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ABSTRACT 
Branches within source code management systems (SCMs) allow 
a software project to divide work among its teams for concurrent 
development by isolating changes.  However, this benefit comes 
with several costs: increased time required for changes to move 
through the system and pain and error potential when integrating 
changes across branches. In this paper, we present the results of a 
survey to characterize how developers use branches in a large 
industrial project and common problems that they face. One of the 
major problems mentioned was the long delay that it takes chang-
es to move from one team to another, which is often caused by 
having too many branches (branchmania). To monitor branch 
health, we introduce a novel what-if analysis to assess alternative 
branch structures with respect to two properties, isolation and 
liveness.  We demonstrate with several scenarios how our what-if 
analysis can support branch decisions. By removing high-cost-
low-benefit branches in Windows based on our what-if analysis, 
changes would each have saved 8.9 days of delay and only intro-
duced 0.04 additional conflicts on average. 

Categories and Subject Descriptors 

D.2.7 [Software Engineering]: Distribution, Maintenance, and 
Enhancement—Version Control; D.2.9 [Software Engineering]: 
Management—Software Configuration Management.  

General Terms: Measurement, Management, Human Factors 

Keywords: Concurrent Development, Branches, Teams, What-if 
Analysis, Branch Refactoring, Coordination 

 

1. INTRODUCTION 
As software projects grow ever larger, both in terms of develop-
ment teams and code size, coordinating work and changes to the 
system without causing undue harm or hindering others unneces-
sarily becomes a challenge.  Thousands of developers making 
substantial changes to the contents and interfaces of hundreds of 
subsystems can quickly lead to disaster. One common solution to 
this problem is to use branches within the source code manage-
ment system (SCM) [1].  Branches provide developers a facility 
for working individually or in teams on the source code of a soft-
ware project independent of the changes being made by others.  
The branch provides a workspace where changes can be made, 

designs explored, and code tested in parallel with other teams 
working in other branches.  Once a work task has been completed 
and the software is judged to be of sufficient quality (via testing or 
some other method), these changes can be integrated (also known 
as merged) into other branches (and their corresponding features) 
as they move towards a common branch (sometimes called 
“trunk”, “master”, or “root” in different SCMs) from which the 
product is released. 

The practice of using branches to divide teams and tasks is used 
extensively at Microsoft for projects with large codebases, multi-
ple concurrent releases undergoing development, and large teams.  
In recent years, with the advent of SCMs that facilitate easy 
branching and merging such as Git, Mercurial, Darcs, and Bazaar, 
many open source projects have begun using branching increas-
ingly in their development practices.  Prominent examples include 
the Linux kernel, Python, Perl, Ruby on Rails, X.org, and 
GNOME.  Of the projects reporting their SCM in Debian, 61% 
indicated that they used next generation SCMs that facilitate 
branching [2]. Branching is a practice that is only becoming more 
prominent. 

Branches do not come without a price, however.  Since a change 
is initially only visible to the team working within its branch, it 
must be integrated into other branches before it can be seen by the 
rest of the project.  The process of integrating changes from mul-
tiple branches can be difficult and error-prone, especially if 
changes on different branches conflict, either syntactically or 
semantically.  In addition, this process takes time, which can slow 
teams on different branches that are dependent on each other or 
features which are related.  Thus, branches incur an overhead in 
both developer effort and time, which, if not monitored and man-
aged, can have severe impact on the project in the form of missed 
deadlines and increased failures. 

In an effort to identify the extent of the cost of branching we sur-
veyed developers at Microsoft to determine the difficulty and time 
associated with integrating changes from multiple branches as 
well as tools and practices used to verify such work.  We also 
included questions to determine how often common problems 
with branches (also called “anti-patterns”, initially identified by 
Appleton et al [3]) are encountered and what their severity is.  
Based on the survey and follow-up discussions with developers, 
we found that branch awareness and decisions surrounding 
branches are important pain points for many software projects, 
especially for SCMs that contain many branches, leading to many 
large integrations and long delays in moving changes across teams 
(anti-patterns known as “Branchmania” and “Big Bang Merge”). 

To address scenarios involving monitoring and making decisions 
about branches, we present a what-if analysis which serves to 
characterize individual branches in terms of isolation—how many 
conflicts they prevent—and liveness—how quickly changes made 
on the branches are conveyed to other teams.  Our approach sepa-
rates branches which exhibit the expected benefits (which we term 
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high-benefit-low-cost branches), from those that slow develop-
ment without providing high levels of isolation (low-benefit-high-
cost).  This analysis can aid developers by alerting them to parts 
of the branch structure that are “unhealthy” and hindering devel-
opment or indicating which branches should be considered for 
removal. 

Throughout this paper we demonstrate and evaluate the utility of 
our technique by illustrating its use on Windows. For example, we 
found that removing high-cost-low-benefit branches based on our 
analysis, changes would each have saved 8.9 days of delay and 
only introduced 0.04 additional conflicts on average. Over the 
past year, we also applied this analysis to Windows Mobile and 
Bing with similar results. 

We make the following contributions in this paper 

• Results of a survey of conducted with Microsoft developers on 
branching practices and issues encountered with branch use 
(Section 3). 

• Technique for measuring the isolation and liveness of branch-
es via what-if analysis (Section 4 and 5). 

• Decisions scenarios supported by this technique and demon-
stration of these scenarios in the context of Windows devel-
opment (Section 6). 

2. BRANCHES AT MICROSOFT 
Let us first illustrate how the Windows development process 
works.  As shown in Figure 1, the Windows software develop-
ment takes place in various branches of the version control system 
with tightly integrated schedules for code integration and compre-
hensive builds. There are several parts of Windows, each of which 
are developed in individual branches. (An example feature could 
be “Sound” in the component “DirectX” in the area “Multime-
dia”.)  Each of these individual branches can work as though the 
rest of the code base to be frozen, except for their own evolving 
features. 

