set. This help is the most valuable in scenarios where this
choice is not completely clear. Consequently, the effect of a
reviewer recommender system can be described as positively
influencing the users’ behavior by mitigating their difficulties
with making an informed choice.

Offline evaluation leaves this critical aspect out of the
picture. Influence from the recommender system on user’s
decision is particularly likely to occur when the user does
not have an intention to select a particular person as a
reviewer beforehand; in such cases recommendations can
serve as hints, directing user’s choices towards recom-
mended options. Evaluating recommendation algorithms
against actual reviewers from historical data does not allow
to account for this effect, because the users do not interact
with the recommender in this case. This limitation is not
specific to reviewer recommendation, but is typical for all
recommender systems [13].

Another effect that is not taken into account by exist-
ing evaluation techniques for reviewer recommendation is
whether and how the recommendations play a different role
for different users. For example, novice developers or new-
comers to a team may find a recommendation more helpful,
since these users are known to benefit from guidance and
mentoring the most [14]. In contrast, for experienced mem-
bers of a small team, where codebase ownership is clearly
split between developers, reviewer recommendation may be
a less useful or even redundant feature, as also hypothesized
by Baum et al. [15]. The ability of recommendation models
to take the individual user’s needs into account may be
no less important for the real-world tool context than how
suitable the recommended reviewers are for corresponding
changes. However, existing evaluation methods omit these
aspects, focusing solely on comparing the alignment of
recommendations with reviewers from historical data.

Acknowledging these aspects, which are specific for sce-
narios where a recommender is deployed, looks like the next
important step in the evolution of reviewer recommenda-
tion. Moreover, these arguments fall in line with state of the
art in the research field of recommender systems, where the
idea of considering a broader set of metrics beyond accuracy
of algorithms has recently been gaining traction [16], [17].

The increasing adoption of reviewer recommendation in
industrial tools (e.g., [18], [19], [20]) brings an unprecedented
opportunity to bridge the gap between offline evaluation
of reviewer recommendation algorithms and their actual
value for the code review process. This study is our take
on this opportunity. In collaboration with two companies
(JetBrains [21] and Microsoft [22]), we conduct, for the first
time, a longitudinal, in vivo study to explore the experience
of users with reviewer recommendation in the setting of
commercial software companies.

In our study, we use a mixed quantitative/qualitative
approach. In the first, quantitative stage at JetBrains, we
analyze the history of over 21,000 code reviews that were
performed in the company’s internal instance of Upsource.1

1. Upsource is a code review tool developed by JetBrains, which is
available as a commercial product and also used for code review by the
developers at JetBrains.

By reproducing the historical recommendations from Up-
source, we set out to measure the accuracy of a deployed
reviewer recommender and identify the impact of recom-
mendations on users’ choices. Thanks to a change of the
recommendation model amid the longitudinal data period,
we have an opportunity to seek evidence of such impact by
observing the trend of recommendation accuracy, relative
to choices of users, around the point of the model change.
Unexpectedly, we find no evidence of such impact: the
accuracy does not noticeably change with the change of a
deployed model.

In the second stage, to gain a deeper understanding
of reviewer recommendation beyond its accuracy, we turn
to the users. Through four interviews and a survey of 16
respondents at JetBrains, we explore how the developers
perceive and use the reviewer recommendations. We find
that, despite being generally perceived as relevant, automatic
reviewer recommendations are often not helpful for the users at
JetBrains. To validate this unexpected finding, we conduct a
more extensive survey at Microsoft (508 responses to a sur-
vey consisting of 22 questions, both Likert scale and open),
which generally confirms the result in another company.

Overall, our results suggest that accepted evaluation
measurements misalign with the needs of most developers
in the company settings we investigated. This misalignment
highlights the importance of carefully considering the con-
text when developing reviewer recommender mechanisms
and when selecting the corresponding evaluation tech-
niques. Indeed, our setting is an example of environments
where the established means of evaluation do not match
well the value of the recommendations for users.

Finally, we use the responses from Microsoft to identify
scenarios of demand for reviewer recommendation and
propose a new, more user-centric and context-aware take
on this problem.
Our study makes the following contributions:
• The first in vivo evaluation of reviewer recommen-

dation as a code review tool feature, in the context
of two commercial software companies, investigating
empirical accuracy (RQ1), influence on reviewer choices
(RQ1), and added value for users (RQ2);

• Empirical evidence on the importance of metrics be-
yond accuracy for the evaluation of reviewer recom-
mendation systems (RQ1);

• Analysis of users’ perception of reviewer recommenda-
tion features, which challenges the universality of the
use case for reviewer recommendation in commercial
teams and underlines the importance of context (RQ2);

• An investigation of the information needs of developers
when selecting reviewers, suggesting directions for fur-
ther evolution of reviewer recommendation approaches
(RQ3);

• Empirical evidence on categories of developers with
more difficulties selecting reviewers than others (RQ3).

2 BACKGROUND AND MOTIVATION

2.1 Code Review
Code review is a practice of manual examination of source
code changes. Its primary purpose is early detection of de-
fects and code quality improvement [2]; other goals include



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

distribution of knowledge and increase team awareness, as
well as promotion of shared code ownership [2], [23].

In modern development environments, code review is
typically performed on code changes, before these changes
are put into production, and is done with dedicated
tools [23]. Code review tools mostly provide logistic sup-
port: packaging of changes, textual diffing (for reading
the changes), inline commenting (to facilitate discussions
among authors and reviewers), and accept/reject decisions.
A few tools provide additional features to extend user expe-
rience. Examples of such features include code navigation
(e.g., [8]), integration of static analysis results (e.g., [8], [24]),
and code repository analytics (e.g., [8], [25]).

2.2 Recommender systems

The research field of recommender systems investigates
how to provide users with personalized advice in vari-
ous information access environments. Prominent applica-
tions for these techniques are online marketing [26], web
search [27], social media content filtering [28], and entertain-
ment services [29], [30], [31]. Another line of research is ded-
icated to recommending experts for various applications in
knowledge-heavy contexts, such as academic research and
software development [32], [33]. In particular, recommender
systems are proposed in a variety of software engineering
related scopes and are targeted towards improving the
efficiency of development and quality assurance activities.
Examples of problems tackled with recommendation ap-
proaches include bug triaging [34], defect localization [35],
identification of related Q&A threads [36], and recommen-
dation of code reviewers [5].

Most of the research in the broader field of recommender
systems had focused on devising core recommendation al-
gorithms able to predict the choices of users — for example,
predicting the books that were eventually bought or rated
as high quality by a given user. Design of such algorithms
and their evaluation are typically conducted on historical
datasets (e.g., by splitting the data in temporal order for
training and evaluation [37]), and do not require actual
interaction of users with the evaluated algorithm. Hence,
such evaluation techniques are called offline experiments.
Such experiments do not allow to capture the factors influ-
encing user satisfaction, or what happens with the quality or
perception of the predictions over time [38], [39], [40], [41],
or aspects of user interaction with the recommender.

A more powerful alternative is live user experiments,
which are essential to evaluate finer aspects of recommenda-
tion quality, user experience, and business metrics based on
outcomes of the interactions [42]. However, live user studies
of recommender systems are rare. Large-scale live user
experiments, that should involve interaction of real users
with the recommender, are costly: an experiment requires
a long-running infrastructure to support the data collection
for high-quality predictions, and poses the risk that some
interventions may lead to worse recommendations for sub-
groups of users (e.g., in the case of A/B testing).

A common measure for evaluation of recommendation
engines, which is typically a focus of offline evaluation,
is accuracy — the measure of recommender’s ability to
model actual choices of users, thus providing an output

that is relevant to them. Thanks to the rising adoption of
recommendation engines in consumer services and tools,
researchers could start moving beyond accuracy as they con-
sider complementary metrics for evaluation. This includes
considering factors such as diversity [43], [44], [45], novelty
[42], [46], and serendipity [16], [47] alongside accuracy. Along
with the expansion of the spectrum of evaluation metrics,
the nature of interactions between users and recommender
systems, and the influence that user interface and interaction
style have on user behaviour and overall recommendation
experience [48], [49], [50] have also been attracting more
attention.

One particular gap in this literature is lack of investi-
gations of change of the quality of recommendations over
time, and how this change influences interaction of the users
with the recommenders [51]. This gap can be attributed to
the high cost of obtaining longitudinal data at large scale.
Nguyen et al. found that recommender systems decrease
the diversity of content that users consume over time [51],
and Bakshy et al. found that both algorithms and users
contribute to over-tailoring of recommendations [52].

Recommendations based on historical data (which also
includes several models of code reviewer recommendation)
are subject to feedback once deployed — the recommended
items that were chosen by the user have a higher chance
to be recommended in the future. Impact of this effect
on the value of the recommender systems is double-sided.
Learning user’s preferences through interaction history can
reduce user effort [53]; however, relying too heavily on
recommender systems may result in a negative effect for
other factors, such as sales diversity [54]. In more compli-
cated information retrieval contexts, the long-term impact
of feedback is also controversial. For example, in online
social media content filtering, feedback can undermine the
diversity of users’ interaction scopes [55].

2.3 Reviewer recommendation
Researchers provided evidence that inappropriate selection
of reviewers can slow down the review process [5]. As
a consequence, recent work in software engineering re-
search is dedicated to building reviewer recommendation
approaches to support developers during the critical step
of reviewer selection. The common idea behind these ap-
proaches is to automatically identify potential reviewers
who are the most suitable for a given change. The main
proxy for suitability estimation is expertise (or familiarity)
of candidates with code under review, which is estimated
through analysis of artifacts of developers’ prior work, such
as histories of code changes and review participation [4],
[12], [56].

The exact mechanics of reviewer recommendation vary
between approaches. Some techniques are based on scoring
of candidates, either based on changes history at line level
[12] or on analysis of historical reviewers for files with
similar paths [56]. Another approach is machine learning
on change features [57]. Other studies incorporate addi-
tional information, such as socio-technical relationships [6],
reviewer activity information from past reviews [4], social
interactions between developers [58], and expertise of po-
tential reviewers with similar contexts in other projects [11],
[59].



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

2.4 Practical motivation
Existing research in a broader scope of recommender sys-
tems suggests that evaluation of recommendation algo-
rithms should go beyond offline evaluations and accuracy
measures: there is demand for methods that consider the
real-world impact of recommender systems. Such methods
are essential to gain a deeper understanding of long-term
effects of recommendation systems, and to facilitate their
adoption. In this work, we set out to shed light on the
value of reviewer recommendation for users of code review
tools, by conducting the first live user evaluation and taking
a more user-centric approach to this increasingly popular
topic. By using the records of development activity and
interviewing developers at two software companies, we are
particularly focusing on the accuracy and perception of a
reviewer recommender in commercial teams.

A particularly interesting effect in the context of reviewer
recommendation is the influence that the recommendations
may have on choices of the users exposed to a recommender.
A similar effect was described by Cosley et al. [60]: users of
a movie recommendation tool, when asked to rate movies,
displayed a small but significant bias towards a predicted
rating. Presence of such effect in the interaction of users
with a recommender system could lay the foundation for
the collaboration tools to help with controlling large-scale
characteristics of software projects, such as the distribution
of code ownership.

3 RESEARCH QUESTIONS AND SETTING

In this section, we present the research questions, the re-
search settings, and an overview of the research method.

3.1 Research questions
We organize our results along three research questions (and
corresponding sub-questions), which we have iteratively
refined during the investigation.

RQ1: How does a reviewer recommendation system per-
form in practice? (Section 4)

RQ1.1 Do the recommendations influence the choice of
reviewers? Investigating the performance of a reviewer
recommender system in a deployed tool is interesting
from the perspective of identifying potential effects that
are specific to an online scenario. In RQ1.1, we are look-
ing for evidence of the most important of such effects:
influence of recommendations on choices of users.

RQ1.2 How accurate are the recommendations of a de-
ployed recommender? In RQ1.2, we focus on the accu-
racy of reviewer recommendations. While a number of
previous studies cover the accuracy aspect, it is important
to evaluate it in our online scenario separately: feedback
from recommendations to choices can possibly inflate
observed accuracy of a deployed recommender.

RQ1.3 What are other performance properties of the de-
ployed recommender? RQ1.3 is dedicated to performance
properties of the recommender apart from accuracy. We
find it a worthwhile question to formulate, because com-
mon metrics for evaluation of reviewer recommenders

are limited to accuracy figures. Accuracy-centric approach
is obsolete with regard to recent achievements in the
Recommender Systems research field, where it is now
established that other properties of a recommender are
no less critical for a real-world system than its accuracy.

Afterwards, we investigate the perception of the re-
viewer recommender by users. Through interviews and
surveys, we aim to understand if developers perceive the
recommendations as accurate, relevant, and helpful:

RQ2. How do developers perceive and use reviewer
recommendations? (Section 5)

RQ2.1 Do developers need assistance with reviewer selec-
tion? With this question, we investigate to what extent the
reviewer selection process is challenging for developers.

RQ2.2 Are the reviewer recommendations perceived as
relevant? With this question, rather than comparing rec-
ommendations against choices, we ask users about their
perception of recommendation quality — in particular,
whether the recommendations appear relevant.

RQ2.3 Do the recommendations help with reviewer se-
lection? This question addresses the role of reviewer
recommendations in the process of reviewer selection. To
provide additional value, a recommender system does not
only have to be accurate, but it should also be helpful with
regard to the information needs of the users.

The information needs during reviewer assignment may
(1) be different for different users and (2) be not satisfied by
current reviewer recommender systems. To provide sugges-
tions for further improvement of reviewer recommendation
approaches, we investigate the information needs of devel-
opers who select reviewers for a change.

RQ3. What are the information needs of developers
during reviewer assignment? (Section 6)

RQ3.1 What kinds of information do developers consider
when selecting reviewers? This question aims to better
understand the reviewer selection process by figuring out
the most relevant types and sources of information.

