
acmqueue | september-october 2018 1

code review

Y
ou may be wondering, “Code review process? Isn’t
that obvious?” But code reviews are pervasive.
Any developer is likely to be asked at any time
to review someone else’s code. And you can be
sure your code is reviewed. For some developers,

code reviews take up a portion of each day. So there’s your
answer: large numbers of very well-compensated people
spend a great deal of time on this activity, meaning the
aggregate costs are substantial. If you’re talking about a
development shop the size of, say, Microsoft… well, then,
the investment regularly made in code reviews can amount
to something quite impressive indeed.

That’s only one of the reasons that Jacek Czerwonka
and his TSE (Tools for Software Engineers) team at
Microsoft set out to study how the code-review process
plays out across the company. Another had to do with
taking on a challenge they found interesting in the sense
that, beyond their important role in software-engineering
integration, code reviews involve some rather complex
social dynamics that elude simple modeling.

Then there also was the fact that Microsoft’s code-
review tool represented an opportunity to touch every
developer throughout the entire company. For a group

1 of 20
TEXT
ONLY

CodeFlow
Improving the Code Review
Process at Microsoft

A discussion
with
Jacek
Czerwonka,
Michaela
Greiler,
Christian Bird,
Lucas Panjer,
and Terry
Coatta

case study

acmqueue | september-october 2018 2

code review

charged with boosting developer productivity, that’s just
the sort of lever dreams are made of. What’s more, the
tool also offered TSE’s researchers something they could
instrument to collect data and generate metrics that, in
turn, could be used to enable further research.

So, that’s why the group set out on this journey.
To recount what it was like, where it led, and what
was learned along the way, Czerwonka discusses the
undertaking here, along with fellow researchers Michaela
Greiler and Christian Bird. Also on hand to help steer
the discussion are Lucas Panjer, the senior director of
engineering at Tasktop, and Terry Coatta, the CTO at
Marine Learning Systems, a Vancouver-based startup
working to develop a learning platform.

LUCAS PANJER What exactly is it that initially moved you
to zero in on the code-review process?
JACEK CZERWONKA This group was formed several
years ago with the goal of encouraging the adoption of
a common set of software-engineering tools across the
whole of Microsoft. We’ve been on this path for a while
now. We’re not done yet. But there are a few places where
we’ve managed to centralize the tools quickly, and one of
those is in code-review tooling.

Clearly, in looking at that aspect of the engineering
workflow, we saw there were already some tools in place,
so we just concentrated on determining what we could
do to make improvements. First we wanted to learn what
we could from actual experience since you always want
to start with a foundation grounded in practice, as well
as theory. So, we started looking at any qualitative or

2 of 20

acmqueue | september-october 2018 3

code review

quantitative data we could get our hands on that had to
do with the code-review tooling and process already in
place at Microsoft. That’s how we started on this journey
of trying to understand where the process originated
and how it has evolved over time. What are the factors
that drove that evolution? How is the process currently
applied? How does it work with open source? How does it
work within Microsoft? And what happens when we find
ourselves collaborating with others?
LP What did you end up initially focusing on?
CHRISTIAN BIRD In general, we wanted to find out what
prompted people to do code reviews in the first place.
How many people were usually involved? What types of
issues were being raised? What was it that led people to
make changes? And what typically led people not to make
changes?
TERRY COATTA Were the engineering teams themselves
pushing for this line of inquiry? That is, were people coming
to you to say, “We’re sure spending a lot of time with code
reviews, but it doesn’t seem like we’re getting all that much
out of it”?
CB Mostly it was because this was an area where the data
was both plentiful and readily available. With that being
said, once people found out what we were doing, they
proved to be quite receptive. It wasn’t like they wondered
why we were doing this research. In fact, it was just
the opposite. People generally were very supportive of
improving the code-review process and, if anything, said
they wished it was treated as a first-class citizen. Also,
many were pretty excited to learn there was data available
they would be able to track themselves.

3 of 20

acmqueue | september-october 2018 4

code review

LP Once people engaged with you and told you what they
thought was valuable, did they also let you know what else
they wanted?
CB What people wanted for the most part was the ability
to do their own tracking, along with a way to look at how
they were doing in comparison to other teams. We came up
with metrics that align with some of the targets teams at
Microsoft have for what they want to achieve at different
points in the software-development process. For example,
they would want to know if they were on track for getting a
commit into master within a month. Or they would want to
see if they were well on their way to achieving 80 percent
test coverage.