Engineers check-in their code to the feature branches.  To ensure 
that the newly developed code in the feature branch maintains 
compatibility with the other changes committed to the main 
branches, the feature branches continually synchronize with the 
main branch (also called forward integration, or simply FI).  After 
passing quality gates (for example, code coverage or static analy-
sis) the code moves to the parent branch in the tree (reverse inte-
gration, RI). Once the code reaches the main branch (level 0) it is 
automatically integrated (FI’ed) with the rest of the code base to 
ensure that other code being developed is compatible with these 
changes.  This process ensures stability in the main Windows 

branch, with a working version of Windows always available for 
system test and other purposes—however, this isolation also 
comes at a cost: transit time is increased as changes are only visi-
ble to other teams after several integrations. An example could be 
Multimedia branches, where changes have first to be integrated to 
the main branch before they are visible in the Networking branch-
es. 

The branch structure in Windows (and other products at Mi-
crosoft) is typically chosen at the beginning of a release and re-
mains mostly unchanged during the development of the release.  
Thus, there is not a strong notion of short-lived vs. long-lived 
branches.  With this paper, we introduce an approach to quantita-
tively assess cost and benefit of branches to inform branch deci-
sions. 

3. SURVEY ON BRANCH USAGE 
Many best practices exist in software configuration management 
such as the work by Berczuk [4] and Aiello [5], which also dis-
cuss how branches should be handled.  As an example, a white 
paper from Perforce Software presents five best practices related 
to branches based on the authors’ experience in deploying SCM 
systems [6]: branch only when necessary; don’t copy when you 
mean to branch; branch on incompatible policy; branch late; 
branch instead of freeze.  Appleton et al. present 32 patterns (best 
practices) for managing branching in parallel development pro-
jects [3].  They further present 12 common traps and pitfalls in 
branching that they call anti-patterns (see Figure 3).  Examples of 
such anti-patterns are: creating too many branches (Branchma-
nia), deferring branch merging and then attempting to merge all 
branches simultaneously (Big Bang Merge), or stopping all devel-
opment activities while branching and merging, permitting only 
activities focused on shipping the impending release (Develop-
ment Freeze). 

In order to characterize branch usage, we sent an online survey to 
370 Microsoft engineers in January 2011.  For the design of the 

Q1: Approximately how many hours per month do you spend on 
branching operations such as creating branches and integrating 
changes from other branches?  
Number (decimals okay) 

Q2: How much time does an integration take on average, 
including the time to verify that changes have been integrated 
correctly? Please provide also the unit of time. 
Comment 

Q3: How do you validate correctness of an integration? 
Comment 

Q4: Based on your experience how many errors are caused by 
incorrect integrations and in which areas do these errors occur? 
Comment 

Q5: Based on your experience how many times have you 
encountered the following branch anti-patterns? 
► List of anti-patterns by Appleton et al. with description (see Figure 3). 

Never | Once or twice | Occasionally | Frequently | No opinion 

Q6: Based on your experience how large is the impact of the 
following branch anti-patterns on productivity? 
► List of anti-patterns by Appleton et al. with description (see Figure 3). 

No impact | Small impact | Moderate impact | Large impact | No opinion 

Figure 2. The survey questions. 

 
Figure 1. Branches in Windows development. FIs (forward 

integrations) move changes from parent to child branches. RIs 
(reverse integrations) move changes in the opposite direction. 



survey, we followed Kitchenham and Pfleeger’s guidelines for 
personal opinion surveys [7].  Our survey consisted of 12 ques-
tions (all optional) of which 5 were related to branching and are 
shown in Figure 2. The survey was anonymous as this increases 
response rates [8] and leads to more candid responses. 

Since we wanted to solicit the opinions of people well-versed in 
working with the SCM system and dealing with branches, we 
chose our survey participants as the top 10% of people who had 
either created most branches, integrated most changes, or submit-
ted most edits within the 12 months before the survey date.  Par-
ticipants were invited with a personalized email and could enter 
their names into a raffle of two US $50 gift certificates.  We re-
ceived 124 responses (a 33.6% response rate) without sending any 
reminders; other online surveys in software engineering have 
reported response rates ranging from 14% to 20% [9].  For the 
write-in questions the completion rate was between 93% and 98%. 
Almost all respondents were developers and most were fairly 
experienced, with a median of 11 years of work experience in the 
software industry and 7.25 years at Microsoft. 

3.1 Integrations 
On average the survey respondents spent 5.45 hours per month 
creating branches or integrating changes from other branches; the 
median was 3 hours (Q1).  These numbers may appear low, but 
often teams select a single person to be in charge of integrations 
and maintain a branch; this observation is supported by the 95th 
percentile of 15.45 hours and several of the free form comments 
in the survey.  The time spent on branching operations depends 
also largely on the work area: build engineers spend significantly 
more time than developers. 

For the time that integrations take on average (Q2), we solicited 
responses in the form of comments rather than numbers because 
we wanted to know more about the specific context of the integra-
tions.  The time varied widely across responses, ranging from 
minutes for simple integrations to days for more complicated 
integrations.  Most of the time is spent on resolving conflicts and 
verifying correctness.  The total time spent depends largely on the 
presence of conflicts but also on “the size of the payload, how 
well the branches are partitioned in terms of work going on inside 
them, and how far back is the baseline”.  Several people and 
teams had developed custom tools and scripts to help them speed 
up the integration and its validation. 

To validate the correctness of integrations (Q3), respondents used 
a wide spectrum of techniques: manual inspection using diff tools, 
historic change information, custom tools and scripts, builds, pro-
gram executions, test runs, and also code review.  Several people 

stressed the importance of social communication, especially when 
there are merge conflicts and the resolution is not clear.  Survey 
respondents pointed out that the validation often depends on the 
type of branch (private, one-man branches vs. public, team based 
and aggregation branches) and the complexity of the changes to 
be integrated.  In Windows and other systems, feature branches 
typically have quality gates that must be met before a change can 
move to a different branch [3,10]. 

We also asked about how many errors are caused by incorrect 
integrations (Q4); again we solicited responses in the form of 
comments rather than numbers.  The consensus among respond-
ents was that errors “happen from time to time” but relatively 
rarely because changes are validated extensively (e.g., through 
quality gates).  However, errors “tend to be subtle because [if they 
happen] they often aren't noticed for a while when totally bizarre 
behavior occurs and it takes a long time to track down what hap-
pened.”  Frequent causes for integration errors are merge conflicts 
that were not resolved correctly or partial integrations missing a 
file.  Errors often occurred in files that were not source code, such 
as XML files or build manifests, and are difficult to compare. 