RQ3.2 How difficult to obtain are the different kinds of
information needed for reviewer selection? Some of the
important information may be more difficult to obtain
for the user. It is an important factor for the design of
recommendation systems, as they are capable of obtaining
and aggregating information that is harder for users to get
otherwise, such as modification history of files. With this
question, we aim at identifying such types of information
for reviewer selection.

RQ3.3 When is it more difficult to choose a reviewer?
The task of reviewer selection may be more challenging in
some scenarios, such as when changing the legacy code, or
for a new team member. Future reviewer recommendation
approaches could also consider the context of changes
— for example, by only offering recommendations when
there is a clear demand for them. With this question, we
aim to identify such situations, in which a recommender
could be more helpful.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

Fig. 1: Main interface of Upsource — the code review tool used at JetBrains

3.2 Research Settings

The study we conducted to answer the research questions
took place with professional developers, managers, and data
from two commercial software companies.

JetBrains: The first subject company is a vendor of software
tools for a niche area of professional software developers.
The company has over 700 employees, most of whom
are located in several development centers across Europe.
Upsource, a code review tool, is one of the products of
the company and includes a recommender for reviewers.
Different teams at JetBrains have been using Upsource for
code review since its early releases in 2014 and, subse-
quently, have used the reviewer recommender since it was
implemented in Upsource. However, with no centralized
code review policy in place, adoption of Upsource inside
the company and within individual teams is underway.

Microsoft: The second subject company is a large corpora-
tion that develops software in diverse domains. Each team
has its own development culture and code review policies.
Over the past eight years, CodeFlow — a homegrown
code review tool at Microsoft — has achieved company-
wide adoption. As it represents a standard solution for
code review at the company (over 50,000 developers have
used it so far) and offers an integrated reviewer recom-
mendation engine, we focused on developers who use this
tool for code review.

Code review tools. The functioning and features of code
review tools, including Upsource and CodeFlow, are sub-
stantially the same. Here we explain the functioning, by
considering Upsource as an example.

Upsource is a commercially available code review tool.
It provides code discussion facilities, code highlighting and
navigation, and repository browsing features. Figure 1 is a
screenshot of the code review interface in Upsource.

Apart from these standard features, Upsource is capable
of recommending reviewers for code changes. This feature
is central for this work. When a new review is created from a
set of commits, the tool analyzes the history of changes and
reviews of changed files and ranks the potential reviewers
according to their relevance. Then Upsource presents a list
of relevant developers to be quickly selected as reviewers
with one click. (Figure 2). The user can opt to use a search

form to add reviewers manually. In such case, the history-
based recommendations are presented in the search results
as well (Figure 3). We detail the internal structure of the
recommendation algorithm in Section 4.2.

Fig. 2: Instant reviewer suggestions in Upsource

Fig. 3: Reviewer suggestions in search form in Upsource

Both in Upsource and CodeFlow, the reviewers can be
added to a review by any user with corresponding rights,
which are typically held by all team members. The standard
scenario in the code review workflow both at Microsoft and
JetBrains is that it is the author of the change who initiates
the review and selects the colleagues whom they prefer to
invite as reviewers.

A distinguishing feature of CodeFlow (the code review
tool used at Microsoft) is the option to configure the recom-
mendations according to the policy of a team. For example,
one team can decide that all the reviews for certain files are
sent to an alias visible by all developers in a specific team.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

3.3 Study overview

Fig. 4: Overview of the research method

Figure 4 presents a schematic view of the research
method employed for investigating the research questions.
We briefly describe our method in the following and provide
details by research question in the next sections.

Our study followed a mixed-method (qualitative and
quantitative) approach [61]. We collected and analyzed data
from different sources for triangulation and validation. We
conducted our study in three phases.

In the first two phases, we teamed up with JetBrains.
In the first of these two phases, with the help of Upsource
developers and with a team of Upsource users at JetBrains,
we have reproduced reviewer recommendations that were
given to the users in over 21,000 reviews that took place
across the period of 2.5 years. To evaluate recommendation
accuracy, we also collected the records of actual review-
ers in those reviews. In the second of these two phases,
we conducted interviews and sent a survey to JetBrains
developers to collect data on developers’ perception and
usage of recommendations. In the third phase we turned to
Microsoft: We expanded the scope of the investigation and
validated our outcomes from the first two phases through
a separate structured survey, by targeting the developers
working at Microsoft.

We used the quantitative data from the deployed recom-
mender system at JetBrains to answer RQ1. Responses from
interviews at JetBrains and surveys at both companies were
the primary data sources for RQ2. RQ3 was based on the
responses to a large-scale survey at Microsoft.

4 RQ1: PERFORMANCE OF THE DEPLOYED RE-
VIEWER RECOMMENDER SYSTEM

Our first research question seeks to empirically investigate
the performance of a deployed reviewer recommender.

4.1 Data collection

To answer this research question, we have reproduced the
recommendations for reviews in the codebase of JetBrains’
flagship product — IntelliJ IDEA Ultimate. To extract the
necessary dataset from the backup files of the internal
Upsource instance at JetBrains, the first author of this article
devised a custom build of Upsource, which included a
custom module for reproducing the recommendations and
dumping the data.

For every completed review, we identify the events of
a reviewer being manually added to a review. For each of
these events, we reproduce the recommendations that were
given to the user who added the reviewer. We identify his-
torical recommendations by sandboxing the components of
the actual recommender system and reproducing its output.

Each observation in the dataset represents an event of
manual selection of a reviewer. For each of these events,
the dataset contains records of the selected user, the user
who made the selection, and the recommendations made by
two different models. In contrast with studies where the list
of recommendations is usually compared against a list of
actual reviewers in the whole review, our observations are
more fine-grained because a single review can contain mul-
tiple addition events. This data structure is mostly dictated
by the recommendation algorithm (described in Section 4.2),
and it also imposes limitations on the metrics that can be
used to evaluate recommendation accuracy (as we explain
in Section 4.4.1).

4.2 Reviewer recommender internals

Figure 5 presents the scheme of the reviewer recommenda-
tion system in Upsource.

For every review, (1) recommendations are calculated
based on the changes that are included in this review. For
every modified file in the change set, (2) Upsource retrieves
the history of all the previous commits affecting these files.
For each of these commits, the recommender gathers the
(3) VCS meta-data, such as the author and timestamp of
the commit and the list of developers who reviewed them.
This information is compiled into (4) the input data for the
recommendation model. To disambiguate several version-
ing system aliases of the same user, we associate the aliases
with user profiles in an external user management tool.

Based on this input data, for every author and reviewer
of the past versions of the files, the recommender model
computes a relevance score, based on recency, count, and
magnitude of developers’ prior contributions (both as au-
thors and as reviewers) to the files under review. The score is
designed to represent the degree of familiarity of each devel-
oper with the code under review. This approach is aligned
with state of the art in reviewer recommendation [62], [4].

The recommender system filters the list of potential
recommendations (5) to remove irrelevant candidates: users
who already participate in the review as reviewers (such as



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

Fig. 5: Recommendation system workflow. On 2017-08-16, John Lee wants to add a second reviewer to his change (1) in
addition to Jack Shaw, who is already a reviewer. Upsource collects history of changes for files under review and history
of reviews for these changes (4). Based on this data, the recommendation model scores potential reviewers (5). The scored
list is filtered, leaving out the current reviewers (Jack), the author (John), and users with low scores (James). The remaining
users are converted into a list of recommendations (6). Here a recommended user (Alice) is selected from a list of 2
recommendations, yielding precision of 0.5, recall of 1, and MRR of 1.

‘Jack Shaw’ in Figure 5), users who have no review access
(e.g., because they left the company), users with a score that
is too low (such as ‘James Foo’), and the author of the change
to be reviewed. Finally, (6) the recommender presents at
most three of the remaining candidates to the user, who
may select one (as in this case) or more, or add someone
else through manual search.

4.2.1 Two recommendation models

The scoring algorithm, which is at the heart of the recom-
mender system in Upsource, was changed one year and
a half after it was deployed. The change in the scoring
algorithm, made along with a refactoring and a perfor-
mance optimization of the recommendation backend, was
triggered by user feedback indicating occasional irrelevant
recommendations: “It is better not to recommend anyone than
to recommend a random person” — Upsource dev lead, thus the
change focused on reducing the number of recommenda-
tions.

For our study, this change of the scoring algorithm amid
the longitudinal data period is a ripe opportunity to observe
the effects of this change on the overall performance of the
recommender system.

We refer to the first and the second versions as Recency
model and Recency+Size model, respectively. The Recency
model weights individual contributions of a user to every
file, based on their recency: The more recent changes are
given more priority to account for the temporal decay of
user’s expertise [63]. The size of a change does not influence
the weight of a contribution in Recency model, and review-
ing a change is considered an equally strong contribution as
authoring it. The Recency+Size model, in contrast, takes the
sizes of contributions into account; furthermore, authoring a

change is considered a stronger contribution than reviewing
it, and a different temporal decay function is used.

4.3 RQ1.1 — Do the recommendations influence the
choice of reviewers?
4.3.1 Detecting the influence on choosing the reviewers
In an online setup, without a controlled experiment, it is
impossible to directly measure the impact of recommenda-
tions on choices made by users. However, the change of
recommendation model amid the data period (Section 4.2.1)
gives us a chance to seek evidence of such impact.

If the recommendations played a significant role in de-
termining the choice, the set of selected reviewers (also, the
output against which the model is evaluated) would be par-
tially defined by the recommendations. As a consequence,
the influence of the recommender would lead to an increase
in the observed accuracy of the recommendations.

We illustrate the nature of this effect with an exaggerated
hypothetical example. Consider Alice, who always decides
whether to ask Bob or Charlie to review her changes by
tossing a coin. Also consider an isolated reviewer recom-
mender system, that is as simple as tossing another coin and
recommending the corresponding reviewer. If we evaluated
such a recommender system offline on the history of review-
ers of Alice’s changes, in the long run, its precision would
converge to 0.5 — the odds of two coins landing on the
same side. However, if Alice indeed used that recommender,
and followed its recommendations (rather than her own
coin) at least once in a while, evaluation of the output
of the recommender on historical data would yield higher
precision values, because the recommended and the chosen
reviewer would match beyond random occasions.

We have reproduced the recommendations provided by
both models for the whole period. Given that the outputs



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

of the models are different, if we consider the moment
in which the deployed model changes, a change of accu-
racy at this moment would indicate an influence of the
recommendations on choices. For example, if choices are
biased towards recommendations of the Recency model, its
observed accuracy would experience a drop at the moment
the Recency+Size model gets deployed instead. A similar
argument works for the Recency+Size model — its accuracy
should increase once it is deployed, if the recommender
influences the choices of users.

Considering the explanation above, we explore the ac-
curacy trend around the model change date to conclude
whether we can observe the influence.

4.3.2 Results

As a first step, we compare the output of the two models
to ensure that they are dissimilar for the same input, so
that we could see a difference in case of influence of the
model. The outputs of the two models are indeed dissimilar:
The mean value of Jaccard similarity index [64] between the
recommendation lists provided by the two models for the
same event is 0.502.2

If the recommendations had a significant influence on
the choice of reviewers, we would expect the models to
demonstrate higher precision when evaluated during the
period of their deployment, than during the period when
another recommendation model was in place, as an effect
of the influence of recommendations on the choices (Sec-
tion 4.3.1). Figures 6 and 7 indicate lack of such effect: we do
not see any increase in precision in Figure 7 at the moment
when the Recency+Size model was deployed. On the one
hand, the increase in precision could be dampened by the
increase of the pool of potential reviewers: it is harder for
the model to select a few relevant users from a bigger pool,
which could cause precision to degrade. However, coverage
figures (Section 4.5.1) suggest that it is unlikely to be the
case, and the recommendations from Recency+Size model is
actually more focused: Recency+Size model recommends the
smaller proportion of the pool (only two in three active users
ever got recommended by Recency+Size model), and these
recommendations are picked more often: “intersection/rec-
ommended” and “match/recommended” ratios are higher
than those of Recency model. Another argument towards the
lack of influence is that we do not see a decrease of precision
of similar nature in Figure 6 at the point when the Recency
model went out of use. From this observation, we conclude
that the increase in the number of active users does not
directly decrease precision, and lack of shift in the precision
of one model at the point where the deployed model has
changed can be interpreted as an indication of the weakness
of influence of model’s recommendations on users’ choices.

We expected to see a noticeable shift in precision values
at the moment of change of the deployed model, as a sign of
the influence of recommendations on choices. Figures 6 and
7 display no such shift.

2. For calculating the Jaccard index, we only consider the events
where at least one of the two models provided a non-empty recommen-
dation list, because (1) we only consider such events for calculating the
accuracy metrics and (2) computing the Jaccard index for two empty
sets would imply division by zero.

Avg precision: 0.474
Avg recall: 0.708
Avg empty rec rate: 0.172
Avg MRR: 0.640

Avg precision: 0.457
Avg recall: 0.722

Avg empty rec rate: 0.152
Avg MRR: 0.648

Recency+Size model deployedRecency model deployed

0.00

0.25

0.50

0.75

1.00

2015−01 2015−07 2016−01 2016−07 2017−01

Month

V
al

ue

precision recall emptyRecRate MRR

Fig. 6: Accuracy of the Recency model relative to user
choices. During the second period, a different recommenda-
tion model (Recency+Size) was in use. However, difference
in accuracy values between the two periods is well within
monthly variance.