Similarly, for code review some teams had targets, while
others did not since they didn’t have a way to measure that.
So, they might decide that at least two people should sign
off on every code review and that each review would have
to be completed within a 24-hour period. Until we started
collecting the data around code reviews, analyzing it, and
then making it more generally available, teams had no way
of measuring that. Yet they wanted to be able to do that
since they were already measuring other parts of their
development process. As a consequence, people started
coming to tell us what metrics they would find useful.
Then we would just add those to metrics we were already
collecting. It turns out that much of our effort was actually
driven by what the development teams themselves were
telling us they wanted to be able to measure.
TC Since you say this tooling for code reviews is something
everybody at Microsoft now uses, can you give us a brief
description of the features it offers and how you think

4 of 20

acmqueue | september-october 2018 5

code review

those compare with what’s available to most people
outside of Microsoft?
JC Well, we’re talking now about things we did with our
tool [called CodeFlow] a few years ago, and tooling has a
way of converging out in the world at large over that much
time. So, some of the changes we made back then might
now seem fairly obvious to people who are using other
code-review tools that have since come to work in much
the same way.

The brief summary is that we made a number of changes
to finely tune the underlying subsystem. We also trained
the tool to be super-precise in terms of tracking changes
as people move through numerous software iterations.
That is, as you move from one revision to the next, you can
imagine that your code changes end up moving around as
some code gets deleted, some new lines are added, and
chunks of code are shuffled around. That can throw your
comment tracking severely out of sync with what you had
once intended. Overcoming that took work, but we now
know from feedback that it’s greatly appreciated and thus
well worth the effort.

Another thing we focused on was performance. For that
reason, even today CodeFlow remains a tool that works
client-side, meaning you can download your change first
and then interact with it, which makes switching between
files and different regions very, very fast.

It also helps that CodeFlow has essentially become
ubiquitous throughout Microsoft. That’s because we
used something like a viral marketing strategy in that
the moment you were added as a reviewer, you received
a notification, which allowed you to open the review by

5 of 20

C
odeFlow
remains a
tool that
works
client-side,

meaning you can
download your
change first and
then interact
with it, which
makes switching
between files
and different
regions very,
very fast.

—Jacek Czerwonka

acmqueue | september-october 2018 6

code review

simply clicking on a link. Then the CodeFlow client would
be installed and the review would be opened. So, soon
after the tool was introduced to a group, it would start
to permeate the fabric of that team pretty much all on
its own. The choice not to require a special install for
CodeFlow proved to be a really good one.
LP Is there anything in particular from the user’s
perspective that distinguishes CodeFlow from either Git
or Gerrit? How would you say it differs from what you find
with pull requests and patch set-based tooling?
CB It comes down to being a native app rather than a Web
capability, meaning it enables much richer interactions
than you would get otherwise. I’ve been through the Git
and the pull request stuff, and it’s absolutely the case that
you can easily jump around from comment to comment,
and you also get things that work like score boxes. Which is
to say they feel like rich native clients, so I realize you can
accomplish this with a web experience.

As for Git and Gerrit code reviews, what you get there
just amounts to lists of diffs. I mean, you also can add
comments, but, in the end, that just makes it more difficult
to track things or navigate everything effectively.

So, the fact that CodeFlow is native and is treated like a
first-class citizen on the desktop makes it more usable.
MICHAELA GREILER I also really like the richness of
CodeFlow’s commenting features. You can, for example,
mark just a single character within a line instead of
calling out the whole line of code. That way, people can
immediately see exactly where the issue is.

Also, to this day, very few code-review tools let
you span regions, but with CodeFlow you can attach a

6 of 20

acmqueue | september-october 2018 7

code review

comment at the same time to a number of deleted lines
and inserted lines—and then track all of that through
succeeding iterations. Another feature worth pointing out
is comment threading, which lets you resolve an entire
thread of comments at the same time rather than dealing
with each comment individually.

C
ode reviews generally conjure up notions of
troubleshooting. More specifically, people tend to
associate them with the never-ending search for
bugs.