3.2 Anti-patterns 
Figure 3 contains the descriptions of the anti-patterns that were 
presented to the surveyed developers.  With respect to anti-
patterns we focused on two aspects: 

• Frequency (Q5). In the survey, we asked how many times 
each anti-pattern had been encountered by a person.  For the 
question, we used an ordinal scale with four levels Never, 
Once or Twice, Occasionally, and Frequently.  To avoid any 
guesswork by participants we provided an explicit option for 
No opinion.  

For the analysis of the responses, we followed the advice by 
Kitchenham and Pfleeger [7] and dichotomized the ordinal 
scale to avoid any scale violations.  More specifically, for each 
anti-pattern k we computed the percentage PF(k) of the re-
sponse “Frequently” among all responses (excluding respons-
es that had no opinion). 

• Severity (Q6). In addition, we asked which anti-patterns had 
the highest impact on productivity.  We used an ordinal scale 
with four levels No Impact, Small Impact, Moderate Impact, 
and Large Impact; again we offered an explicit option or No 
opinion. 

We computed for each anti-pattern k the percentage PS(k) of 
the response “Large Impact” among all responses (excluding 
responses that had no opinion). 

 Merge Paranoia — avoiding merging at all cost, usually because of a fear of the consequences. 
 Merge Mania — spending too much time merging code instead of developing it. 
 Big Bang Merge — deferring branch merging and attempting to merge all branches simultaneously. 
 Never-Ending Merge — continuous merging activity because there is always more to merge. 
 Wrong-Way Merge — merging into the wrong branch. 
 Branch Mania — creating too many branches. 
 Cascading Branches — branching but never merging back to the main line. 
 Mysterious Branches — branching for no apparent reason. 
 Runaway Branches — branching for single purpose evolves to multi-purpose branch for unrelated tasks. 
 Volatile Branches — branching with unstable files merged into other branches. 
 Development Freeze — stopping all development activities while branching and merging. 
 Integration Wall — using branches to divide the development team members, instead of dividing work. 
 Spaghetti Branching — integrating changes between unrelated branches. 

 

Figure 3. Branch anti-patterns identified by Appleton et al [3] in the order they appeared in the survey. 



To identify anti-patterns with both a high frequency and a high 
severity, we additionally computed for each anti-pattern the prod-
uct PFS(k) of the percentages PF(k) and PS(k). 

𝑃𝐹𝑆(𝑘) = 𝑃𝐹(𝑘) × 𝑃𝑆(𝑘) 
In Figure 4 we show a bubble chart of the frequency and severity 
of the branch anti-patterns.  Each anti-pattern k is represented as a 
bubble; the position on the x-axis corresponds to the percentage 
PF(k) of responses that selected “Frequently” in Q5 and the posi-
tion on the y-axis corresponds to the percentage PS(k) of responses 
that select “High Impact” on productivity in Q6.  The bubble size 
corresponds to the combined percentage PFS(k).  (Intuitively the 
product PFS(k) is the area of the rectangle spanned by the zero 
point and the point representing the anti-pattern.)  To increase 
readability, we show full names only for the four anti-patterns 
with the highest PFS-values; the other patterns are identified with 
numbers.  The Mysterious Branches anti-pattern is not shown 
because no developers indicated that it had high severity and 
therefore the area is 0. The four highest ranked anti-patterns in 
Figure 4 are Development Freeze, Big Bang Merge, Integration 
Wall, and Branchmania.  

• Development Freezes allow only activities that are focused on 
shipping the next release; work on subsequent releases is 
blocked until the software is released.  Appleton et al. [3] dis-
cuss several solutions for this problem such as having parallel 
release and development lines. 

• The anti-pattern Integration Wall means that branches are 
used to divide the development team members rather than the 
work itself.  In a prior work related to this anti-pattern, we 
presented a preliminary study of how branches are used to or-
ganize goals and teams [11]. 

• For this paper, however, we focus on the anti-patterns Big 
Bang Merge and Branchmania, which are related: too many 
branches often lead to large integrations. Branchmania may 
also lead to longs delays  

To recover from and prevent Branchmania, project members need 
awareness of how different branches are affecting their work.  If 
developers can identify what branches are posing problems or are 
not actually needed, they can make decisions, such as where to 
integrate changes more frequently or which branches to remove, 
proactively.  In this paper we provide a methodology to empirical-
ly assess branches and show how our approach can be used in a 
number of branch decision scenarios by illustrating them on Win-
dows. 

4. LIVENESS AND ISOLATION 
It is important to understand how developers and other project 
members view branches within a project and what qualities are 
important to them. 

At Microsoft project members care deeply about making fast and 
continuous progress.  One aspect of this progress is how quickly 
changes made on branches are being seen by the rest of the pro-
ject.  We term this general property of how fast changes are being 
integrated into the rest of the project as liveness.  One specific 
measure of liveness is the amount of time that it takes for a 
change on a branch to reach the root.  This is important because 
even if a developer has completed a feature or a bug-fix, the task 
is not considered complete until the change has reached the root 
without error.  Furthermore, some defects do not manifest until 
changes from different branches reach each other and their inter-
action leads to problems; a high liveness helps to reveal these 
problems faster. 

The interval between the checkin of a change and the time that it 
reaches the root branch is the transit time of the change.   

Low transit times result in high liveness. 

Many teams at Microsoft are interested in tracking the transit time 
of edits in their project.  While transit time for individual edits is 
fairly straightforward to compute from SCM metadata, accounting 
which branches contribute the most to long transit times on the 
path to the root branch is more complex.  Branches that increase 
transit times may represent a bottleneck and pose a severe barrier 
to project agility. 

Developers are aided by branches because of the isolation that 
they afford.  By making changes on a branch, developers are unaf-
fected by others and need not worry about unduly impeding teams 
on other branches.  Developers working in different branches can 
change the same file without immediate negative impact.  Such 
activity means that the changes will eventually need to reach each 
other and their interactions will need to be resolved, but develop-
ers can wait until their changes are complete and stable before-
hand.  If a file is changed on two branches, A and B, then when 
the change from one is integrated into the other, or the two chang-
es meet on another branch (perhaps the parent of A and B) there is 
a file-level conflict, which needs to be resolved.1  We can meas-
ure how many conflicts occur when branches integrate with other 
branches, but many edits to the same file in two different branches 
may only result in one conflict if there is only one integration; 
consequently this measure does not accurately reflect isolation. 