Avg precision: 0.464
Avg recall: 0.612
Avg empty rec rate: 0.267
Avg MRR: 0.557

Avg precision: 0.492
Avg recall: 0.662

Avg empty rec rate: 0.262
Avg MRR: 0.612

Recency+Size model deployedRecency model deployed

0.00

0.25

0.50

0.75

1.00

2015−01 2015−07 2016−01 2016−07 2017−01

Month

V
al

ue

precision recall emptyRecRate MRR

Fig. 7: Accuracy of the Recency+Size model relative to user
choices. During the first period, a different recommendation
model (Recency) was in use. However, difference in accuracy
values between the two periods is well within monthly
variance.

4.4 RQ1.2 — How accurate are the recommendations
of a deployed recommender?

4.4.1 Adjusted accuracy metrics
The commonly used metrics to quantify the accuracy of
recommendations are top-k accuracy and MRR. These are
reasonable metrics of list similarity, which makes them
a good choice when the task is to compare two lists —
recommended and selected items. However, these metrics
are not a good fit for our event-based data. In our case,
at every event of reviewer addition, a list of recommen-
dations should be evaluated against exactly one selected
user. Because the scope of recommendations in our target
system is one review, it might seem reasonable to merge all
observations for a given review into one list and use the
conventional metrics. It is, however, not feasible for a thor-
ough evaluation: the recommendation output is influenced



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

both by the user who adds a new reviewer and by a set of
previously added reviewers. Thus, if the recommendations
for a given review were compiled in a list, every item in that
list would be defined, among other things, by order of the
previous elements in this list. Thus, the only feasible option
is to define and calculate accuracy per individual event, and
then aggregate these numbers over time periods.

In line with previous investigations on recommender
systems for software engineering [4], [34], we calculate
the two widely used accuracy metrics — precision and
recall, adjusted to our specific case of calculating the match
between a set of recommendations and exactly one chosen
user. In addition, we calculate adjusted MRR and use it to
complement the recall values: unlike recall, MRR considers
ranking of recommendations in the list.

Specifically, precision for a recommender system is de-
fined as the fraction of relevant items among all recom-
mended items. In our specific case, as the recommendations
are calculated from scratch for every new added reviewer,
exactly one item is selected at a time. Thus, for each event,
given a non-empty recommendation set Recs for an event
where a user U was added as a reviewer, adjusted precision
P is defined as

Precision P =

{
1

|Recs| if U ∈ Recs

0 otherwise

Adjusted recall R, the measure of how fully the recommen-
dations cover the relevant items, is defined in a similar way
to P :

Recall R =

{
1 if U ∈ Recs

0 otherwise

While, as described above, MRR would not be a good
primary metric for the recommendation accuracy, it comple-
ments the recall by penalizing the recommender for placing
the correct recommendation below the top position in the
recommendation list. Therefore, alongside precision and
recall, we calculate the MRR, adjusting it to our scenario
of a single recommendation:

MRR =

{
1

rank of U in Recs if U ∈ Recs

0 otherwise

4.4.2 Results

Figure 8 presents average values of the three accuracy
metrics for non-empty recommendations, as well as the
frequency of empty recommendations, over the monthly pe-
riods. Evaluated during the deployment period, both mod-
els demonstrate accuracy values within the known range
of prototypes. The Recency+Size model, due to a different
scaling formula, is more conservative with recommenda-
tions — compared to the Recency model, it is 52% more
likely not to produce any recommendations. It leads to a
6.5% lower mean recall and a 4% higher mean precision
than for the Recency model. The mean MRR value for the
Recency+Size model is 4% lower. Notably, the difference in
average accuracy metrics between the two models is within
the range of variance of these metrics between consecutive
monthly periods for each of the models.

Avg precision: 0.474
Avg recall: 0.708
Avg empty rec rate: 0.172
Avg MRR: 0.640

Avg precision: 0.492
Avg recall: 0.662

Avg empty rec rate: 0.262
Avg MRR: 0.612

Recency+Size model deployedRecency model deployed

0.00

0.25

0.50

0.75

1.00

2015−01 2015−07 2016−01 2016−07 2017−01

Month

V
al

ue

precision recall emptyRecRate MRR

Fig. 8: Accuracy metrics for non-empty recommendations
and rate of empty recommendations over 1-month periods

4.5 RQ1.3 — What are other performance properties of
the recommender?

4.5.1 Recommendation count and coverage metrics

Precision and recall are only defined when the set of rec-
ommendations is not empty. Thanks to internal filtering in
the recommender (described in Section 4.2), it is possible
that in some cases the model gives no recommendations. To
account for events with empty recommendation lists, where
precision and recall cannot be defined, we use frequency of
empty recommendations and count of recommendations as
auxiliary metrics.

In addition to recommendations count, we augment the
accuracy numbers with numbers of catalog coverage — a
measure of how many of the users who can hypothetically
be recommended do get recommended. In the absence of
other studies that consider this parameter of a reviewer
recommender, and of a steady definition of the catalog in
this context, we use several metrics related to the catalog
coverage. For the periods of deployment of each of the two
recommendation models, we calculate the following:

• Number of developers who made the code changes
in the project in and before the period. This number
represents the pool of users who can potentially be
recommended.

• Number of developers who were recommended as a
reviewer at least once during the period.

• Number of developers who were selected as a reviewer
at least once.

• Size of the intersection of the previous two sets.
• Number of developers who have been selected as a

reviewer in at least one event where they have also been
recommended.

Comparing these numbers adds to the understanding of the
difference in behavior of the two recommendation models.

4.5.2 Results

Figure 9 presents the recommendation list sizes of the two
models. The average count of recommendations from the
Recency+Size model is 21% less than for the Recency model.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

A lower ratio of average lengths of non-empty recommen-
dation lists between two models suggests that a higher rate
of empty recommendations largely defines the difference.

Recency+Size model deployedRecency model deployed

Avg recommendations: 1.124Avg recommendations: 1.420
Avg recommendations (where > 0): 1.522Avg recommendations (where > 0): 1.7150.0

0.5

1.0

1.5

2.0

2015−01 2015−07 2016−01 2016−07 2017−01

Month

V
al

ue

avgRecCount avgNonZeroRec

Fig. 9: Average recommendation list size over 1-month
periods

Figure 10 presents coverage of recommendation and
selection of users, relative to all active users. The numbers
demonstrate the value of this metric in addition to accuracy
metrics: with analysis based strictly on accuracy metrics, the
lower value of recall that Recency+Size model demonstrates,
along with only marginal change in precision, would be
interpreted as degraded performance compared to Recency
model. However, the higher ”intersection/recommended”
and ”match/recommended” ratios that Recency+Size model
demonstrates despite a lower ”picked/active” ratio, suggest
that the smaller subset of active users whom Recency+Size
model presents as recommendations, appears more relevant
to the users, making the recommendations of Recency+Size
model more likely to be followed.

4.6 RQ1 - Summary

The deployed models’ accuracy is in line with existing
results obtained through offline evaluation. The models are
slightly different in terms of accuracy metrics. Recency+Size
model on average gives less recommendations and reaches
a slightly lower average recall. There are no noticeable
changes in precision, evaluated for one model, at the mo-
ment of the deployed model change. A possible reason for
lack of this effect is lack of influence of recommendations on
choices of users, which contradicts our expectations about a
deployed reviewer recommendation model. To shed light
on how the users in our considered setting perceive the
recommendations, we turn to a qualitative investigation of
this aspect, which we describe in the next section.

5 RQ2: DEVELOPERS’ PERCEPTION AND USE OF
REVIEWER RECOMMENDATIONS

We dedicate our second research question to understanding
the perception of relevance and helpfulness of recommen-
dations by developers. To do so, we turn to the developers
with interviews and surveys.

80
(60%)

90
(68%)

115
(86%)

116
(87%)

133
(100%)

94
(53%)

100
(56%)

135
(75%)120

(67%)

179
(100%)

0

50

100

150

Recency model Recency+Size model

D
is

tin
ct

 u
se

rs
 c

ou
nt

active recommended picked intersection match

“active”: number of developers who made code changes in and before
the corresponding period;
“recommended”: number of developers who were recommended as
reviewers at least once during the period;
“picked”: number of developers who were picked as reviewers at least
once during the period;
“intersection”: size of the intersection of “recommended” and
“picked” sets;
“match”: number of developers who were selected in at least one
event where they were also recommended.

Fig. 10: Recommendations coverage for the two periods.

5.1 Data Collection and Analysis

First, we conducted semi-structured interviews at JetBrains
with four developers who routinely use the recommender
system. To further explore preliminary themes that emerged
during the interviews, we ran an online survey among
JetBrains developers. Finally, we sent another, large-scale
online survey—augmented with questions addressing the
themes that emerged at JetBrains—to developers at Mi-
crosoft who perform code review and possibly use the
available reviewer recommender system.

Interviews. We conducted a series of online one-to-one
interviews with professional developers at JetBrains, each
taking approximately 20 minutes. To select participants, we
focused on developers from the IntelliJ IDEA team, whose
review activity was the subject for quantitative investigation
in RQ1. The first author of this paper, who used to work
at JetBrains before conducting this work, reached out to
several developers from his past professional network. To
mitigate the risk of moderator acceptance bias [65], the author
selected only developers who provided him with frank
feedback on his work at the company on past occasions.

The same author conducted the interviews [66] in a semi-
structured form. This form of interviews makes use of an
interview guide that contains general groupings of topics
and questions rather than a pre-determined fixed set and
order of questions. Such interviews are often used in an
exploratory context to “find out what is happening [and] to
seek new insights” [67]. The guideline was initially based on
the main topics that emerged from the analysis of the rec-
ommender system’s behavior; then it was iteratively refined
after each interview. With consent, we recorded the audio,
assuring the participants of anonymity. Since the interview-
ing author had both backgrounds in software development



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

and practices at JetBrains, he could quickly understand the
context and focus on the relevant topics, thus reducing the
length of the interviews. We have transcribed the audio
recording of each interview for subsequent analysis.

After the first four developers, the interviews started
reaching a saturation point [68]: interviewees were providing
insights very similar to the earlier ones. For this, we decided
to design the first survey that we ran at JetBrains.
Surveys. The first survey, deployed at JetBrains, was aimed
at further exploring the concepts emerged from the data
analysis and the interviews. We sent the first survey to all 62
developers working on the product for which we collected
the quantitative data at JetBrains. All these developers are
using Upsource and are exposed to the recommendation
system. This was a short, 5-minute survey, comprising
5 demographic information questions and 4 open-ended
questions intermingled with 5 multiple choice or Likert scale
questions.3 The questions were focused on perceived rele-
vance and usefulness of the recommendations. We received
16 valid answers (26% response rate).

The second survey, deployed at Microsoft, was aimed
at validating and generalizing our conclusions, by reaching
a large number of respondents working in different teams,
products, and contexts. For the design of the surveys, we
followed Kitchenham and Pfleeger’s guidelines for personal
opinion surveys [69]. Both surveys were anonymous to
increase response rates [70]. The second survey was split
into 4 sections: (1) demographic information about the re-
spondent, (2) demographic information about the current
team of the respondent, multiple choice and Likert scale
questions (intermingled with open-ended fields for optional
elaboration on the answers) on (3) reviewer selection and
(4) relevance as well as helpfulness of the reviewer recom-
mendation. Excluding demographic questions, the second
survey consisted of 4 Likert scale questions with several
items to scale (complemented by one or two optional open-
ended responses) and 3 open-ended questions. The survey
could be completed in less than 15 minutes.

We have sent the second survey to 2,500 randomly
chosen developers who sign off on least three code reviews
per week on average. We used the time frame of January
1, 2017 to August 1, 2017 to minimize the amount of
organizational churn during the time period and identify
employees’ activity in their current role and team. As we
have found that incentives can increase participation [71],
survey participants were entered into a raffle for four $25
gift cards. We received 507 valid answers (20% response
rate). The response rates for both surveys are in line with
other online surveys in software engineering, which have
reported response rates ranging from 14% to 20% [72].

In the rest of this section, when quoting interviewees’
responses, we refer to interviewees from JetBrains as (I#)
and to respondents to the JetBrains survey as (S#).

5.2 RQ2.1 — Do developers need assistance with re-
viewer selection?
In the interviews, we have asked developers at JetBrains
about their criteria of reviewer selection. The answers indi-
cate that the primary characteristic of the desired reviewers

3. Available at https://doi.org/10.5281/zenodo.1404755

is their familiarity with the context of change: “[desired
reviewer] is the person who usually works with this [changed]
part”(I1), “the person who wrote a lot of code in the subsystem I
am changing, or has recently been ”digging” into this subsystem
– there are fresh non-trivial changes by them”(I3). Along the
responses, interviewees refer to the codebase as divided be-
tween the developers, each responsible for their subsystem:
“someone else’s subsystem and [...] it’s not my subsystem”, ”most
of the work I do is in my subsystems”(I2), “there is the part of the
codebase that I’m responsible for”(I1). This detail suggests the
presence of strong code ownership practices at JetBrains.

The answers also indicate that the respondents are usu-
ally well aware of who is responsible for the code they are
changing, thus often knowing the reviewers in advance.
Developers say: “I always know who will be reviewing my
changes because I know which subsystem I’m changing and who
owns this part”(I1), “it is ”from the experience” established who
does [code review for my changes]”(I2), “Almost always I know
[the future reviewer]”(I3).

In the last month, how often…

Did you find 
reviewer 
recommendations 
relevant?

Did reviewer 
recommendations
help you to pick a 
reviewer?

Did you find 
reviewer 
recommendations 
irrelevant?

JetBrains

Microsoft

Was it that you 
knew whom to 
pick as a reviewer 
even before 
creating a review?

JetBrains

Microsoft

JetBrains

Microsoft

JetBrains

Microsoft

Never Rarely 
(~10% of the 

cases)

Occasionally 
(~30%)

Sometimes 
(~50%)

Frequently 
(~70%)

Often 
(~90%)

Always

9 723 1619 11 15

6 1969 6

19 1022 2315 8

13 31 386 12

4 527 32

636 31

22 6920 22 19

13 19 625 25 12

Fig. 11: Distributions of answers to Likert scale questions
about relevance and helpfulness of recommendations from
Microsoft and JetBrains. Numbers represent the distribution
of the responses in percent, rounded to nearest integer.