It turns out that’s not nearly as central to the
code-review process as you might think. Which is not to say
that finding bugs is unimportant or discouraged. And yet
it seems the real win comes in the form of improved long-
term code maintainability.

LP Which problems did you decide to attack first?
JC Most of the issues we chose to focus on were process
oriented. The tool itself is quite flexible and adaptable
to practically any process. We spent a lot of time trying
to understand the benefits of code review and what was
getting in the way of achieving those advantages. Also, we
wanted to understand how the existing code-review tool
was being used. We were interested in learning more about
the costs and the turnaround times in hopes we would be
better able to see what the drivers were.
MG Also, one of the issues we looked at was how to create
a reviewer recommender since programmers had been
complaining to us about how difficult it was to find the

7 of 20

acmqueue | september-october 2018 8

code review

right people to look over their code. Chris started working
on a tool that would deliver a listing of people with the
expertise to match the sorts of problems addressed by
your code, along with suggestions as to which of these
people you might want to add to a review.

Something else Chris and I studied for a while was
code-review usefulness. That wasn’t a problem we were
trying to solve, of course, but we did want to understand
which aspects of code reviews tend to be most valued by
engineers—that is, by both reviewers and programmers.
What did they see as being most useful? It didn’t take
us long to conclude that it was not the mere decision
to accept or rework the code that the reviewers were
interested in, it was the comments that added to the value
of the review. On the other hand, some comments just
increase the burden of the code review and slow down
the development process. So then we wanted to know
what kinds of comments they found most useful, since we
could then start thinking about how to encourage and lend
greater emphasis to those.
JC Just as this interesting question of usefulness led to
practical implications later on, the same might be said of
the work that was done to look into other process-related
questions. For example, how many people should you include
in a code review? Is there a number beyond which it becomes
counterproductive? We all intuitively feel that smaller
reviews are better, but where exactly to draw that line? And
what’s the optimal amount of time to allow for a review?
MG Another interesting thing we found is that, while the
popular notion is that code reviews are mostly about
finding bugs, only a very small percentage of the code-

8 of 20

H
ow many
people
should
you include
in a code

review? Is
there a number
beyond which it
becomes coun-
terproductive?

—Jacek Czerwonka

acmqueue | september-october 2018 9

code review

review comments we studied actually had anything to do
with bugs at all. In fact, most of the comments were about
structural issues and style problems. Sometimes they
were even about really minor issues, like spelling. Basically,
what we found was that many reviewers were using their
commenting platform to discuss these issues and share
their knowledge.

We found it very enlightening to categorize these
comments and do some mappings to determine which ones
were thought to be the most interesting or useful. It turns
out that generally proved to be comments that identified
functional issues, pointed out missing validation checks, or
offered suggestions related to API usage or best practices.
LP Just for context, can you also speak to the scale of this
research—the size of the codebase you were working with,
the number of code reviews you analyzed, or the number of
developers who were involved?
CB We did a number of different studies, many of which
were more quantitative than observational. In one case,
we did an initial study where it became clear that the
depth of knowledge someone has of a certain piece of code
will definitely show up in the quality of feedback they’re
able to offer as a reviewer. Which is to say, to get higher-
quality comments, you need reviews from people who have
some experience with that particular piece of software.
Then, to check out that conclusion, we spoke with and
observed some engineers who had submitted reviews for
code already familiar to them. We also observed some
engineers who had been asked to review code they had no
prior experience with. That was a small study, but it left us
with some definite impressions.

9 of 20

acmqueue | september-october 2018 10

code review

There also were those studies Michaela just mentioned,
where we considered comment usefulness. That was
based on data gathered from across all of Microsoft and
then fed into a machine-learning classifier we had built
to categorize code reviews. We ended up using that to
classify 3 million reviews of code that had been written
by tens of thousands of developers and drawn from every
codebase across the whole of Microsoft—meaning we’re
easily talking about hundreds of millions of lines of code.
Obviously, the quantitative data analysis we were able to
perform there was based on a substantial amount of data.
The qualitative observational studies, on the other hand,
were typically much smaller.
MG We definitely had a tremendous amount of data
available—essentially all the code written for Office,
Windows, Windows Phone, Azure, and Visual Studio, as
well as many smaller projects.
JC We also enjoy an advantage here at Microsoft in that we
have so many different product types. We look at the work
people do on operating systems, as well as apps and large-
scale services and small-scale services and everything in
between. We’re very aware of the different demands in
each of these areas, and we make a point of keeping that in
mind as we do our studies.
LP In those cases where you could derive data from the use
of CodeFlow, were you also able to further instrument the
tool to augment your studies?
JC One of the most interesting things to surface from
instrumenting CodeFlow was just how much time people
were actively spending in the review tool. That’s because