                                                                 
1 Note that there are different levels of conflicts. Line-level conflicts are 

when two changes if they change the same lines in a file and require 
manual merging by developers. For this paper, we focus on file-level 
conflicts, which is when the same file has been changed on different 
branches. While some of these can be merged automatically, even these 
merges have caused enough problems that the integration still has to be 
validated by developers (for example via compilation and testing as in-
dicated in our survey) to avoid errors based on bad merges [25].  

 
Figure 4. The frequency and impact of branch anti-patterns.  
To increase readability we used numbers to label some of the 

anti-patterns. 5: Merge Paranoia, 6: Never-Ending Merge, 
7: Volatile Branches, 8: Merge Mania, 9: Spaghetti Branch-

ing, 10: Runaway Branches, 11: Cascading Branches, 
12: Wrong-Way Merge, 13: Mysterious Branches 



Accurately quantifying liveness and isolation via what-if analysis 
and using such data to aid project members’ decision making is 
one of the main contributions of this paper. 

5. METHODOLOGY 
Isolation and the liveness of a branch can provide valuable infor-
mation to project members that can be used in a number of scenar-
ios, from monitoring “branch health” to identifying branches that 
should be removed from the system.  However, measuring isola-
tion and liveness is not straightforward:  How can we determine 
how many conflicts were avoided?  How much code movement 
was slowed due to the use of a branch?  To address such questions 
we introduce a what-if analysis as illustrated in Figure 6.  We take 
an original development history H0 and apply several branch 
removal operations (Sections 5.2 and 5.3) to obtain an alternative 
history H1.  We then compare how liveness and isolation change 
between H0 and H1 (Section 5.4).  We demonstrate based on 
Windows 7 branches how such data can support several decision 
scenarios (Section 6). 

5.1 Terminology 
We first introduce basic definitions needed to describe our what-if 
analysis.  Where possible, we adhere to accepted terms from SCM 
parlance and only describe key terms and concepts that would 
otherwise be confusing or ambiguous.  For a more detailed and 
formal description of our methodology, we refer the reader to the 
online appendix [12]. 

To model file histories we use branches, edits, and integrations as 
shown in the diagram below. Time flows left to right.  Edits and 
integrations are referred to as checkins. In this paper, we use cir-
cles on a horizontal line to denote checkins on a branch. 

Parent

Child 
Integration

IntegrationEdit

Anchor

Branches

Checkins 

Edit

Edit

Anchor  
We represent a branch by the list of subsequent checkins that 
have been made to the file on the branch.  Branches form a hierar-
chy in which the main branch is called the root branch.  Likewise 
there are parent and child branches.  Checkins are integrated be-
tween branches and propagated towards the root branch.  The 
depth of a branch in the hierarchy is also referred to as the level, 
with level 0 being the root branch. 

 An edit includes a direct modification of a file by a developer 
such as editting its content as well as adding or removing a file 
from the SCM.  Edits are a type of checkin and we denote edits 
with a solid circle.  

An integration merges the contents of a file at a specific point in 
time on one branch (source) into another branch (target).  In most 
cases, but not always, integrations occur between parent and child 
branches.  Integrations are a type of checkin and we denote inte-
grations with a large hollow circle.  To model the state of the file 
at the “specific point in time” on the source branch, we introduce 
anchors, which are temporal placeholders on the source branch 
and contain no actual change to the file.  Anchors are denoted 
with a small hollow circle.  Note that the anchor and the corre-
sponding integration have the same time: 

5.2 Simulated Removal of a Single Branch 
The core part of our what-if analysis is removing a single branch.  
This allows us to explore a variety of alternative branch structures 
because scenarios where more than one branch is removed can be 
reduced to a series of single-branch-removal steps. 

To simulate what would have happened if a branch was removed, 
we use the past development history and examine and modify the 
checkins and branch operations that involve the removed branch, 
the parent, and the children.  Throughout this paper we refer to the 
branch being removed as the victim branch. 

We first describe our simulation.  Figure 5 shows the changes to 
the history that are involved when simulating the removal of the 
victim.  Figure 5.a shows the original history for a subset of de-
velopment history as it actually happened in the SCM.  In this 
figure, A and B are horizontal lines representing branches.  B is 
the victim and A is the victim’s parent.  As before, solid circles 
represent edits and hollow circles represent integrations from one 
branch to another.  In this diagram, the color of the circle indicates 
which branch the checkin occurred on in the original history (Fig-
ure 5.a).  We use the following steps to simulate an alternative 
history with the victim removed. 

First we identify all edits that occur on the victim.  Since we are 
simulating what would have happened if the victim had not exist-
ed, the edits would have been made on the parent branch. Thus we 
move these edits to the parent branch, while preserving chrono-

    
(a) Initial history, H0, with 
branches A (parent) and B 

(victim). 

(b) Move checkins from victim 
branch B to parent branch A. 

(c) Remove the integrations 
between parent and victim. 

 

(d) Final alternative history, 
H1. 

Figure 5. The steps required to simulate the removal of a branch.  In this figure, A is the parent branch, B is the child branch, solid 
circles represent checkins, hollow circles represent integration checkins between branches.  Checkins are colored according to the 
branch that they were made on in the original history. 

 
Figure 6. What-if analysis applies one or more branch remov-

al operations to create an alternative history and then com-
pare liveness and isolation. 



logical order.  Figure 5.b illustrates this step by moving the 
checkins from B to A. 

Second, we remove integrations between the parent and the vic-
tim.  Since all edits now reside on the parent branch, the integra-
tions to and from the victim branch are no longer needed.  This is 
illustrated in Figure 5.c where the integrations and anchors be-
tween parent and victim are removed. 

Third, all integrations from the victim to its children or any other 
branches are modified so that they now have the parent branch 
rather than the victim as the source.  Likewise, all integrations that 
have the victim as the target branch are modified so that they have 
the parent branch as the target.  This step is not shown in Figure 5 
as these integrations do not occur in the simple history shown. 

The final alternative history is shown in Figure 5.d.  Note that 
although all checkins occur on the parent branch, A, we can still 
determine which branch each checkin was made on in the original 
history.  This is required for our branch metrics. 