Results of the survey at JetBrains (presented in Figure 11)
confirm this point: To the question “How often do you know
whom to pick as a reviewer before even creating a review?”
63% of developers replied that they “Always” know the
future reviewer, and 31% answered “Usually (90%)”. The
one remaining response was “Frequently (70%)”. The Mi-
crosoft survey reveals a similar picture that is only slightly
less extreme: 92% of respondents at Microsoft reported that
they “Always”, “Usually”, or “Frequently” knew whom to
pick as a reviewer before creating a review.

5.3 RQ2.2 — Are the reviewer recommendations per-
ceived as relevant?

In the interviews, we have asked JetBrains developers
whether they consider the recommendations given by Up-
source relevant. The answers indicate that the recommen-
dations are often relevant, and, moreover, it is usually clear
why a particular person is recommended. “in about 80% of
the cases [recommendations] are relevant”, “I understand why



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

it suggests these or those people”(I3) “he’s a code owner in
many places, so that’s why it happens”(I2). On the other hand,
all interviewees also report the scenarios of irrelevant rec-
ommendations. Such cases reportedly occur after changes
in subsystem ownership, that are not yet widely reflected
in changes history, or after bulk code modifications (such
as API migrations), that have a short-term effect on the
recommendation relevance score. “there is a lot of code that’s
written by people who don’t maintain that code anymore, so
people who don’t even work in the project anymore are sometimes
recommended”(I2), “sometimes it happens so that it’s absolutely
not the right fit – say, someone who left for a different team”,
“[apart from the 80% of relevant recommendations] the rest —
20% — are [events] touching old code or code with no ”bright”
owner.”(I3).

In the JetBrains survey, to a question “How often do
you find recommendations by Upsource relevant?”, 6 users
replied “Usually (90%)”, 5 replied “Frequently (70%)”, with
the rest of answers spread between “Occasionally (30%)”
and “Sometimes (50%)”. The answers to an open-ended
question, that invited the respondents to elaborate on ir-
relevant recommendations, are confirming that users per-
ceive the recommender as not capable of quickly captur-
ing changes in subsystem ownership, which is indeed its
Achilles’ heel: “suggested people sometimes don’t even work
for the team (or in this subsystem)”(S3), “sometimes suggested
person does not work on this code anymore”(S10), “person is not
actively responsible for subsystem anymore”(S16).

The responses from Microsoft, presented in Figure 11,
are well aligned with these numbers: Most respondents find
the recommendations mostly relevant. However, only 10%
of respondents find them relevant in all cases.

5.4 RQ2.3 — Do the recommendations help with re-
viewer selection?

Given that developers are often already familiar with the
information that the recommender provides, it is essential
to assess the added value of the recommendation system.
In the interviews, we have asked whether the recommen-
dation feature was perceived as useful by the developers.
Interviewees report that, in some cases, even while being
relevant, recommendations did not provide any useful in-
formation. “When I open Upsource, I know who I’ll assign, so
Upsource doesn’t really help me to choose”(I3), “I don’t change
anything in other parts of codebase — [other subsystems]. If I
would change code there, I wouldn’t know whose code it is, and
would rely on Upsource. But I don’t!”(I1). The interviews bring
another important aspect to the surface: because some of the
recommendations are irrelevant, it is harder to rely on the
recommender in general. “It is not very useful. Moreover, it [is
wrong] often.”, “It is a useful feature [in general], but in my case
it [not always] worked correctly”(I1).

Some interviewees mention a scenario when the recom-
mendation is useful, even though they already know the
reviewer: when the recommendation matches their inten-
tion, they would add the desired reviewer in one click from
the recommendations popup (Figure 2), instead of using the
search form. “Sometimes I use [recommendations]. Usually I
know who will review, so I just click on their icon not to make
multiple clicks and search”(I1), “the most convenient part is when

the suggested person is already ”kind of” in reviewers list and you
just have to click them, I think it’s cool”(I2), “Upsource doesn’t
really help me to choose, but it helps me to click! [...] instead of
looking for a user, just click the suggestion and you’re done —
that’s how it’s convenient.”(I3).

In the survey at JetBrains, 69% of respondents reported
that reviewer recommendation “Never” helps them to find
a reviewer. On the other hand, 19% of respondents reported
that it “Always” helped. This polarity in perceived help-
fulness may be attributed to the ambiguity of question: the
“shortcut” scenario may not be considered a case of helpful
recommendation by some of the respondents. One respon-
dent to the survey explicitly mentioned the “shortcut” case:
“I use it as a quick way of adding a person I have in mind
when it’s on the list. If it isn’t, I just ignore suggestions and
use [search].”(S4).

The responses on usefulness from Microsoft (Figure 11)
are more smoothly distributed across the frequency scale,
with a slight incline towards lower frequencies: The rec-
ommendations are ”never” or ”rarely” helpful for 30% of
respondents, 23% find them ”usually” or ”always” helpful.

5.5 RQ2 - Summary

This research question was dedicated to a qualitative inves-
tigation of how software developers in the two considered
commercial software companies perceive and use code re-
viewer recommendations. The results of the investigation
indicate that developers at both companies very often do
not experience problems with reviewer selection. In fact,
the vast majority of respondents at both Microsoft and
JetBrains report to usually know the future reviewer even
before creating a review for new changes. Most survey
respondents (56% at Microsoft and 69% at JetBrains) find the
recommendations more often relevant than not. However,
reviewer recommendation features for reviewer selection
were reported to be more often helpful than not by only
46% of respondents at Microsoft and by only 25% at Jet-
Brains. These results suggest that—in the setting of the
two considered commercial software companies—reviewer
recommendation features in their current state are not per-
ceived as essential for code review tools, since most of the
developers usually do not experience any valuable support
from recommenders.

The results also call for a deeper investigation on infor-
mation needs of developers during reviewer selection, to
identify other data sources that may be more helpful for
future recommendation approaches. The results from RQ2
also call to identify whether recommendations can provide
more value and be more helpful in certain situations than
on average. We set out to explore these aspects in RQ3. We
describe the methodology and results in Section 6.

6 RQ3: INFORMATION NEEDS DURING REVIEWER
SELECTION

Our third research question aims to better understand the
reviewer selection process by figuring developers’ informa-
tion needs when selecting reviewers for a code change.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

6.1 Data Collection and Analysis
We have dedicated a part of the survey at Microsoft to
questions regarding information needs of developers during
the selection of reviewers. For each of 13 different kinds
and sources of information (defined by two authors through
brainstorming based on interview transcripts, existing stud-
ies on reviewer recommendation, and general knowledge
of modern software development environment), we have
asked developers (1) whether they consider it when select-
ing reviewers; (2) whether they find it relevant for selection
of reviewers; and (3) how difficult it is for them to obtain
when selecting a reviewer.

To identify other information needs of developers be-
yond the fixed list, we have included three open-ended
questions in the Microsoft survey:
• Please describe other information that you consider

when selecting reviewers.
• If there is information that you would like to consider

that you aren’t able to obtain, please tell us what
information you would like.

• When do you find it most difficult to determine the
right reviewers for a changeset that you send out for
review?

To structure and quantify the answers to open-ended
questions, we have used iterative content analysis ses-
sions [73]. In the first iteration, the first and the last authors
of this paper have independently assigned one to three tags
to each of the answers. The tags were derived from the
answers during the process. After the first iteration, through
comparison of the sets of tags and discussion, the authors
agreed on the set of categories and fine-grained tags for the
final iteration. Finally, the first author repeated the tagging
with the new tags for all answers. The last author repeated
the process on a random sample of answers for each of the
questions (in total for 149 of 617 answers, or 24%).

To estimate consistency of tagging between authors, we
calculated Cohen’s Kappa [74] as a measure of inter-rater
agreement. Keeping in mind that the number of tags per
response could differ, we only took into account the first tag
each author marked the response with, as it represents the
strongest point in the response. For the fine-grained tags,
the Kappa values for the samples are 0.852, 0.747 and 0.814
for respective questions. Calculating agreement measure
for categories of tags—thus allowing fine-grained tags to
differ if categories match—yields even higher Kappa values
of 0.916, 0.851 and 0.859, respectively. Thus, agreement of
authors about tag categories can be interpreted as “almost
perfect” according to Cohen, and only for fine-grained tags
in one of the questions as slightly lower “substantial.” As
we do not make any quantitative statements based on exact
proportions of different tags in responses, but only rely on
these numbers for understanding needs and concerns of
developers, a high degree of agreement between authors
suggests that the results of tagging are strong and reliable.

6.2 RQ3.1 — What kinds of information do developers
consider when selecting reviewers?
The answers to the multiple choice question are presented in
Figure 12. The most important factor considered by devel-
opers during the selection of reviewers is the involvement of

the candidate reviewer with the code under change. Three
related categories of information, from generic “the person
is still involved with the code” through ownership of files
to authorship of recent changes, are reported as considered
at least sometimes by 82–91% of the respondents. Another
important aspect is whether the potential reviewer works
in the area dependent on the changed code: 79% of the re-
spondents report considering it. Other factors that are often
(yet slightly less) considered include: the history of past
reviews; working on code that the changed code depends
on; opting in for reviews in the code area; availability of
the person; prior review requests for code under change;
and swiftness of response to code review requests. These
factors are considered by 56–69% of the respondents. The
three least popular categories are: working in directory
surrounding files in change (38%); physical proximity of
workplace (34%); and, surprisingly reported as irrelevant
by nearly half of the respondents, current activity and load
level of potential reviewers, which is taken into account at
least sometimes by only 32% of the respondents.

410 7016

108 3646

54 6328

166 4434

2110 3138

2012 2741

2013 3829

1522 3330

2416 2733

1231 2036

2735 1126

957 1024

1751 725

I don’t consider it, and 
I don’t find it relevant

I don’t consider it, but 
I think it’s relevant

I sometimes 
consider it

I definitely 
consider it

Is still involved with the code 
changed in the changeset

Owns files in the changeset

Has previously made changes to 
files in the changeset

Works in an area dependent on 
files in the changeset

Has previously reviewed files in 
the changeset

Opted for being included in 
reviews on paths/files in the 
changeset

Is available (i.e. not OOF)

Has previously requested reviews 
on files in the changeset

Usually responds quickly to code 
review requests

Works in a directory surrounding 
files in the changeset

Is in a close physical proximity to 
you (e.g. in an office close to 
yours)

Has a current low activity level 
(i.e. not too busy)

Works in an area that files in the 
changeset depend on

The person…

To what extent do you consider the following information to pick someone as a reviewer?

Fig. 12: Information considered during reviewer selection,
as reported by Microsoft developers. Numbers represent
the distribution of the responses in percent, rounded to the
nearest integer.

The second question about considered information is
open-ended, inviting the respondents to describe other in-
formation that they consider in free form. The answers were
processed with iterative tagging (described in Section 6.1).
The categories and tags of the answers are presented in Ta-
ble 1. While being invited to describe other sources of infor-
mation in relation to the previous question with predefined
options, many of the responses correspond to one of these



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

options. We did not filter out such responses. Respondents
often make several different points in one response. Such
responses are impossible to put in a single category, so we
assigned 1 to 3 category tags to each response. In total, we
have tagged 270 valid responses with 373 tags, yielding 1.38
tags per answer, on average. We report both the relative
frequency of tags and the fraction of responses marked with
a tag, while giving priority to the latter when explaining and
discussing the results. We refer to individual responses by
their ID, e.g. (#329).
Knowledge. Almost 30% of responses indicate the impor-
tance of potential reviewer’s knowledge of one kind or an-
other. These responses refer to knowledge of the area of
code “Person has expertise in the area, so can understand the
algorithm changes. I work in [an area] where a lot of background is
usually needed”(#54), to high-level or general knowledge “I’ll
seek out opinion of known smart folks for some changes.”(#498),
knowledge of context “Experts who have solved similar prob-
lems.”(#192), and specific technical knowledge “Area of ex-
pertise. If person is good in SQL, those types of changes will be
reviewed better by that person.”(#406).
None. 25% of the respondents said that they do not consider
any specific information. A common assignment strategy
described in such responses is to broadcast a review request
to the immediate team, or to another mailing list: “I send
[the review] to the whole team and whoever is available and sees
the email/PR first completes it.”(#158). 6 respondents of 270
reported that they follow some policy to select a reviewer:
“Team lead and two other team members are mandatory. Others
are optional.”(#480).
Seniority. 23% of the respondents mention seniority of
a potential reviewer. The categories of reported selection
strategies comprise of preferring a person higher in hier-
archy “manager of person who owns the file or recently did
changes”(#445), a more experienced or skilled person “I tend
to select who I believe are better developers.”(#358), selecting a
less experienced person to provide a learning opportunity “I
sometimes include new members of the team to review my change
and to learn from it.”(#349), and delegating the selection of
reviewer to a colleague, often a more senior one “Sometimes
I add based on suggestions from other code reviewers, or from my
manager.”(#26).
Stakeholder. 22% of responses describe the potential re-
viewer as a stakeholder of code. Some of these responses
vaguely mention involvement with project or feature “I
consider who wrote the files i’m changing, and who is currently
working with me on my project.”(#382), or relation to change
code “People working on deliverables for the same slice.”(#466).
More concrete answers mention the authorship of recent
changes to code under review “Generally it’s who I see in git
blame in that area of the code I’m changing.”(#279), requesting
the change under current review “The (internal) customer who
requested the change being made.”(#491), authoring the code or
helping with the current change “If that person was involved
in any way during investigation of the problem or he/she was
involved in developing this fix.”(#164), and working with code
that depends on the changed code “people that depend on that
change or are impacted.”(#191).
Reviewer qualities. 18.5% of responses refer to qualities
of the reviewer without mentioning their relation to code.