10 of 20

acmqueue | september-october 2018 11

code review

we’ve found that people will often open multiple instances
of the tool and then, as they get a bit of free time, do a
small review here and then another small review there.
So, just because you can see the tool has been open for
a certain amount of time doesn’t mean you can assume
there has been activity for that whole time. We have the
telemetry to determine just how long you were navigating
around within the app. That has allowed us to determine
that people, on average, spend about 20 minutes per
day actively working in CodeFlow—which amounts to
a significant amount of time once you multiply that by
40,000 people.
CB From all that, we’ve been able to make a number of
general observations we’re always happy to pass along as
recommendations. In fact, one suggestion I would offer
to anyone looking to do something similar to what we’ve
done in analyzing their own organization’s code-review
process is that, in considering what data to collect, stay
as close as possible to the actual object model employed
by the application itself. For example, there’s almost a 1:1
correspondence between the tables in our database and
the classes in the application. As a result, we didn’t have to
think very hard about whether to collect something or not.
We just grabbed everything.

So, we ended up collecting all this raw data, and one
advantage of that is, even if you don’t see an immediate
need for some of that data, you might find a use for it later
as new studies come up. Which means you won’t be faced
with needing to go back and update your data-collection
system to provide for that. The downside is that you’ll also
have all this raw information on your hands that hasn’t

11 of 20

acmqueue | september-october 2018 12

code review

been processed for use, which means some engineer is
going to have to come along later to build a metrics layer
on top of all that. That will leave you with two levels of
data—the analytics layer and another layer containing the
raw object model data—which people can dive into later if
they’re looking to get their hands really dirty.

That sort of layering turned out to be a really smart
move for us since we now can cater not only to the casual
user who simply wants to look at metrics and reviews but
also to someone who wants to dive into things.
LP Are you saying that after you’ve created these tools
for your research purposes, other teams will go on to use
them to reflect on their own processes?
CB Yes. In fact, we did a study a few years ago where we
contacted some of the teams that were using our data to
discover exactly what they were doing with it, as well as to
see whether they had managed to improve the process in
any way. We thought that this might be a way to find where
we needed to take our own research.

We found that some teams were using the data
to generate scorecards, whereas some were using
it to discover where people were having problems
understanding the codebase and then using those insights
to drive their training programs. We ended up talking with
at least another dozen teams, and it was interesting and
surprising to learn about the different ways some of those
teams had used our data.
LP What were some of the bigger surprises?
CB The biggest surprise for me was learning that some
teams would use our tools to identify code reviews that
took too long or contained only a few comments. Then

12 of 20

acmqueue | september-october 2018 13

code review

they would open the code reviews based on that data, and
the reviews would tell them what code had been used and
what part of the code was being reviewed. They would dig
into that and quickly determine, “Oh, it looks like people
are having a tough time reviewing code that uses this
particular API.” That’s how they would determine that their
next training session ought to be devoted to that API.
TC Have you developed any metrics for essentially grading
the quality of code reviews?
CB Not as such, but I know some teams have built live
dashboards around this data. Some development teams
have mounted a massive TV monitor right on the wall
where metrics like “Time since last bug” or “Time to
delivery of next release” can be displayed. One team told
us they also put code-review data up on their scoreboard
so people could see how many code reviews are on backlog
or how much time on average is required to complete a
code review. From what they told us, it seems that having
that data up on a realtime dashboard, mission-control
style, has proved to be quite motivating.

D
elivering a new set of capabilities for managing
and improving Microsoft’s code-review process
was the primary goal right from the start. In
the course of accomplishing that, much was
also learned about certain general code-review

principles—guidelines that might also be applied to
beneficial effect elsewhere. In fact, subsequent research
has offered surprising evidence of just how similar the
impact can be when many of these principles are followed

13 of 20

acmqueue | september-october 2018 14

code review

at companies other than Microsoft—or, for that matter, by
open-source projects.