A more complex example is shown in Figure 7 (original history in 
7.a; alternative history with victim removed in 7.b).  The edits on 
the victim are moved to the parent branch in the alternative histo-
ry.  Integration and corresponding anchor checkins have either 
been removed (x and y) or rerouted (e.g., c→d).  While more 
complex, this illustrates the effect of simulated branch removal: 

• The path (shown as a dashed line in both histories) from the two 
edit checkins e and f is different in the original and alternative 
histories. In the alternative history, the edits reach the parent 
branch and leave towards the root earlier.  The difference in 
transit time to the root branch is the delay caused by the victim. 

• On the other hand, some edits that originally occurred on differ-
ent branches are now subsequent, conflicting edits on the parent 
branch, as indicated by the arcs between edit checkins in Figure 
7.b (for example, a in conflict with b).  These conflicts charac-
terize the isolation provided by the victim branch in the original 
history (where a and b were isolated on different branches). 

5.3 Alternative Branch Structure Scenarios 
Based on the single-branch-removal step described above, we 
perform what-if analysis for a wide spectrum of alternative branch 
structures to address different scenarios.  Examples include: 

What if a single branch is removed? – Is there a particular 
branch that is causing problems and should receive attention?  
This scenario simply applies the step described in the previous 
section.  In Figure 7.b we illustrate the history produced when this 
step is applied to the history shown in Figure 7.a. 

What if an entire branch subtree is removed? – Are there sec-
tions of the branch structure that aren’t actually needed? This 
scenario selects a victim branch and removes the entire subtree 
rooted at the victim.  For each branch removed from the subtree, 
we follow the process described in Section 5.2. 

What if we only had branches up to level N? – Several teams 
asked how liveness and isolation would change if the depth of the 
branch hierarchy is restricted.  This would limit the maximum 
number of hops for changes to reach the root branch and thus may 
maintain progress within a project.  To assess this scenario, we 
remove all branches on levels greater than N with the process 
described in Section 5.2. 

If a scenario requires removing multiple branches, the actual order 
of the branch removals does not affect the results.  We record two 
branches for each checkin: the branch that the checkin occurred 
on in the original history (which is never changed throughout the 
entire analysis) and the branch that it was made on in the alterna-
tive history (which is initialized to the original branch but subse-
quently changed via branch-removal operations). This allows us 
to apply multiple branch removals in an arbitrary order because 
our analysis only needs the original branch and the final target 
branch for each checkin. Regardless of the order of branch re-
movals, the final target branch for a checkin on a victim branch is 
always well-defined; checkins are moved to the first non-victim 
parent branch of their original branch. Thus, branch removal is 
associative and commutative. 

 
Figure 7. Simulating branch removal. 



5.4 Measuring Liveness and Isolation 
We now describe the two measures that we use to quantify the 
benefit and cost of branches: delay and provided isolation.  We 
present an intuitive description here.  A more formal definition is 
available for the interested reader in the online appendix [12]. 

Delay. Recall that transit time is the time that it takes for an edit 
to reach the root from the branch that it was checked into.  Once 
an alternative history has been created through branch removal 
operations from the original history, the transit time for some edits 
may have changed (for example, see checkins e and f in Figure 7).  
The delay that branches within a scenario incur is the difference in 
total transit time (the sum of transit times for all edits) for all edits 
between the original history H0 and an alternative history H1. 

Delay =  TotalTransitTime(H0) − TotalTransitTime(H1) 

Isolation. We quantify the isolation that a branch provides by 
determining the number of conflicts that are avoided because of 
the existence of the branch.  If there was concurrent activity to the 
same file in a branch and its parent or in a branch and its children, 
then the branch provided a level of development isolation and was 
beneficial.  However, if development in a file on a branch had no 
potential conflicting changes in its children or parent, then this 
isolation was likely not needed.  We calculate this by examining 
the checkins on the parent in the alternative history H1 and count-
ing the number of conflicts.  A conflict is a pair of subsequent edit 
checkins on a branch in the alternative history H1 that occurred on 
different branches in the original history H0 (for example, edits a 
in conflict with b in Figure 7.b).  These are indicative of checkins 
that may be incompatible; even if the algorithm used by the SCM 
to merge textual changes runs without error, a developer must still 
validate (e.g., through builds and test runs) that the merged file 
does not contain any problems.  Thus each conflict introduced by 
the removal of a branch represents a non-trivial amount of addi-
tional work for a developer.  We compare the number of conflicts 
in H1 against the number of conflicts in H0 during integrations. 

Isolation =  Conflicts(H1) − Conflicts(H0) 

While we cannot know what exactly would have actually hap-
pened had a branch not existed, our alternative history effectively 
quantifies the isolation provided and delay introduced by a given 
branch. Even if developers coordinated their changes to avoid 
conflicts, this would be additional effort.  

5.5 Normalization 
Some branches have an order of magnitude more changes than 
others. Thus total delay and total isolation may be misleading, 
especially when comparing different branches. As an example, 
branches with many edits will have more influence on total delay 
just because of the high number of edits.  Therefore, depending on 
the question that we are interested in answering, delay and isola-
tion may need to be normalized:  For scenarios related to compar-
isons and decisions on individual branches (or subtrees), we nor-
malize the delay and isolation measures.  For scenarios related 
branch structure as a whole, we do not normalize.  More specifi-
cally, for the scenarios presented in this paper, we normalize in 
the following ways.   

Normalized delay. The removal of branches can only affect the 
transit time of edits on the victim branches and on their children 
(recursively).  We call the edits on these branches the affected 
edits (regardless of if their transit time is changed).  Therefore, 
when normalizing delay, we divide the sum of the differences in 
transit time by the number of affected edits: 

NormalizedDelay =  
Delay

NumberAffectedEdits(H0,H1)
 

Put simply, the normalized delay for a branch is the average 
change in transit times for edits that occur on or below the 
branches that have been removed.  We say that the branches incur 
this delay per edit for edits on and below them. 

Normalized isolation. Here we normalize by the maximum num-
ber of possible conflicts that can be introduced.  All edit checkins 
on the removed branches end up in the victims’ parent branches 
(there may be multiple victims if multiple branch removal steps 
are taken from H0 to create H1).  Thus, the maximum number of 
conflicts occurs when there is perfect interleaving of edits that 
were created on different branches in H0: 

PossibleConflicts = NumberOfEditsOnVictims
+ NumberOfEditsOnParents− 1 

We normalize isolation by dividing the number of conflicts that 
the branch avoids by the maximum number of possible conflicts.   