The most important quality, mentioned by 34 respondents,
is thoroughness of the reviewer, usually known from the
track record of quality reviews from their side “Mostly
I look for who can provide the best feedback on the set of
changes”(#273). Other qualities include availability “If the
change is simple, I try to load balance based on other work they
are doing.”(#261) and swiftness of their responses “I think
area interest and responsiveness is most important. Sometimes
people can be knowledgeable about an area but fail to respond in a
timely way”(#356). 2 people mention the physical proximity
of reviewer’s workplace, and 2 more people prefer their
changes reviewed by someone whom they see as a nice
person “Someone that i trust and that is not a jerk:)”(#13).

Ownership. Despite code ownership being mentioned in
the multiple-option question, 12.6% of responses refer to
this concept at different levels. Most of such responses refer
to ownership of area under change “Ownership of the area if
you know is helpful in deciding whom to add for review.”(#152).
A few other respondents mention ownership of feature “Its
mostly the person who is owning the functionality”(#325), prede-
fined ownership of a file or component “We have owners.txt
files in all of our service repositories which identify a base set of
reviewers.”(#503). Several responses also mention ownership
of service or a repository.

TABLE 1: Other information considered during reviewer
selection, as reported by Microsoft developers in responses.
Data from responses to an open question. Counts of tags
and tagged responses are reported separately: each valid
response was assigned one to three tags.

Please describe other information that you consider when selecting reviewers.

Category / Tag Tags % of all tags Responses
% of all 
responses

Knowledge 85 22.8% 80 29.6%
Knowledge of area 42 11.3% 42 15.6%
High-level knowledge 17 4.6% 17 6.3%
Knowledge of context 13 3.5% 13 4.8%
Knowledge of technology 13 3.5% 13 4.8%

None 69 18.5% 68 25.2%
Send request to team 50 13.4% 50 18.5%
Broadcast 13 3.5% 13 4.8%
Policy 6 1.6% 6 2.2%

Seniority 66 17.7% 62 23.0%
Reviewer is higher in hierarchy 24 6.4% 24 8.9%
Reviewer is more experienced 23 6.2% 23 8.5%
Choice is delegated to someone else 10 2.7% 10 3.7%
Reviewer is less experienced 9 2.4% 9 3.3%

Stakeholder 63 16.9% 60 22.2%
Person is involved in project 16 4.3% 16 5.9%
Person recently made changes to code 14 3.8% 14 5.2%
Person is related to change code 11 2.9% 11 4.1%
Person requested this change 8 2.1% 8 3.0%
Person authored or helped with change 7 1.9% 7 2.6%
Person's area depends on this code 7 1.9% 7 2.6%

Reviewer qualities 54 14.5% 50 18.5%
Reviewer is thorough 34 9.1% 34 12.6%
Reviewer is available 9 2.4% 9 3.3%
Reviewer is swift 7 1.9% 7 2.6%
Reviewer is close 2 0.5% 2 0.7%
Reviewer is nice 2 0.5% 2 0.7%

Ownership 36 9.7% 34 12.6%
Area ownership 18 4.8% 18 6.7%
Feature ownership 8 2.1% 8 3.0%
Predefined ownership 7 1.9% 7 2.6%
Service ownership 2 0.5% 2 0.7%
Repository ownership 1 0.3% 1 0.4%

Total 373 270

�1



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

In total, nearly 75% of developers at Microsoft reported
relying on specific kinds of information when selecting a re-
viewer for their changes. Various types of information serve
to ensure three distinct properties of the potential reviewer:
they are qualified to review this change (Knowledge and
Seniority categories), are interested in reviewing the changes
(Stakeholder and Ownership), and are capable of providing
a quality review (Reviewer Qualities).

6.3 RQ3.2 — How difficult to obtain are the different
kinds of information needed for reviewer selection?

Similarly to the previous research question, which inves-
tigated different kinds of information that developers rely
on when selecting reviewers, ease of access to different
kinds of information was targeted by two questions in the
survey at Microsoft: a Likert scale question, which invited
respondents to rate each of 13 categories of information
by ease of access during reviewer selection, and an open-
ended question, which invited respondents to describe what
information they miss when selecting reviewers.

How difficult is the following information to obtain when picking someone as a reviewer?

I already know it from 
the top of my head

Very easy Easy Neutral Difficult Very 
difficult

Impossible 
to obtain

8 11 17

7 9 16

12 7 14

8 7 17

9 7 14

9 9 12

7 15 16

13 15 20

21 20 19

29 11 16

8 40 28

13 31 29

50 24 12

431 13

726 14

525 16

427 12

425 14

822 9

1019 8

416 7

415 5

59 7

10

5

16

22

21

25

26

30

23

26

16

24

14

20

10

Is still involved with the code 
changed in the changeset

Owns files in the changeset

Has previously made changes to 
files in the changeset

Works in an area dependent on files 
in the changeset

Has previously reviewed files in the 
changeset

Opted for being included in reviews 
on paths/files in the changeset

Is available (i.e. not OOF)

Has previously requested reviews 
on files in the changeset

Usually responds quickly to code 
review requests

Works in a directory surrounding 
files in the changeset

Is in a close physical proximity to 
you (e.g. in an office close to yours)

Has a current low activity level (i.e. 
not too busy)

Works in an area that files in the 
changeset depend on

The person…

Fig. 13: Difficulty in obtaining different kinds of information
during reviewer selection, as reported by Microsoft develop-
ers. Numbers represent the distribution of the responses in
percent, rounded to nearest integer.

Figure 13 presents the aggregated answers to the Likert
scale question. The information that is reported as the most
difficult to obtain is the history of past reviews of the
files in the changeset, both in terms of performed reviews
(reported as difficult to some extent by 48% of the respon-
dents) and of review requests (47%). However, responses
display notable diversity – these types of information were
classified as easy to obtain by other 38% and 31% of the
respondents, accordingly. Another kind of information that
is often reported as difficult to obtain is the connection of

potential reviewer’s area to the code in the changeset in
terms of codebase proximity or dependency, either as a
consumer or a producer. This information is reported as
difficult to obtain by 43–46% of the respondents, and as
easy by other 30–33%. Other kinds of information, including
code ownership, involvement with code under change, and
personal qualities of reviewers, are rather easy to obtain
for most of the respondents. Notably, history of changes
is hard to obtain for only 11% of the respondents, while
reviews history is ranked as the hardest. This inequality
might be caused by imbalance in tool support for retrieval
of histories for changes and reviews — open text responses
about considered information often mention usage of git
blame to identify reviewers, with no similar tool existing for
the history of reviews.

The second, open-ended question was inviting devel-
opers to name other kinds of information that they would
like to consider, but are not able to obtain during reviewer
selection. We received 74 valid answers and the results are
presented in Table 2.

TABLE 2: Information missing during reviewer selection,
as reported by Microsoft developers in responses to open
questions. Counts of tags and tagged responses are reported
separately: each response was assigned one to three tags.

Is there information that you would like to consider when selecting reviewers, but 
are not able to obtain?

Category / Tag Tags % of all tags Responses
% of all 
responses

Past contributions 27 30.0% 25 33.8%
Past authors of changes to code 18 20.0% 18 24.3%
Past reviewers of code 7 7.8% 7 9.5%
People requesting reviews to code before 2 2.2% 2 2.7%

Reviewer qualities 26 28.9% 24 32.4%
Reviewer thoroughness and helpfulness 9 10.0% 9 12.2%
Availability or workload of reviewer 6 6.7% 6 8.1%
Who opted in or is responsible for reviews 5 5.6% 5 6.8%
Review speed 4 4.4% 4 5.4%
Access of reviewer to code 1 1.1% 1 1.4%
Interest or willingness to review 1 1.1% 1 1.4%

Ownership 21 23.3% 21 28.4%
General code ownership information 15 16.7% 15 20.3%
Ownership derived from changes history 4 4.4% 4 5.4%
Ownership of legacy code 2 2.2% 2 2.7%

Knowledge 10 11.1% 9 12.2%
Knowledge of area 5 5.6% 5 6.8%
Knowledge of code itself 3 3.3% 3 4.1%
Knowledge of technology 1 1.1% 1 1.4%
Knowledge of type of code 1 1.1% 1 1.4%

Dependency 6 6.7% 5 6.8%
Dependencies on change (consumers) 4 4.4% 4 5.4%
Dependencies of change (producers) 2 2.2% 2 2.7%

Total 90 74

�2

Past contributions. One in three developers (25 of 74)
reported missing information about past contributions. His-
tory of past changes demonstrates the highest demand
with 25% respondents mentioning it. “File history from be-
fore the review started (just the git commit comments would
be great)”(#45). Some respondents also mentioned missing
information about the history of reviews.

Reviewer qualities. 32% of the respondents miss informa-
tion about reviewer qualities, with the most critical aspect
being their thoroughness and helpfulness “It would be nice to
get some sense of whether other developers consider a reviewer’s
input valuable”(#120). This result is in line with the results



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

of the question about considered information (RQ 3.1),
where reviewer thoroughness is as well reported as the
most important quality. Multiple respondents would also
like to be aware of reviewers opting in for code areas “I
really want to be able to opt in to say, ”I want to be included
on any review that touches a specific tree/directory/file””(#260),
reviewer availability and their swiftness to respond “how
many other reviews are pending them and how quickly they tend
to turn around code reviews.”(#321).
Ownership. 28% of the respondents report missing own-
ership information, with 4 people explicitly mentioning
ownership data derived from changes history “Owners of
past changes related to the change set (most important to consider)
is tedious to get even though history does help. If there an auto
selection of such owners, that would be great.”(#175), and two
respondents mentioning ownership information in context
of selecting a reviewer for legacy code “File ownership is
very nebulous. [...] many of those developers have moved onto
other teams and there are enough reorg’s that it’s not clear who
is responsible for the code. The hardest part of that information to
obtain is transfer of ownership when people move on (be it leave
company or team, or reorg to a new project)”(#262).
Knowledge. 9 of 74 respondents (12%) mentioned missing
information about different aspects of knowledge “I would
like to include people who have significant knowledge about
the code being changed, but that’s not always easy to figure
out.”(#179).
Dependency. 5 responses (7%) mention information about
code dependencies, both of changed code and on it. “who
are the dependent people working on the same or dependent files
at that time”(#473); “I would like to know all authors who have
touched the code on which the changeset depends or code that
depends on the changeset – automatically.”(#138)

6.4 RQ3.3 — When is it more difficult to choose a re-
viewer?
We identified the more challenging scenarios for reviewer
selection with an open-ended question in Microsoft survey.
The results are presented in Table 3.

Uncommon context. Over a half of the respondents (146 out
of 273) reported having a harder time selecting reviewers
for changes done in unusual contexts. 92 of these responses
(34%) mention changes in areas outside of typical work
scope. “When working in feature areas that you do not own, that
your team does not own, and that you usually don’t spend time
in”(#235). 40 respondents (15%) specifically mention having
issues with selecting reviewers for legacy code: “When the
code is in a ”legacy” area with prior contributors or owners who
have changed roles or no longer work at the company. Some code
is not actively ”owned” at all [...]”(#40). 31 respondents (11%)
report problems with selecting reviewers as newcomers to
a new team or code area. “When I am new to a team and have
not yet built up a mental map of area experts and dependencies
between feature areas.”(#46).
Special ownership. 100 of 273 responses (37%) specifically
mention special cases of code ownership distribution as a
trigger for more difficult reviewer selection. 47 responses
(17%) describe situations when ownership of code under
the change is unclear due to technical issues or transfer

of component ownership between teams: “When the code
being changed is old and ownership has changed many times
since”(#206). 21 responses (8%) mention parts of code shared
between teams as a challenging scope to find a reviewer for:
“When I make a change on a unusual part of the codebase that is
shared with other teams.”(#465); “There are multiple shared files,
which gets altered by multiple folks(like app initialization order
...). It is very difficult to find out who is the prime owner of these
files.”(#436). 20 respondents (7%) reported having issues
with reviewer selection when developing a new feature or
component from scratch: “When it is a new logic or code being
started and not many in the team are aware of the design and pro-
cess.”(#423). 12 respondents mentioned difficulties finding
a reviewer for changes in code that only they are familiar
with: “When its a component that I pretty much exclusively
own [...] People don’t have the bandwidth to deeply learn a new
component for the purposes of code review.”(#265).
Reviewer availability. 41 of 273 respondents (15%) men-
tioned issues related to the availability of a potential re-
viewer as factors for a more challenging selection process.
19 respondents (7%) describe situations when the potential
reviewer is not available at the moment, if they are very
busy or are on vacation: “When the only other backend devel-
oper on the project is out on vacation or otherwise priority tasked
on something different.”(#22). 14 respondents (5%) report a
harder choice of reviewer when the person typically respon-
sible for a specific piece of the codebase has left the team.
“When all the people who worked on the code/reviewed it in the
past have left the team/company”(#77). 5 people (2%) reported
situations when no one was willing to review code: “When
no one else wants to take ownership of the review. But usually
some does or the team takes a call on who it should be.”(#116).
3 of 273 respondents mentioned that it is harder to select a
reviewer when they do not know the candidates personally:
“If I haven’t personally met everyone on the dev team yet”(#147).
Uncommon impact. 22 respondents (8%) mention unusu-
ally high potential impact of their changes, due to presence
of dependent code, as a challenging factor for selection:
“when changing files in public APIs that are consumed by
external teams, its difficult to know all the scenarios and the
persons to cover for the code changes.”(#125); “when I make
changes to code that many people depend on, I send the review
to everyone.”(#138).
Uncommon content. Only 18 of 273 respondents (7%) re-
ported cases in which the content of the change makes
it more difficult to find a reviewer. 10 respondents (4%)
mentioned that the choice is more challenging if the review
of the change requires specific expertise that few of the
colleagues possess: “When I need an expert to figure out if I’m
doing the right thing and they aren’t among the folks I know
of”(#504). 6 respondents (2%) talk about unusually large
changes. “When the change set is large in terms of number of
files or amount of change”(#175) 2 respondents (1%) said it is
more difficult to find a reviewer for changes with complex
logic: “Usually when a change is extremely complex.”(#190).