LP Looking back to when you first started this project,
what would you say came up most whenever you
questioned people about their primary motives for doing
code reviews?
MG We did a survey where we asked people to rank their
reasons. What came out of that tended to be fairly obvious:
improving the code, finding defects, knowledge transfer…
that sort of thing. But then, when we launched this other
study to categorize the comments that had been left in the
actual code, we found they only rarely aligned with those
stated motivations.
LP Interesting. What did those comments chiefly focus on?
MG There were a lot of comments about the
documentation, of course. And you would see some
remarks having to do with alternative solutions. There also
were comments about validation, which admittedly leaned
in the direction of bug resolution since people would
say, “You know, if this particular corner case went away,
you would be able to eliminate some of these problems.”
People also had things to say about API usage—and best
practices as well. On the whole, I’d say these sorts of
comments far outweighed any that focused on specific
defects.
JC To Michaela’s point regarding this mismatch between
expectations and reality, despite the fact that people
consistently said their primary reason for doing code
reviews was to discover bugs in code, only 15 percent of
the comments we found in code actually related to bugs.

14 of 20

acmqueue | september-october 2018 15

code review

For example, we would find comments about control-
flow issues or use of the wrong API—or even use of the
right API but in the wrong way. On the other hand, at least
half of the comments were about maintainability. So, it
would seem that for the reviewers themselves, identifying
maintainability issues proves to be more of a priority than
uncovering bugs.
LP Now that your work has been out there for a number of
years, what sort of impact have you seen on code-review
policies and practices across all the different development
teams?
JC One of our top goals was to reduce the amount of time
required to do a code review on average. We looked to
discover where it was that people seemed to be spending
an inordinate amount of time, and that’s what led to the
creation of a reviewer recommender. It’s such a simple
thing, really, but it can be hard to find people with the
right experience if you’re part of a large team. Having an
automated system to identify those engineers who have
some familiarity with the file where some changes have
been made can help cut down on the time required to get
those changes reviewed.

Something else we’ve done, quite recently, is to give the
developers a way to explain what it was they were trying
to accomplish. This is because a complaint we commonly
hear from reviewers is that it can be quite challenging to
understand the reasoning behind a code change. Which is
to say they would like some way to get into the mindset
of the person who made that change so they can better
understand whether it actually makes any sense or not.

One way of dealing with this is to show more than just

15 of 20

O
nly 15
percent of
the com-
ments we
found in

code actually
related to bugs.

—Jacek Czerwonka

acmqueue | september-october 2018 16

code review

the isolated section of code where a change has been
made. Instead, we show entire files so reviewers can get
a better sense of the code around each change. We also
wanted to provide some means for the author of a change
to offer additional information so reviewers could better
understand their reasoning. Toward that end, our system
now lets authors put tags on files and regions to indicate
which files are at the heart of a change and so should
probably be given particular attention. For example, the
tags can be used to quickly indicate which changes have
been made to test cases as opposed to the product codes.
Or they can be used to call out certain files or changes
with potential security implications.
LP Do you have any other new capabilities in the works?
JC The fundamental underlying factor we’re trying to
address is the size of code reviews since that affects both
the time required to produce a review and the usefulness
of the comments that come out of it. It’s a difficult problem
to address because some of the issues are cultural in
nature, and some relate to workflow. Still, there are times
when two unrelated concerns end up getting crammed into
a single review, so we’re hoping we’ll be able to untangle
some reviews by automatically splitting those concerns
into two smaller reviews. On average, that ought to lead to
better turnaround times, as well as better outcomes.
LP Have you taken any steps to get development teams to
focus their code-review time on correctness and content
versus style? Have any tool changes or process changes
been implemented toward that end?
JC We haven’t done a proper study of that, but there is a
team here that’s done something along those lines. This

16 of 20

acmqueue | september-october 2018 17

code review

is something that had to do with some factoring changes
they considered to be low-risk—such as the renaming of
methods or local variables. For example, this might involve
putting a special tag on a review to say, “We don’t really
need to have two people look at this. One is enough since
it’s very unlikely we’ll have any functionality issues here.”
Modest as that might seem, it can also prove profound
since it turns out there are many changes like this floating
through a legacy system—clogging the system.

