
Learning Natural Coding Conventions

Miltiadis Allamanis† Earl T. Barr‡ Christian Bird? Charles Sutton†

†School of Informatics ‡Dept. of Computer Science ?Microsoft Research
University of Edinburgh University College London Microsoft

Edinburgh, EH8 9AB, UK London, UK Redmond, WA, USA
{m.allamanis, csutton}@ed.ac.uk e.barr@ucl.ac.uk cbird@microsoft.com

ABSTRACT
Every programmer has a characteristic style, ranging from pref-
erences about identifier naming to preferences about object rela-
tionships and design patterns. Coding conventions define a consis-
tent syntactic style, fostering readability and hence maintainability.
When collaborating, programmers strive to obey a project’s coding
conventions. However, one third of reviews of changes contain
feedback about coding conventions, indicating that programmers
do not always follow them and that project members care deeply
about adherence. Unfortunately, programmers are often unaware of
coding conventions because inferring them requires a global view,
one that aggregates the many local decisions programmers make
and identifies emergent consensus on style. We present NATURAL-
IZE, a framework that learns the style of a codebase, and suggests
revisions to improve stylistic consistency. NATURALIZE builds on
recent work in applying statistical natural language processing to
source code. We apply NATURALIZE to suggest natural identifier
names and formatting conventions. We present four tools focused on
ensuring natural code during development and release management,
including code review. NATURALIZE achieves 94% accuracy in
its top suggestions for identifier names. We used NATURALIZE to
generate 18 patches for 5 open source projects: 14 were accepted.
Categories and Subject Descriptors:
D.2.3 [Software Engineering]: Coding Tools and Techniques
General Terms: Algorithms
Keywords: Coding conventions, naturalness of software

1 Introduction
To program is to make a series of choices, ranging from design
decisions — like how to decompose a problem into functions — to
the choice of identifier names and how to format the code. While
local and syntactic, the latter are important: names connect program
source to its problem domain [13, 43, 44, 68]; formatting decisions
usually capture control flow [36]. Together, naming and formatting
decisions determine the readability of a program’s source code,
increasing a codebase’s portability, its accessibility to newcomers,
its reliability, and its maintainability [55, §1.1]. Apple’s recent,
infamous bug in its handling of SSL certificates [7, 40] exemplifies
the impact that formatting can have on reliability. Maintainability is
especially important since developers spend the majority (80%) of
their time maintaining code [2, §6].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE ’14, November 16–22, 2014, Hong Kong, Hong Kong
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

A convention is “an equilibrium that everyone expects in inter-
actions that have more than one equilibrium” [74]. For us, coding
conventions arise out of the collision of the stylistic choices of
programmers. A coding convention is a syntactic restriction not
imposed by a programming language’s grammar. Nonetheless, these
choices are important enough that they are enforced by software
teams. Indeed, our investigations indicate that developers enforce
such coding conventions rigorously, with roughly one third of code
reviews containing feedback about following them (Section 4.1).

Like the rules of society at large, coding conventions fall into
two broad categories: laws, explicitly stated and enforced rules,
and mores, unspoken common practice that emerges spontaneously.
Mores pose a particular challenge: because they arise spontaneously
from emergent consensus, they are inherently difficult to codify into
a fixed set of rules, so rule-based formatters cannot enforce them,
and even programmers themselves have difficulty adhering to all
of the implicit mores of a codebase. Furthermore, popular code
changes constantly, and these changes necessarily embody stylistic
decisions, sometimes generating new conventions and sometimes
changing existing ones. To address this, we introduce the coding
convention inference problem, the problem of automatically learning
the coding conventions consistently used in a body of source code.
Conventions are pervasive in software, ranging from preferences
about identifier names to preferences about class layout, object
relationships, and design patterns. In this paper, we focus as a first
step on local, syntactic conventions, namely, identifier naming and
formatting. These are particularly active topics of concern among
developers, for example, almost one quarter of the code reviews
that we examined contained suggestions about naming.

We introduce NATURALIZE, a framework that solves the cod-
ing convention inference problem for local conventions, offering
suggestions to increase the stylistic consistency of a codebase. NAT-
URALIZE can also be applied to infer rules for existing rule-based
formatters. NATURALIZE is descriptive, not prescriptive1: it learns
what programmers actually do. When a codebase does not reflect
consensus on a convention, NATURALIZE recommends nothing, be-
cause it has not learned anything with sufficient confidence to make
recommendations. The naturalness insight of Hindle et al. [35],
building on Gabel and Su [28], is that most short code utterances,
like natural language utterances, are simple and repetitive. Large
corpus statistical inference can discover and exploit this naturalness
to improve developer productivity and code robustness. We show
that coding conventions are natural in this sense.