6.5 RQ3 - Summary
With this research question, we explored the types of in-
formation that software developers need and rely on when
selecting reviewers for their changeset.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

TABLE 3: Most difficult situations to choose a reviewer,
as reported by Microsoft developers in responses to open
questions. Counts of tags and tagged responses are reported
separately: each response was assigned one to three tags.

When do you find it most difficult to determine the right reviewers?

Category / Tag Tags % of all tags Responses
% of all 
responses

Uncommon context 163 47.4% 146 53.5%
Not usual area 92 26.7% 92 33.7%
Legacy code 40 11.6% 40 14.7%
Newbie 31 9.0% 31 11.4%

Special ownership 100 29.1% 100 36.6%
Unclear owner 47 13.7% 47 17.2%
Shared code 21 6.1% 21 7.7%
Development from scratch 20 5.8% 20 7.3%
Self-owned code 12 3.5% 12 4.4%

Reviewer availability 41 11.9% 41 15.0%
Reviewer is not available 19 5.5% 19 7.0%
Reviewer left the team 14 4.1% 14 5.1%
No one willing to review 5 1.5% 5 1.8%
Author does not know the reviewer 3 0.9% 3 1.1%

Uncommon impact 22 6.4% 22 8.1%
Dependent code 22 6.4% 22 8.1%

Uncommon content 18 5.2% 18 6.6%
Code requires exotic expertise 10 2.9% 10 3.7%
Change is large 6 1.7% 6 2.2%
Change contains complex logic 2 0.6% 2 0.7%

Total 344 273

�1

In the first part (Section 6.2), we asked developers about
information that they consider for selection of reviewers.
The most commonly considered information is involve-
ment of potential reviewers with code under the changeset
when selecting reviewers. Such involvement, defined either
through formal ownership of code or by regular changes
and reviews of the code, is often considered during re-
viewer selection by the vast majority (69 – 91%) of the
respondents. Such high demand suggests that the stan-
dard mechanism of reviewer recommendation approaches
(i.e., the identification of involved developers through an
analysis of the history stored in software repositories) is
indeed targeted to maximize the most important qualities of
potential reviewers. Many developers also reported relying
on other kinds of information, such as code dependencies
and availability of reviewers, which are not yet considered
by existing approaches to reviewer recommendation. The
open-ended question revealed more categories of relevant
information for reviewer selection, such as seniority and
personal qualities of potential reviewers.

The second part of this research question (Section 6.3)
was dedicated to the difficulty in obtaining the different
kinds of information. The most difficult information to
obtain is related to the history of reviews and code depen-
dency: 43 – 48% of developers find this information rather
difficult to obtain. The easiest information is code author-
ship history, availability of colleagues, and physical prox-
imity of their workplaces. Responding to the open-ended
question regarding the information developers would like
to consider but are not able to obtain, respondents reported
missing history of past contributions, information on re-
viewer personal qualities, knowledge, and code ownership.

In the third part (Section 6.4), we analyzed the most
difficult situations for selection of reviewers, as reported

by developers in open text responses. The most prominent
category of responses mentions reviews for changes in
an unknown codebase, including modifying legacy code
and being new to a team. Other difficult scenarios include
changes in code with an unclear owner, development of new
code from scratch, changing code with external dependen-
cies, and situations when the usual reviewer is not available.

The insights from this research question indicate direc-
tions for improvement of future reviewer recommendation
algorithms. We discuss these results in Section 7.3.

7 DISCUSSION

7.1 RQ1: Performance of a deployed reviewer recom-
mender
The initial result of this study is the first ever evaluation
of the performance of a reviewer recommender in action,
as opposed to the customary approach of benchmarking
isolated prototypes on historical data. Due to limitations
imposed by the practical context, we were unable to use
the commonwise metrics for recommender evaluation, such
as top-k accuracy and MRR, as the primary measures of
recommendation performance. Instead, we were looking at
each individual event of reviewer addition, and aggregated
adjusted precision, recall, and MRR over monthly periods.

The values of the accuracy metrics slightly change
throughout the longitudinal data period, which can be
attributed to the growth of the user base of Upsource at
JetBrains. At the same time, comparison of coverage metrics
(Figure 10) reveals that there is a substantial difference
between the two recommendation models, which, however,
does not result in a drastic change of precision values as the
deployed model is changed (Figure 8). This supports the
notion (increasingly popular in the Recommender Systems
field) of the importance of metrics beyond accuracy for eval-
uating recommender systems, and demonstrates its applica-
bility to the problem of reviewer recommendation. It also
suggests that future efforts in reviewer recommendation
should carefully consider the specific, real-world software
engineering context, and not count out the potential effects
specific to deployed recommenders.

One of such effects is the influence of recommendations
on choices of users. While our attempt on identifying it was
not straightforward from a methodological point of view
(Section 4.3.1) and yielded a negative result, this result was
the main inspiration for the other two research questions in
this study. While reliably detecting such effects in practice is
indeed a hard task due to a need of longitudinal monitoring
and A/B testing, our example demonstrates that, in some
cases, key insights are possible to gain without expensive
experiments.

7.2 RQ2: Perception of the recommender by users
In the second research question, we investigated the per-
ception of relevance and usefulness of recommendations by
collecting user feedback in two different commercial envi-
ronments. Developers generally perceive recommendations
as relevant. However, developers report that recommenda-
tions are not always helpful. It is explained by the fact that
developers report to quite often know the future to select
reviewer in advance.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

Evidence of this imbalance is, in our opinion, one of
the most important outcomes of this study for researchers.
Quite a few studies focus on building new approaches for
reviewer recommendation. Researchers strive to improve
accuracy over existing algorithms, and in recent work, their
efforts go beyond straightforward scoring techniques based
on history to building expertise models, which involves
more sophisticated methodology [6]. Existing studies on
reviewer recommendation argue that tool assistance during
the stage of reviewer selection can improve the efficiency of
code review process, which implies that a reviewer recom-
mender is a valuable tool in practical contexts. For example,
Thongtanunam et al. [5] found that “[in selected open source
projects] 4%–30% of reviews have code-reviewer assignment
problem” and concluded: “A code-reviewer recommenda-
tion tool is necessary in distributed software development
to speed up a code review process”. Our results suggest
that code reviewer assignment is indeed problematic in
certain contexts (Section 6.4) such as for developers not
familiar with code under the change. It is therefore vital
to first understand and study the context of application of
the recommendation, and then select the appropriate set of
evaluation measurements that align with that context, in
order to develop helpful recommendation algorithms.

Industrial code review tools, like other work instru-
ments, generally develop in a very pragmatic way by first
offering support for actually existing issues. While recent
adoption of reviewer recommendation features in several
popular code review tools supports the notion of the im-
portance of recommendation as a tool feature, our results
strongly challenge the assumption that it is a universally
valuable and helpful feature for the users. We believe that
research efforts in reviewer recommendation would have a
stronger practical impact if they focused on user experience
rather than accuracy. A particularly important direction
of future work would be to investigate the added value
of a reviewer recommender in open source environments:
different patterns of contribution frequency and degree of
involvement with the project and the team could cause a
recommender to be perceived differently from the company
settings in our study.

7.3 RQ3: Information needs for reviewer selection

Results from our third research question provide insights on
reviewer selection process, along with strong indications on
the further design of data-driven support in review tools.

Information considered when selecting reviewers. The
types of information most commonly taken into account
during reviewer selection by developers at Microsoft (Fig-
ure 12, Table 1) are related to scopes of responsibility and
recent contribution of developers, code ownership, and
knowledge of code and involved technologies by individual
contributors. Existing approaches to reviewer recommen-
dation estimate the relevance of potential reviewers based
on history of changes and prior reviews for files in the
current changeset. The history is either used directly to
identify prior authors and reviewers of changes similar to
the current [4], [12], [56], [57], or as a basis for more
complex methods to estimate reviewer relevance. Examples
of such methods include using a search-based approach

to identify the optimal set of expert reviewers [6], and
extracting additional data, such as a social graph of prior
developer interactions from comments in prior reviews [58],
or records of developers’ experience with technologies and
libraries specific to the current changeset, from previous pull
requests in the current project [11], [59]. Thus, the results
from the survey confirm that prior approaches to reviewer
recommendation are well aligned with the most prominent
information needs of developers.

However, our results from RQ3 also indicate that, apart
from knowledge and prior involvement with code under
review, developers consider a more extensive range of fac-
tors including codebase dependency information, hierarchy
in organizational structure, personal qualities of colleagues,
and others. To be more helpful for users and for a broader
set of users, future reviewer recommendation approaches
could incorporate a broader spectrum of information, be-
yond histories of changes and reviews and data derived
from these histories, into their underlying models as well.
Examples of such information could include graphs of code
dependencies within the project, records of organizational
structure and workplace proximity from HR information
systems, or traces of developer communication beyond code
review comments, such as emails and messengers.

Prior research [2] established that expectations and out-
comes of code review process go beyond elimination of
defects and codebase quality control in general. Develop-
ers and managers report that benefits of code review also
include ensuring knowledge transfer and team awareness
of changes in the codebase. Responses from our survey at
Microsoft support this point. Some respondents mentioned
that they sometimes look for less experienced peers as
reviewers to provide a learning opportunity. Concerning
awareness, some respondents also mentioned that they are
looking for people using their code as a dependency to per-
form the review, thus ensuring their awareness of changes.
Reviewer recommendation systems could promote knowl-
edge transfer and team awareness by not solely focusing
on finding developers who already are the most familiar
with the code, but also promoting knowledge transfer by
recommending less experienced people as reviewers. In our
vision, this idea suggests a particularly interesting direction
for future research.

We found that personal qualities and hierarchical posi-
tion of potential reviewers are often considered important
factors for the choice. The most important of these factors
is the track record of quality reviews from an individual.
This highlights the importance of personal qualities and
reputation of the engineers for the collaborative activity of
software engineering in teams.

Availability of information for reviewer selection. We
found that developers find some kinds of information,
that is required for reviewer selection, more difficult to
obtain. These results suggest opportunities for meaningful
tool support of this process. History of prior changes and
reviews are reported among the most commonly considered
information for reviewer selection (Figure 12). At the same
time, options corresponding to the history of reviews are
named as the hardest kinds of information to obtain, while
change history is among the easiest (Figure 13). As respon-



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

dents often directly mention using git blame to identify best
reviewers, this imbalance in ease of access to information is
likely to be caused by inequality in tool support for retrieval
of historical data. Efforts of researchers and practitioners
can be targeted at mitigating this inequality. Expanding this
notion further, many of other difficult-to-obtain information
types, such as dependency information, workload level of
colleagues, swiftness of review activities of an individual,
and proximity of their working area to a given change, can
potentially be aggregated by a code review tool. While it
might not be feasible to compile all these data into a single
universal model for reviewer suitability, merely presenting
some of this information to the user during reviewer se-
lection will make it not necessary for users to acquire this
information by themselves, thus being a valuable feature to
improve the efficiency of code review process.

More difficult situations for reviewer selection. Our results
reveal that in some situations it is harder for developers
to find a suitable reviewer. Examples of such situations
(Table 3) include making changes in code outside the normal
work area, being new to the company or a team, and
having external code depending on the area of change. An
implication of this for researchers and developers is the
possibility to tailor recommendation tools to users’ needs
and reduce noise by making the recommender only trigger
when a given user needs assistance. In such situations, the
user is more likely to find a recommendation helpful.

0.48

0.52

0.56

0.60

0 5 10
Max actor tenure, years

P
re

ci
si

on

Recency model Recency+Size model

Fig. 14: Precision of recommendations as function of maxi-
mum tenure of the developer receiving the reviewer recom-
mendation (i.e., the author of the changeset).

To support this point, we have attempted to discover
the potential difference in perception of recommendations
by new developers and by others through quantitative
analysis. In the data that we used for RQ1, for each event
we have additionally estimated the tenure of the receiver
of the recommendation (i.e., the author of the changeset),
by calculating the time since the first trace of their activity
in the historical data, be it a contribution to codebase or
participation in a review. For threshold values varying
from zero to lifetime of the project, we have filtered out
the events by receivers of the recommendation with tenure
above the threshold and calculated average precision of the
model across the whole longitudinal period for the rest of

the events. Figure 14 presents the picture of precision as a
function of maximum tenure of the event actor: for each time
threshold, we discard the events where the receiver of the
recommendation is more experienced than the threshold,
and calculate the average precision across the remaining
events. The chart shows that the precision is higher for
actors with low experience. Considering that the model does
not take characteristics of the receivers of the recommenda-
tion into account and that the picture is similar for both
models, the effect of high precision for lower-experienced
users might be explained by their higher likelihood to follow
the recommendations.

Unfortunately, we cannot claim from this observation
alone that the less tenured developers are more likely to
follow the recommendations: developers report that the
responsibility scopes of developers at JetBrains rarely in-
tersect, so the difference in the precision might as well be
rooted in the difference of the codebase that they work on.
The unstable precision trend, in the left part of Figure 14,
suggests that variance in precision between individual ac-
tors is high: the trend stabilizes as events by more and more
actors contribute to the overall picture. Moreover, a further
analysis of the survey responses along with demographic
data of the respondents revealed no connection between de-
velopers’ tenure in the current team and perceived relevance
or usefulness of the recommendations.