The thing to remember is that it’s not just about making
one change go faster, since what you’re dealing with here
is a pipeline of changes—meaning that any change you
can redirect to a lighter-weight path is going to lower the
load on your key people and get it out of the way of other
changes waiting to be reviewed. That’s just the sort of
thing that makes for a more efficient system all the way
around.
TC With an eye to the people outside of Microsoft that
don’t have your tooling, do you have any recommendations
from your experience that might prove relevant?
JC I’d say the one thing to recognize is that comments
related to maintainability are primarily what you’re going
to get out of the code-review process. Contrary to popular
opinion, locating bugs is not the primary outcome. The
other important thing to bear in mind is that the smaller
a review is, the better it’s going to be. In our case, we’ve
found that if a review contains more than 20 files, it’s
too big already. In fact, from our study of all the data
at our disposal, we’ve concluded that for more than 20
files the density and usefulness of comments degrades
significantly. This is actually more a rule of thumb than a

17 of 20

acmqueue | september-october 2018 18

code review

precise limit, but it is useful to keep in mind.
Also, if your organization has data from past reviews,

I’d suggest investing in a recommender system that can
help make some of the administrative steps a little less
tedious. You can even use these systems to automatically
address some of your maintainability issues, which is
something we’re starting to get into these days. That is,
you can imagine that some of these maintainability issues
are essentially things that might be autodiscovered and
flagged, which means you then don’t have to expend any
human resources to get this accomplished.

Another thing, as we just discussed, is the idea that two
signoffs on every change might be too many. If you look
at the distribution of comments made by either the first
or the second reviewer, you’ll find that your first reviewer
typically discovers the most egregious problems. In many
cases, waiting for a second reviewer to corroborate those
findings before allowing the commit into the main source
tree might be less efficient.
MG My biggest takeaway from the survey is to always
make the burden of code reviews just as small as you
possibly can. Part of that comes down to having a good
code-review process that enables and encourages
comments that can be easily reviewed.

Another important consideration has to do with
supporting the reviewers themselves by giving them
advance notice about any reviews that might be coming
up and giving them enough context so they’ll be able to
dive right into a review without having first to figure all
that out for themselves. Doing what you can to reduce the
size of reviews can also be helpful. But I think what’s really

18 of 20

acmqueue | september-october 2018 19

code review

important is to make the reviews just as uncomplicated as
possible, since, otherwise, you may end up with reviewers
who have no clue about where even to start.

Also, organizations need to show they recognize the
value of code reviews since there’s no question that they
take away from the time developers could otherwise be
using to create code. But if developers are rewarded only
for adding functionality, that’s going to end up crippling the
code-review process, which in turn will almost certainly
have an adverse effect on the maintainability of the code
that’s generated.
CB One thing I would like to add is that the code-review
process we now have at Microsoft has more or less
grown organically—through experimentation—from the
grassroots. I mention this only because I think it might also
work well for smaller companies, instead of having some
process that’s mandated from the top down.

Also, each product group at Microsoft does code
reviews a little differently, with each group using its
own set of policies that have essentially came together
organically. While this probably won’t come as a
groundbreaking revelation, it can definitely be said that
there’s no one-size-fits-all solution for code reviews. This
only serves to reinforce the importance of being willing to
let your approach evolve organically such that it ends up
fitting in with your work processes with the least amount
of friction while putting the lightest burden possible on
your developers.

Another important point is something Michaela talked
about earlier, which is that treating code review as a first-
class citizen—just as many companies are likely to treat

19 of 20

acmqueue | september-october 2018 20

code review

testing—is probably the best way to get the most bang
for your buck. If, instead, it becomes something you’re just
expected to do, like flossing your teeth daily, then you’ll
find people aren’t going to embrace it. But if you say this
is important and so will be tracked and evaluated, then
people are likely to respond to that. Certainly, that’s how it
has worked out here.

And then the other thing I would add is that it’s
instructive to think in some depth about what it is you’re
really looking to get out of code reviews. Then, of course,
you should also think about how you can go about
measuring that. To the degree that you can track those
metrics and set targets, you’re always going to achieve
more.
Copyright © 2017 held by owner/author. Publication rights licensed to ACM.

20 of 20