NormalizedIsolation =
Isolation

PossibleConflicts
  

Intuitively, the normalized isolation indicates how many conflicts 
per edit checkin a branch prevents. 

6. DECISION SUPPORT SCENARIOS 
Having described our methodology, we now illustrate these sce-
narios by using our analysis on Windows 7 development history. 

6.1 Branch Health 
Our branch assessment metrics can provide awareness of branch 
health to project stakeholders such as developers, managers, and 
build engineers.  In the same way that test results or code cover-
age metrics can alert project members to potentially problematic 
parts of the software, the measures of isolation and liveness can be 
used to alert project members to parts of the branch structure that 
are unnecessarily impeding progress.  Over the past year, we have 
provided branch health reports to Windows, Windows Mobile, 
and Bing.  For each branch the reports contain standard measures 
such as number of edits, integrations, edit/conflict ratio as well as 
delay and isolation based on the scenarios listed in Section 5.3. 
Our analysis helped the product groups identify what specific 
parts of the branch structure were responsible for low liveness. 
Note that high-delay-low-isolation branches do not necessarily 
have to be removed from the branch hierarchy.  As with most, if 
not with all metrics, the actions to be taken depend highly on the 
context [13].  For example, branches might exhibit a high delay 
because of a temporary code freeze or because they are integral 
parts of the quality assurance and serve as quality gates; these 
branches should likely not be removed.  Other than removing a 
branch, a team can also decide to integrate more frequently to the 
parent branch to decrease delay. 

6.2 Separating the Sheep from the Goats2 
Figure 8 contains a scatterplot showing the normalized delay and 
isolation of all branches during the complete development cycle 
of Windows 7.  The graph shows the results for recursive branch 
removal (removing a branch and all of its descendants).  Isolation 
                                                                 
2 Separating the sheep from the goats is an English idiom and an allusion 

to a biblical metaphor (Matthew 25:32-34) in which sheep provide value 
and are blessed while goats do not and are cursed. 



is shown along the x-axis (farther right is better as it means more 
conflicts are prevented by a branch) and delay is shown on the y-
axis (lower is better).  We consider isolation to be the benefit that 
a branch provides at the cost of delay. 

High-benefit-low-cost branches (sheep) are colored green and on 
the bottom and right.  Low-benefit-high-cost branches (goats) are 
colored red and are on the top and left.  Medium-benefit-medium-
cost branches (hybrids) provide isolation but also incur delays and 
are near the x-y line.  Our categorization is based on ranking each 
branch in terms of the isolation that it provides and the delay that 
it incurs.  We give each branch two ranks, one for delay (from 
least delay to most) and one for isolation (from most isolation to 
least).  Then branches are sorted by the sum of their two ranks.  
The first 25% of branches are labeled sheep in graph in Figure 8; 
the last 25% have highest delay and lowest isolation and are la-
beled goats; the middle 50% are hybrid branches.  This method of 
ranking is simply one way to combine isolation and delay and is 
not intended to be definitive; for example other rankings could 
weight one measure more than the other.  We include our two 
dimensional thresholds in the graph for ease of reading.   

The graph shows a number of extreme branches.  Approximately 
7% of the branches don’t avoid any conflicts at all (points on the y 
axis).  These branches do not provide any benefit.  In contrast, 
27% of the branches provide isolation while incurring only little 
or no delay (branches that lie near the x axis).  These branches are 
the ideal as they provide benefit at almost no cost.   

Such identification of sheep and goat branches is most useful if it 
can inform decisions about future branch structures and if it can 
be used at any point in the development cycle. To assess whether 
what-if analysis can inform decisions during development, we 
evaluated the effect of making decisions based on what-if analysis 
prior to the end of a product development cycle.  Like many in-
dustrial projects, Windows development occurs in iterations 
around milestones.  We performed our what-if analysis to evaluate 
branches based on development of Windows 7 that occurred prior 
to the end of the first milestone (M1). That is, we labeled each 
branch as a sheep, a goat, or a hybrid based on the delay and isola-
tion for that branch in the first milestone. We then evaluated the 
effect of removing goat branches (those that provided the least 
isolation while causing the most delay) for the remaining mile-
stones after M1 to determine if taking action based these metrics 
would be effective. 

Table 1 shows the results.  By removing branches labeled goats in 
M1, each edit saved, on average, 8.9 days of delay from M1 to the 
end of development and experienced 0.04 additional conflicts 
each. In contrast, removing sheep branches at M1 would only save 
2.3 days of delay per edit while incurring 0.22 additional conflicts 
(more conflicts and less saved time than goats). To put these val-
ues in perspective, we compared this to the optimal choice of 
branches to remove if we had perfect foresight and removed the 
branches that actually performed worst post-M1. In that case, 9.7 
days of delay per edit would be saved at the cost of 0.035 conflicts 
each. Thus, making decisions on which branches are the most 
costly in M1 achieves 92% of the maximum possible cost savings 
while incurring only 17% more conflicts than the least possible. 

We also examined the correlation between branch categorization 
based on M1 development and branch categorization after M1. 
We found that the category remained the same for 85.3% of the 
branches and a Kendall’s 𝜏 correlation of branch category before 
and after M1 was 0.86 (𝑝 ≪ 0.01). Sheep branches tend to remain 
sheep, goat branches remain goats, etc.   

Both of these results indicate that what-if analysis based on devel-
opment data mid-cycle is reliable. Put more pragmatically, deci-
sions about branch practices such as which to remove or which to 
focus resources on can be made during development with high 
confidence based on measurement earlier in the development 
cycle. 

6.3 Quantifying the liveness–isolation tradeoff 
Our choice of division of branches into sheep, goats, and hybrids 
based on a 25%-50%-25% split may seem arbitrary, and indeed it 
is to some degree. The divisions into the interquartile range and 
the resulting visualization were inspired by standard boxplot anal-
ysis [14].  The divisions simply represent the tradeoff between 
providing isolation and reducing delay.  To quantify this tradeoff, 
we computed regression lines (shown in Figure 8) for each group.  
For confidentiality reasons, we are unable to disclose the actual 
absolute measurements. However, since a regression line defines 
proportions, we normalize to one conflict and use the generic term 
delay “unit”.  We found that the average tradeoff was 1 prevented 
conflict per edit at the cost of 3 delay units for sheep, 11 delay 
units for hybrid, and 46 delay units for goats.   