For these reasons, a stronger evidence of connection
between actors’ tenure and alignment of their choices with
recommendations requires designing and running a con-
trolled experiment to be able to control for the confounding
factor of difference in their work scopes: we would need to
observe many developers with different levels of experience
interacting with recommendations given for the same code,
which goes beyond the scope of this study where we only
use the historical data but do not set up an experiment. Nev-
ertheless, the trend in Figure 14 suggests that conducting
such an experiment could be a fruitful direction for future
work.

Triangulating the signal above on the potential connec-
tion between the experience of the actor and the empirical
accuracy with the responses on the most difficult situations
for choosing a reviewer (Section 6.4), it seems reasonable
to conclude that existing recommendation models and eval-
uation metrics may be a good fit for scenarios in which a
project receives a lot of contributions from external people,
such as open source projects and large teams where new-
comer onboarding is a frequent procedure. This reasoning
would also be in line with the recommendation by Thong-
tanunam et al., which are based on data from large open
source projects [5].

7.4 Overview

The results from RQ1 indicate that the choices of reviewers
are not strongly influenced by the recommendations. RQ2
reveals that the recommendations are commonly perceived
as relevant, yet do not play a minor role for most of the
developers during reviewer selection. With RQ3 we find
that, while the most prominent information needs of devel-
opers during reviewer selection — namely, involvement and
experience of the colleagues with code under review — are



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

already targeted by the recommendation algorithms, there
are other information needs that the future recommendation
models could cover, such as information on code depen-
dency and team hierarchy.

The mechanics of the current reviewer recommendation
models are well aligned with the information most com-
monly considered by developers. In fact, the recommen-
dations are perceived as relevant by the majority of the
developers (RQ2.2). This means that the developers could
benefit from the recommendations as a way to confirm their
judgments with data. Moreover, some developers report
that they find the recommendations widget useful to quickly
add a reviewer they already have in mind (RQ2.3).

At the same time, the results of the surveys demon-
strate that the recommendations are not helpful for many
developers, as it is common for them to know the reviewers
in advance. This calls for development of recommendation
techniques that take the development context into account
and try to satisfy the information needs of a broader range of
developers during reviewer selection that are not covered by
existing recommendation approaches, such as code depen-
dency information and team hierarchy. Such more advanced
recommenders could be helpful in the complex reviewer
selection scenarios. Moreover, future recommenders could
not only target the selection of the most relevant reviewers
for the given changes, but also optimize for other goals of
code review, such as transfer of knowledge within teams
and promotion of shared code ownership and responsibil-
ity.

8 LIMITATIONS AND THREATS TO VALIDITY

The scope of our analysis is limited to the two subject com-
panies, which, due to the exceptional diversity of software
engineering environments, cannot be considered represen-
tative of the whole range of practices. Despite the differ-
ence in scale of the companies, policies and organizational
structure, and cultural origin of the respondents, results,
where comparable, are highly consistent in the two subject
companies.

However, it is essential to underline the role of the study
context and its impact on the generalizability of our results
beyond the considered development environments. Our
results reveal that the conventional means of evaluation of
reviewer recommendation systems do not completely align
with the needs of developers in the commercial company set-
tings that we studied. An average respondent to the survey
at Microsoft works in a team of 12 people, and has been in
the team for 2.25 years. Average tenure of a developer in
our target team at JetBrains is 5 years. In community-driven
open source projects, which accept external contributions,
the results may be different, as may be the needs for re-
viewer recommendation. In fact, the demand for reviewer
recommendation might be higher in the projects that often
receive one-time or infrequent contributions from people
who are less familiar with the codebase and the scopes of
responsibility of fellow developers. Such developers may
represent a significant number of contributors, compared
to the group of core developers. We can expect only core
members of open source communities to be familiar with
the codebase to the degree that is typical for a developer in a

commercial team, as the peripheral contributors commonly
devote less time and effort to the project, thus having
little chance to gain such familiarity. In larger commercial
teams current reviewer recommender models might as well
be perceived as a more valuable tool, as for a member
of a large team it is harder to be aware of responsibility
scopes of the colleagues than for someone whose team is
small. In addition, larger teams more often have newcomers,
who may especially benefit from the recommender during
onboarding. Thus, in different contexts the misalignment
between the evaluation techniques for reviewer recommen-
dation and its value for users may be less pronounced,
if at all. For these reasons, the value of reviewer recom-
mendation in such contexts deserves a separate dedicated
study. Moreover, codebases of some open source ecosystems
consist of multiple interconnected projects. In such settings,
optimal performance of recommendations might be ensured
by other algorithms than in single-repository settings (for
example, by algorithms that use history of multiple reposito-
ries to recommend reviewers for code in a given repository).
We find this another interesting direction for future work.

The authors who tagged the open-ended answers work
as researchers, but not as software engineers. Occupation
might impose some bias on the interpretation of responses.

We used a weakly formalized method to identify feed-
back from recommendations on users. Thus, we cannot
claim that no feedback is present, but only that it is too
subtle to be detected without a controlled experiment; set-
ting up such experiment would require a lot of resources.
However, lack of evidence of feedback inspired the other
two research questions.

9 CONCLUSION

In this study, we have explored multiple aspects of reviewer
recommendation algorithms as features of code review
tools. We have conducted the first in vivo performance eval-
uation of a reviewer recommender, explored the perception
of relevance and helpfulness of recommendations by users,
and investigated the information needs of developers in the
process of reviewer selection, in a company setting. The
results of this study suggest directions for the future evo-
lution of reviewer recommendation approaches by bringing
out the most common information needs of developers in
two commercial teams. Our results also provide insights
that are valuable in a broader context of the evaluation of
data-driven features in developer tools. We further separate
the two characteristics: accuracy of an isolated algorithm
and its value for the users when deployed, and demonstrate
that the two are, to an extent, misaligned in our setting.
We interpret this misalignment as a signal of importance of
selecting the evaluation techniques with the practical con-
text in mind: in our setting, the common recommendation
accuracy measures did not represent the value of the tool for
users well. However, in other contexts these techniques may
still work well. Our findings emphasizes the importance
of deeply investigating the context before designing and
evaluating reviewer recommender systems.

We hope that the example of this study could serve as an
inspiration for other researchers to employ more user- and
context-centric methodology when evaluating prototypes of



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

tools that are ultimately motivated by the need to optimize
software developers’ routine tasks. We believe that studies
that are more focused on practical aspects ultimately bring
the academic research closer to the software engineering
industry.

10 ACKNOWLEDGEMENTS

The authors are grateful to all participants of surveys and in-
terviews at JetBrains and Microsoft for their input. Vladimir
thanks the amazing people at JetBrains for making the data
mining possible. Special thanks to Ekaterina Stepanova for
arranging the process from the legal side, and to Upsource
team for their help with the technical aspects. We thank Arie
van Deursen for his comments on the drafts of this paper.

Bacchelli gratefully acknowledges the support of the
Swiss National Science Foundation through the SNF Project
No. PP00P2 170529.

REFERENCES

[1] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study
of the pull-based software development model,” in Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE.
New York, NY, USA: ACM, 2014, pp. 345–355. [Online]. Available:
/pub/exploration-pullreqs.pdf

[2] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 2013 international
conference on software engineering. IEEE Press, 2013, pp. 712–721.

[3] P. C. Rigby, “Open source peer review–lessons and recommenda-
tions for closed source,” 2012.

[4] M. B. Zanjani, H. Kagdi, and C. Bird, “Automatically recommend-
ing peer reviewers in modern code review,” IEEE Transactions on
Software Engineering, vol. 42, no. 6, pp. 530–543, 2016.

[5] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida,
H. Iida, and K.-i. Matsumoto, “Who should review my code? a
file location-based code-reviewer recommendation approach for
modern code review,” 2015.

[6] A. Ouni, R. G. Kula, and K. Inoue, “Search-based peer reviewers
recommendation in modern code review,” in Software Maintenance
and Evolution (ICSME), 2016 IEEE International Conference on. IEEE,
2016, pp. 367–377.

[7] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and
W. Pugh, “Using static analysis to find bugs,” IEEE software,
vol. 25, no. 5, 2008.

[8] “Code review, project analytics, and team collaboration – features
| upsource,” https://www.jetbrains.com/upsource/features/, ac-
cessed: 2018-02-08.

[9] “Crucible – features | atlassian,” https://www.atlassian.com/
software/crucible/features, accessed: 2018-02-08.

[10] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey,
“Investigating code review quality: Do people and participation
matter?” in Software Maintenance and Evolution (ICSME), 2015 IEEE
International Conference on. IEEE, 2015, pp. 111–120.

[11] M. M. Rahman, C. K. Roy, and J. A. Collins, “Correct: code
reviewer recommendation in github based on cross-project and
technology experience,” in Software Engineering Companion (ICSE-
C), IEEE/ACM International Conference on. IEEE, 2016, pp. 222–231.

[12] V. Balachandran, “Reducing human effort and improving quality
in peer code reviews using automatic static analysis and reviewer
recommendation,” in Software Engineering (ICSE), 2013 35th Inter-
national Conference on. IEEE, 2013, pp. 931–940.

[13] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl,
“Evaluating collaborative filtering recommender systems,” ACM
Transactions on Information Systems (TOIS), vol. 22, no. 1, pp. 5–53,
2004.

[14] A. Begel and B. Simon, “Novice software developers, all over
again,” in Proceedings of the Fourth international Workshop on Com-
puting Education Research. ACM, 2008, pp. 3–14.

[15] T. Baum and K. Schneider, “On the need for a new generation
of code review tools,” in Product-Focused Software Process Im-
provement: 17th International Conference, PROFES 2016, Trondheim,
Norway, November 22-24, 2016, Proceedings 17. Springer, 2016, pp.
301–308.

[16] M. Ge, C. Delgado-Battenfield, and D. Jannach, “Beyond accuracy:
Evaluating recommender systems by coverage and serendipity,”
in Recommender Systems, 2010.

[17] S. M. McNee, J. Riedl, and J. A. Konstan, “Being accurate is not
enough: how accuracy metrics have hurt recommender systems,”
in CHI’06 extended abstracts on Human factors in computing systems.
ACM, 2006, pp. 1097–1101.

[18] GitHub Help, “About pull request reviews,” https://help.github.
com/articles/about-pull-request-reviews/.

[19] “Choosing reviewers – atlassian documenta-
tion,” https://confluence.atlassian.com/crucible/
choosing-reviewers-298977465.html, accessed: 2018-02-08.

[20] “Requesting a code review – help | upsource,” https://www.
jetbrains.com/help/upsource/codereview-author.html, accessed:
2018-07-06.

[21] “Jetbrains: Developer tools for professionals and teams,” https:
//www.jetbrains.com/, accessed: 2018-02-08.

[22] “Microsoft – official home page,” https://www.microsoft.com/
en-us/, accessed: 2018-02-08.

[23] P. C. Rigby and C. Bird, “Convergent contemporary software
peer review practices,” in Proceedings of ESEC/FSE 2013 (9th Joint
Meeting on Foundations of Software Engineering), ser. ESEC/FSE
2013. ACM, 2013, pp. 202–212.

[24] “Code quality – github marketplace,” https://github.com/
marketplace/category/code-quality, accessed: 2018-02-08.

[25] “Repository statistics | github developer guide,” https://
developer.github.com/changes/2013-05-06-repository-stats/, ac-
cessed: 2018-02-08.

[26] K. Wei, J. Huang, and S. Fu, “A survey of e-commerce recom-
mender systems,” in Service systems and service management, 2007
international conference on. IEEE, 2007, pp. 1–5.

[27] K. McNally, M. P. O’Mahony, M. Coyle, P. Briggs, and B. Smyth, “A
case study of collaboration and reputation in social web search,”
ACM Transactions on Intelligent Systems and Technology (TIST),
vol. 3, no. 1, p. 4, 2011.

[28] A.-T. Ji, C. Yeon, H.-N. Kim, and G.-S. Jo, “Collaborative tagging in
recommender systems,” AI 2007: Advances in Artificial Intelligence,
pp. 377–386, 2007.

[29] W. Carrer-Neto, M. L. Hernández-Alcaraz, R. Valencia-Garcı́a,
and F. Garcı́a-Sánchez, “Social knowledge-based recommender
system. application to the movies domain,” Expert Systems with
applications, vol. 39, no. 12, pp. 10 990–11 000, 2012.

[30] S. K. Lee, Y. H. Cho, and S. H. Kim, “Collaborative filtering with
ordinal scale-based implicit ratings for mobile music recommen-
dations,” Information Sciences, vol. 180, no. 11, pp. 2142–2155, 2010.

[31] Z. Yu, X. Zhou, Y. Hao, and J. Gu, “Tv program recommendation
for multiple viewers based on user profile merging,” User modeling
and user-adapted interaction, vol. 16, no. 1, pp. 63–82, 2006.

[32] D. Ma, D. Schuler, T. Zimmermann, and J. Sillito, “Expert recom-
mendation with usage expertise,” in Software Maintenance, 2009.
ICSM 2009. IEEE International Conference on. IEEE, 2009, pp. 535–
538.

[33] E. Davoodi, M. Afsharchi, and K. Kianmehr, “A social network-
based approach to expert recommendation system,” Hybrid Artifi-
cial Intelligent Systems, pp. 91–102, 2012.

[34] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this
bug?” in Proceedings of the 28th international conference on Software
engineering. ACM, 2006, pp. 361–370.

[35] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?-
more accurate information retrieval-based bug localization based
on bug reports,” in Proceedings of the 34th International Conference
on Software Engineering. IEEE Press, 2012, pp. 14–24.

[36] R. Venkataramani, A. Gupta, A. Asadullah, B. Muddu, and V. Bhat,
“Discovery of technical expertise from open source code reposito-
ries,” in Proceedings of the 22nd International Conference on World
Wide Web. ACM, 2013, pp. 97–98.