Thus, if one is willing to deal with one conflict per edit in order to 
save 46 units of delay per edit (these are actually ratios, so this is 
the same as one conflict every two edits to save 23 delay units), 
then goat branches should be eliminated. In contrast, removing a 
sheep branch will only save 3 delay units per additional conflict.   

 
Figure 8. Usefulness of Branches in terms of provided isolation 

and delay based on recursive branch removal.  Top and left 
shows goat branches (low benefit, high cost) and bottom and 

right show sheep branches (high benefit, low cost) while those 
in the center are hybrid branches that exhibit a tradeoff be-

tween delay and isolation. 

Removal Strategy Delay Saved Conflicts Added 
Sheep 2.3 Days 0.218 
Goats 8.9 Days 0.042 
Optimal 9.7 Days 0.035 

 

Table 1. The number of days saved and conflicts added per 
edit if sheep or goats, classified from data in the first milestone, 

are removed for later milestones. 



In practice, development teams can define the tradeoffs that they 
are willing to accept and make decisions accordingly.  Thresholds 
are, in fact, not required in order to use what-if analysis results. 
For example, branches may be ranked according to some combi-
nation of isolation and delay and those with the lowest ranks 
could be removed. 

6.4 Depth Analysis 
Managers have considered limiting the maximum depth of the 
branch structure due to a belief that liveness would be improved if 
there are fewer branch levels.  Until now, this belief has not been 
empirically confirmed or refuted. 

We used what-if analysis to investigate branch depth by looking at 
the total isolation and total delay when restricting the branch 
structure to different maximum depth levels.  A depth level of n 
means that there are at most n levels of branches below the root 
(which has level 0).  Branches closer to the root are called shallow 
branches, while branches further away from the root are called 
deep branches.  In this scenario we are not comparing branches to 
each other, but rather taking a global view on the branch structure 
as a whole.  Therefore we use total delay and total isolation and 
show the percentage decrease in transit time and the percent of 
edits that cause conflicts. 

Our findings are shown in Table 2 and are two-fold.  First, the 
branches at very deep levels don’t actually incur very much delay.  
In fact, limiting the depth to four levels of branching saves less 
than 0.1% of the total transit time.  Most of the delay can be at-
tributed to the branches closer to the root.  A policy of maximum 
branch depth would have to make the branch structure quite shal-
low for a non-trivial effect on delay; however, this would come at 
a rather high cost of severely reduced isolation. 

• For an 8.9% speedup, Windows would have had to deal with 
30.3% of the edits creating conflicts (maximum depth of 1). 

• If the branch structure had only a single branch, that is the root 
(maximum depth of 0), the transit time would reduce by 100% 
to 0 for all edits, but then 40.4% of edits would incur conflicts. 
Having only a single branch is not reasonable for other rea-
sons than just conflicts: build breaks would stall the entire pro-
ject, preventing thousands of people from being able to work. 

These findings suggest that deep branches actually do not impede 
liveness. They may not be needed, as they also do not provide 
much isolation, but removing them would have only a trivial ef-
fect, as they integrate their changes to parent branches on a fre-
quent basis.  In contrast to conventional wisdom that the holdup is 
a deep branch structure, our results show that in the case of Win-
dows, the key to increasing liveness may actually lie in finding 
ways to move changes through shallow branches more quickly. 

7. DISCUSSION 
In this section we discuss future areas of research in the area of 
SCM branches.  We also present assumptions in our methodology, 
potential threats to result validity as well as our mitigation steps, 
and common misconceptions. 

7.1 Branch Refactoring and Optimization 
In this paper, we have introduced a technique to empirically char-
acterize delay and isolation for individual branches. This supports 
data-driven decision making on branches, for example to identify 
candidates for deletion. 

We believe that this is just the first step towards a new discipline, 
branch refactoring, which is the process of improving and refin-

ing branch structures as a software project evolves.  For this paper 
we focused on the refactoring “Remove useless branch”.  Howev-
er, as projects evolve there will be other opportunities for refactor-
ing such as “Create new branch”, “Split branch”, “Merge related 
branches”, and “Bypass branch”. A related area is branch opti-
mization, which is concerned with distributing files and people 
across branches based on empirical evidence. 

Both branch refactoring and branch optimization offer opportuni-
ties for new research and tool development: 

• Assemble a branch refactoring catalogue with empirically val-
idated guidelines of when to apply a refactoring. 

• Develop techniques to distribute files, people, and teams 
across branches. 

• Build a recommender system to identify branch refactoring 
opportunities. 

• Train prediction models to predict which branches will turn 
from sheep to goats. 

• Empirical studies on relationship between branch structures 
and code quality. 

7.2 Assumptions & Threats to Validity 
For our survey we identified the following threats to validity. Our 
selection of survey participants was constrained to only experi-
enced engineers, in our context, engineers who were most active 
in the SCM. While this skews our results to these engineers, they 
are also the ones who will benefit most by better branch struc-
tures. A related threat is that to some extent our survey operated 
on a self-selection principle: the participation in the survey was 
voluntary.  As a consequence, results might be skewed towards 
people that are likely to answer the survey, such as engineers with 
extra spare time—or who care about branch structures.  Avoiding 
the self-selection principle is almost impossible.  As pointed out 
by Singer and Vinson, the decision of responders to participate 
“could be unduly influenced by the perception of possible benefits 
or reprisals ensuing from the decision” [15].  Some of our analysis 
is based on self-reported data (e.g., integration time, Q2).  How-
ever, software developers are known to underestimate effort [16] 
and we consider the estimates to be a lower bound. For any empir-
ical study, it is difficult to draw general conclusions because of a 
large number of contextual variables [17].  For example, different 
SCMs use different merging tools which may affect developers 
perceptions of difficulty of integration.  In addition, the process 
used by a development project can have a strong relationship with 
branch structure and frequency of integrations.  However, we are 
confident our techniques can be applied to other projects, espe-
cially given the increased popularity of branching through distrib-
uted version control systems [18].  To increase the generality of 
our results, we hope to partner with academic researchers to repli-

Max Depth 
 

Transit Time 
Decrease 

Isolation 
(edits in conflict) 

0 100% 41.0% 
1 8.9% 30.3% 
2 3.4% 10.5% 
3 1.4% 2.3% 
4 < 0.1% 0.2% 

 

Table 2. The decrease in transit time and percent of edits in 
conflict if the branch structure is limited to a maximum depth.  
Depth of 1 represents 1 level of branching below the root, etc. 



cate this analysis on open source projects such as the Linux ker-
nel. 