[37] V. W. Anelli, V. Bellini, T. Di Noia, W. La Bruna, P. Tomeo, and
E. Di Sciascio, “An analysis on time-and session-aware diversifica-
tion in recommender systems,” in Proceedings of the 25th Conference
on User Modeling, Adaptation and Personalization. ACM, 2017, pp.
270–274.

[38] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
“Grouplens: An open architecture for collaborative filtering
of netnews,” in CSCW ’94, Proceedings of the Conference on
Computer Supported Cooperative Work, Chapel Hill, NC, USA,
October 22-26, 1994, 1994, pp. 175–186. [Online]. Available:
http://doi.acm.org/10.1145/192844.192905

/pub/exploration-pullreqs.pdf
https://www.jetbrains.com/upsource/features/
https://www.atlassian.com/software/crucible/features
https://www.atlassian.com/software/crucible/features
https://help.github.com/articles/about-pull-request-reviews/
https://help.github.com/articles/about-pull-request-reviews/
https://confluence.atlassian.com/crucible/choosing-reviewers-298977465.html
https://confluence.atlassian.com/crucible/choosing-reviewers-298977465.html
https://www.jetbrains.com/help/upsource/codereview-author.html
https://www.jetbrains.com/help/upsource/codereview-author.html
https://www.jetbrains.com/
https://www.jetbrains.com/
https://www.microsoft.com/en-us/
https://www.microsoft.com/en-us/
https://github.com/marketplace/category/code-quality
https://github.com/marketplace/category/code-quality
https://developer.github.com/changes/2013-05-06-repository-stats/
https://developer.github.com/changes/2013-05-06-repository-stats/
http://doi.acm.org/10.1145/192844.192905


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 22

[39] Y. Koren and R. M. Bell, “Advances in collaborative filtering,” in
Recommender Systems Handbook, 2015, pp. 77–118.

[40] B. Smyth, “Case-based recommendation,” in The Adaptive Web,
Methods and Strategies of Web Personalization, 2007, pp. 342–376.

[41] S. Chang, F. M. Harper, and L. G. Terveen, “Crowd-based per-
sonalized natural language explanations for recommendations,”
in Proceedings of the 10th ACM Conference on Recommender Systems.
ACM, 2016, pp. 175–182.

[42] J. L. Herlocker, J. A. Konstan, L. Terveen, and J. T. Riedl, “Evaluat-
ing collaborative filtering recommender systems,” ACM Trans. Inf.
Syst., vol. 22, no. 1, pp. 5–53, 2004.

[43] B. Smyth and P. McClave, “Similarity vs. diversity,” Case-Based
Reasoning Research and Development, pp. 347–361, 2001.

[44] L. McGinty and B. Smyth, “On the role of diversity in conversa-
tional recommender systems,” in International Conference on Case-
Based Reasoning. Springer, 2003, pp. 276–290.

[45] K. McCarthy, J. Reilly, L. McGinty, and B. Smyth, “An
analysis of critique diversity in case-based recommendation,”
in Proceedings of the Eighteenth International Florida Artificial
Intelligence Research Society Conference, Clearwater Beach, Florida,
USA, I. Russell and Z. Markov, Eds. AAAI Press, 2005,
pp. 123–128. [Online]. Available: http://www.aaai.org/Library/
FLAIRS/2005/flairs05-021.php

[46] Workshop on Novelty and Diversity in Recommender Systems (DiveRS
2011), 2011.

[47] L. Iaquinta, M. de Gemmis, P. Lops, G. Semeraro, M. Filannino,
and P. Molino, “Introducing serendipity in a content-based recom-
mender system,” in Hybrid Intelligent Systems, 2008.

[48] B. P. Knijnenburg, M. C. Willemsen, Z. Gantner, H. Soncu, and
C. Newell, “Explaining the user experience of recommender sys-
tems,” User Modeling and User-Adapted Interaction, vol. 22, no. 4-5,
pp. 441–504, 2012.

[49] P. Pu, B. Faltings, L. Chen, J. Zhang, and P. Viappiani, “Usability
guidelines for product recommenders based on example critiquing
research,” in Recommender Systems Handbook. Springer, 2011, pp.
511–545.

[50] N. Tintarev and J. Masthoff, “Explaining recommendations: De-
sign and evaluation,” in Recommender Systems Handbook, 2nd ed.,
F. Ricci, L. Rokach, and B. Shapira, Eds. Berlin: Springer, 2015.

[51] T. T. Nguyen, P.-M. Hui, F. M. Harper, L. Terveen, and J. A. Kon-
stan, “Exploring the filter bubble: the effect of using recommender
systems on content diversity,” in Proceedings of the 23rd international
conference on World wide web. ACM, 2014, pp. 677–686.

[52] E. Bakshy, S. Messing, and L. A. Adamic, “Exposure to ideologi-
cally diverse news and opinion on facebook,” Science, vol. 348, pp.
1130–1132, 2015.

[53] A. M. Rashid, I. Albert, D. Cosley, S. K. Lam, S. M. McNee, J. A.
Konstan, and J. Riedl, “Getting to know you: learning new user
preferences in recommender systems,” in Proceedings of the 7th
international conference on Intelligent user interfaces. ACM, 2002,
pp. 127–134.

[54] D. Fleder and K. Hosanagar, “Blockbuster culture’s next rise or
fall: The impact of recommender systems on sales diversity,”
Management science, vol. 55, no. 5, pp. 697–712, 2009.

[55] E. Rader and R. Gray, “Understanding user beliefs about algorith-
mic curation in the facebook news feed,” in Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems.
ACM, 2015, pp. 173–182.

[56] P. Thongtanunam, R. G. Kula, A. E. C. Cruz, N. Yoshida, and
H. Iida, “Improving code review effectiveness through reviewer
recommendations,” in Proceedings of the 7th International Workshop
on Cooperative and Human Aspects of Software Engineering. ACM,
2014, pp. 119–122.

[57] G. Jeong, S. Kim, T. Zimmermann, and K. Yi, “Improving code
review by predicting reviewers and acceptance of patches,” Re-
search on Software Analysis for Error-free Computing Center Tech-
Memo (ROSAEC MEMO 2009-006), pp. 1–18, 2009.

[58] Y. Yu, H. Wang, G. Yin, and T. Wang, “Reviewer recommendation
for pull-requests in github: What can we learn from code review
and bug assignment?” Information and Software Technology, vol. 74,
pp. 204–218, 2016.

[59] M. M. Rahman, C. K. Roy, J. Redl, and J. A. Collins, “Correct: Code
reviewer recommendation at github for vendasta technologies,”
in Automated Software Engineering (ASE), 2016 31st IEEE/ACM
International Conference on. IEEE, 2016, pp. 792–797.

[60] D. Cosley, S. K. Lam, I. Albert, J. A. Konstan, and J. Riedl,
“Is seeing believing?: how recommender system interfaces affect

users’ opinions,” in Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM, 2003, pp. 585–592.

[61] J. W. Creswell, Research design: Qualitative, quantitative, and mixed
methods approaches, 3rd ed. Sage Publications, 2009.

[62] C. Hannebauer, M. Patalas, S. Stünkelt, and V. Gruhn, “Automat-
ically recommending code reviewers based on their expertise: An
empirical comparison,” in Automated Software Engineering (ASE),
2016 31st IEEE/ACM International Conference on. IEEE, 2016, pp.
99–110.

[63] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. White-
head Jr, “Does bug prediction support human developers? find-
ings from a google case study,” in Proceedings of the 2013 Interna-
tional Conference on Software Engineering. IEEE Press, 2013, pp.
372–381.

[64] P. Jaccard, “Étude comparative de la distribution florale dans une
portion des alpes et des jura,” Bull Soc Vaudoise Sci Nat, vol. 37, pp.
547–579, 1901.

[65] A. Furnham, “Response bias, social desirability and dissimula-
tion,” Personality and individual differences, vol. 7, no. 3, pp. 385–400,
1986.

[66] B. Taylor and T. Lindlof, Qualitative communication research methods.
Sage Publications, Incorporated, 2010.

[67] R. Weiss, Learning from strangers: The art and method of qualitative
interview studies. Simon and Schuster, 1995.

[68] B. Glaser, Doing Grounded Theory: Issues and Discussions. Sociology
Press, 1998.

[69] B. Kitchenham and S. Pfleeger, “Personal opinion surveys,” Guide
to Advanced Empirical Software Engineering, pp. 63–92, 2008.

[70] P. Tyagi, “The effects of appeals, anonymity, and feedback on mail
survey response patterns from salespeople,” Journal of the Academy
of Marketing Science, vol. 17, no. 3, pp. 235–241, 1989.

[71] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and T. Zimmermann,
“Improving Developer Participation Rates in Surveys,” in Proceed-
ings of the International Workshop on Cooperative and Human Aspects
of Software Engineering. IEEE, 2013.

[72] T. Punter, M. Ciolkowski, B. Freimut, and I. John, “Conducting on-
line surveys in software engineering,” in International Symposium
on Empirical Software Engineering. IEEE, 2003.

[73] W. Lidwell, K. Holden, and J. Butler, Universal principles of design,
revised and updated: 125 ways to enhance usability, influence perception,
increase appeal, make better design decisions, and teach through design.
Rockport Pub, 2010.

[74] J. Cohen, “A coefficient of agreement for nominal scales,” Educa-
tional and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

Vladimir Kovalenko is pursuing a Ph.D. in Soft-
ware Engineering at Delft University of Technol-
ogy in The Netherlands. His work is supervised
by Alberto Bacchelli and Arie van Deursen. His
interests are centered around the idea of mak-
ing software development process more efficient
with smarter team collaboration tools, by study-
ing user needs and bottlenecks of existing pro-
cesses, and designing data-driven features for
future tools. Vladimir received a M.Sc. in Soft-
ware Engineering from Academic University of

the Russian Academy of Sciences, and a B.Sc. in Astrophysics from
Saint Petersburg Polytechnic University.

http://www.aaai.org/Library/FLAIRS/2005/flairs05-021.php
http://www.aaai.org/Library/FLAIRS/2005/flairs05-021.php


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 23

Nava Tintarev is an Assistant Professor and
Technology Fellow at Delft University of Tech-
nology. Nava completed her Magister at the Uni-
versity of Uppsala, and her PhD at the Univer-
sity of Aberdeen. She was previously an assis-
tant professor at Bournemouth University (UK),
a research fellow at Aberdeen University (UK),
and a research engineer for Telefonica Research
(Spain). Her research looks at how to improve
the transparency and decision support for rec-
ommender systems. This year she is a senior

member of the program committee for the ACM Conference on Intel-
ligent User Interfaces (2018), the ACM Recommender Systems Con-
ference (2017), and the Conference on User Modeling Adaptation and
Personalization (2017). She will be serving as a program co-chair for the
Intelligent User Interfaces conference in 2020.

Evgeny Pasynkov is a software engineer and
team lead at JetBrains GmbH, creator of intel-
ligent, productivity-enhancing tools for software
developers. He received his M.Sc. in Mathemat-
ics from Saint Petersburg State University, Rus-
sia, and the Ph.D. in Applied Mathematics from
Saint Petersburg University of Water Communi-
cations, Russia. With more than 25 years of ex-
perience in software development, his interests
include innovative development paradigms and
creation of cutting-edge tools for developers.

Christian Bird is a researcher in the Empir-
ical Software Engineering group at Microsoft
Research. He focuses on using qualitative and
quantitative research methods to both under-
stand and help software teams. Christian re-
ceived his Bachelors degree from Brigham
Young University and his Ph.D. from the Univer-
sity of California, Davis. He lives in Redmond,
Washington with his wife and three (very active)
children.

Alberto Bacchelli is an SNSF Professor in
Empirical Software Engineering in the Depart-
ment of Informatics in the Faculty of Business,
Economics and Informatics at the University of
Zurich, Switzerland. He received his B.Sc. and
M.Sc. in Computer Science from the University
of Bologna, Italy, and the Ph.D. in Software En-
gineering from the Università della Svizzera Ital-
iana, Switzerland. Before joining the University
of Zurich, he has been assistant professor at
Delft University of Technology, The Netherlands

where he was also granted tenure. His research interests include peer
code review, empirical studies, and the fundamentals of software ana-
lytics.


	Introduction
	Background and motivation
	Code Review
	Recommender systems
	Reviewer recommendation
	Practical motivation

	Research Questions and Setting
	Research questions
	Research Settings
	Study overview

	RQ1: Performance of the deployed reviewer recommender system
	Data collection
	Reviewer recommender internals
	Two recommendation models

	RQ1.1 — Do the recommendations influence the choice of reviewers?
	Detecting the influence on choosing the reviewers
	Results

	RQ1.2 — How accurate are the recommendations of a deployed recommender?
	Adjusted accuracy metrics
	Results

	RQ1.3 — What are other performance properties of the recommender?
	Recommendation count and coverage metrics
	Results

	RQ1 - Summary

	RQ2: Developers' perception and use of reviewer recommendations
	Data Collection and Analysis
	RQ2.1 — Do developers need assistance with reviewer selection?
	RQ2.2 — Are the reviewer recommendations perceived as relevant?
	RQ2.3 — Do the recommendations help with reviewer selection?
	RQ2 - Summary

	RQ3: information needs during reviewer selection
	Data Collection and Analysis
	RQ3.1 — What kinds of information do developers consider when selecting reviewers?
	RQ3.2 — How difficult to obtain are the different kinds of information needed for reviewer selection?
	RQ3.3 — When is it more difficult to choose a reviewer?
	RQ3 - Summary

	Discussion
	RQ1: Performance of a deployed reviewer recommender
	RQ2: Perception of the recommender by users
	RQ3: Information needs for reviewer selection
	Overview

	Limitations and threats to validity
	Conclusion
	Acknowledgements
	References
	Biographies
	Vladimir Kovalenko
	Nava Tintarev
	Evgeny Pasynkov
	Christian Bird
	Alberto Bacchelli