Some key assumptions underlie our results.  First, our measures of 
delay and isolation assume that a similar sequence of checkins and 
integrations would occur in a different branch structure.  We ar-
gue that the changes themselves are necessary to achieve the de-
sired software functionality and that dependencies between edits 
introduce a partial order that imposes a similar sequence.  Further, 
to minimize the risk of this assumption, each scenario is evaluated 
in its own alternative history with the rest of the branch structure 
unchanged rather than evaluating the effect of making multiple 
changes which would likely effect development behavior more 
intrusively.  Second, we assume that if a branch had not existed, 
the changes and integrations made on that branch would have 
instead been made on the parent.  Lastly, some branches at shal-
low depths play a quality gating role, whereby checkins are ag-
gregated, tested, and in some cases corrected before moving to the 
root.  Branches with such roles should be considered carefully 
when making decisions. 

7.3 Common Misconceptions 
A common misconception about industrial research at large com-
panies such as Microsoft is that software projects at Microsoft are 
not representative of other software projects.  While projects 
might be larger in size, most development practices at Microsoft 
are adapted from the general software engineering community and 
also used outside Microsoft.  For example, branches are frequent-
ly used at other companies [19] and in open-source [20]. 
Another frequent misconception is that empirical research within 
one company or one project is not good enough, provides little 
value for the academic community, and does not contribute to 
scientific development.  Historical evidence shows otherwise.  
Flyvbjerg provides several examples of individual cases that con-
tributed to discovery in physics, economics, and social science 
[21].  Beveridge observed for social sciences: “More discoveries 
have arisen from intense observation than from statistics applied 
to large groups” (as quoted in Kuper and Kuper [22], page 95). 
Please note that this should not be interpreted as a criticism of 
research that focuses on large samples or entire populations. For 
the development of an empirical body of knowledge as champi-
oned by Basili [17], both types of research are essential.  The 
work presented in this paper has been successfully applied to three 
Microsoft products (Windows, Bing, and Windows Phone). 

8. RELATED WORK 
To the best of our knowledge this is the first work that empirically 
assesses the usefulness of software development branches at an 
individual level.  We were unable to find metrics similar to the 
ideas of delay and isolation in previous research.  We also provide 
empirical insights into multi-branch software development and 
qualitative observations from developers on efficiency of branch-
es.  Standard simulation techniques [23] rely on distributions and 
other methods to generate data and evaluate outcomes.  In con-
trast, we use actual data recovered from Windows development 
and replay these activities on differing branch structures to answer 
what-if scenarios.  This gives us increased confidence in our re-
sults as we are not trying to generalize development behavior, but 
use it as it actually happened.  

Two questions in our survey among developers were based on the 
list of anti-patterns for parallel software development [3].  Several 
books and articles discuss best practice for software configuration 
management and branch structures [4,5,6].  However, these prac-
tices are mainly based on the authors’ experience and less on em-

pirical evidence. With this work we provide a way to empirically 
assess branches. 

Perry et al. observed a high degree and multiple levels of parallel 
development in the 5ESS system [1].  They also observed a signif-
icant correlation between the degree of parallel work and the 
number of quality problems in a given component.  Zimmermann 
studied workspace updates in GCC, JBoss, JEdit, and Python, and 
observed that between 3.9% and 20.2% of commits had integra-
tions [24]. Between 22.8% and 46.6% of integrations could not be 
automatically resolved by CVS and resulted in conflicts. Brun et 
al. pointed out that besides textual conflicts, there are also compile 
conflicts (program does not compile) and build conflicts (program 
fails test suite) when integrating changes [25].  

Independently from us in 2011, Phillips et al. conducted a survey 
among 140 version control users and asked how branching and 
merging are used in practice and what defines a successful 
branching strategy in terms of user satisfaction [26].  Premraj et 
al. surveyed 16 software personnel on their use of branching and 
merging [19]. Our survey complements both studies as the ques-
tions asked are different. We also go beyond user satisfaction and 
introduce quantitative measurements for cost and benefit of 
branches. 

In our earlier work, we explored how people and files span across 
multiple branches to understand how socio-technical factors affect 
parallel development [11].  The earlier work measured similarity 
between branches—the focus of this paper is instead on a different 
aspect of branching, namely to measure the cost and benefit of 
branches. We also introduced an algorithm to identify the changes 
and bug fixes that are included in a reverse integration [27]. 

Several tools have been proposed to increase the awareness of 
changes across different branches or workspaces with the goal to 
reduce conflicts: Sarma et al. developed Palantír, which shares 
information about changes to the same files across different work-
spaces [28,29].  Sarma and colleagues also provided quantitative 
evidence of the benefits of workspace awareness in software de-
velopment [30] and compared Palantír with two other awareness 
tools FASTDash [31] and CollabVS [32].  In a workshop paper, 
Guimarães and Rito-Silva proposed a system for real-time integra-
tion of changes [33].  Brun et al. proposed speculative conflict 
detection, which searches for unrecognized conflicts across 
branches and opportunities for straightforward merging [25]. 

9. CONCLUSION 
We have presented a survey on how branches are used at Mi-
crosoft and an empirical what-if analysis to assess cost and benefit 
of branches to aid in a number of branch-related scenarios.  Our 
approach helps to identify and separate, high-benefit-low-cost 
branches from low-benefit-high-cost branches. Such findings 
enable informed decisions about branch structures and processes 
(such as frequency of integrations) regarding branches and allow 
refining a branch structure as a project progresses.  We have only 
touched on branch removal as one possible branch refactoring 
operation.  There are many other possible operations such as add-
ing, splitting, merging, and restructuring branches.  This presents 
a potential new research area. 

With the rise of distributed version control systems such as Git 
and Mercurial, branching has become more common in open 
source software development [18] and accessible to a wider re-
search audience.  This provides an opportunity for academic re-
search to have immediate impact in industry, where branches are 
often used to deal with the complexity of software.  
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