Learning from local context allows NATURALIZE to learn syntac-
tic restrictions, or sub-grammars, on identifier names like camelcase

1Prescriptivism is the attempt to specify rules for correct style in
language, e.g., Strunk and White [67]. Modern linguists studiously
avoid prescriptivist accounts, observing that many such rules are
routinely violated by noted writers.

or underscore, and to unify names used in similar contexts, which
rule-based code formatters simply cannot do. Intuitively, NATU-
RALIZE works by identifying identifier names or formatting choices
that are surprising according to a probability distribution over code
text. When surprised, NATURALIZE determines if it is sufficiently
confident to suggest a renaming or reformatting that is less surpris-
ing; it unifies the surprising choice with one that is preferred in
similar contexts elsewhere in its training set. NATURALIZE is not
automatic; it assists a developer, since its suggestions, both renam-
ing and even formatting, as in Python or Apple’s aforementioned
SSL bug [7, 40], are potentially semantically disruptive and must
be considered and approved. NATURALIZE’s suggestions enable a
range of new tools to improve developer productivity and code qual-
ity: 1) A pre-commit script that rejects commits that excessively
disrupt a codebase’s conventions; 2) A tool that converts the inferred
conventions into rules for use by a code formatter; 3) An Eclipse
plugin that a developer can use to check whether her changes are
unconventional; and 4) A style profiler that highlights the stylistic
inconsistencies of a code snippet for a code reviewer.

NATURALIZE draws upon a rich body of tools from statistical
natural language processing (NLP), but applies these techniques to
a different kind of problem. NLP focuses on understanding and
generating language, but does not ordinarily consider the problem
of improving existing text. The closest analog is spelling correction,
but that problem is easier because we have strong prior knowledge
about common types of spelling mistakes. An important conceptual
dimension of our suggestion problems also sets our work apart from
mainstream NLP. In code, rare names often usefully signify unusual
functionality, and need to be preserved. We call this the sympathetic
uniqueness principle (SUP): unusual names should be preserved
when they appear in unusual contexts. We achieve this by exploiting
a special token UNK that is often used to represent rare words that
do not appear in the training set. Our method incorporates SUP
through a clean, straightforward modification to the handling of
UNK. Because of the Zipfian nature of language, UNK appears
in unusual contexts and identifies unusual tokens that should be
preserved. Section 4 demonstrates the effectiveness of this method at
preserving such names. Additionally, handling formatting requires
a simple, but novel, method of encoding formatting.

As NATURALIZE detects identifiers that violate code conventions
and assists in renaming, the most common refactoring [50], it is the
first tool we are aware of that uses NLP techniques to aid refactoring.

The techniques that underlie NATURALIZE are language indepen-
dent and require only identifying identifiers, keywords, and opera-
tors, a much easier task than specifying grammatical structure. Thus,
NATURALIZE is well-positioned to be useful for domain-specific or
esoteric languages for which no convention enforcing tools exist or
the increasing number of multi-language software projects such as
web applications that intermix Java, css, html, and JavaScript.

To the best of the authors’ knowledge, this work is the first to
address the coding convention inference problem, to suggest names
and formatting to increase the stylistic coherence of code, and to
provide tooling to that end. Our contributions are:

• We built NATURALIZE, the first framework to solve the coding
convention inference problem for local conventions, including
identifier naming and formatting, and suggests changes to in-
crease a codebase’s adherence to its own conventions;

• We offer four tools, built on NATURALIZE, all focused on release
management, an under-tooled phase of the development process.

• NATURALIZE 1) achieves 94% accuracy in its top suggestions
for identifier names and 2) never drops below a mean accuracy
of 96% when making formatting suggestions; and

• We demonstrate that coding conventions are important to soft-

ware teams, by showing that 1) empirically, programmers en-
force conventions heavily through code review feedback and cor-
rective commits, and 2) patches that were based on NATURAL-
IZE suggestions have been incorporated into 5 of the most pop-
ular open source Java projects on GitHub — of the 18 patches
that we submitted, 14 were accepted.

Tools are available at groups.inf.ed.ac.uk/naturalize.

2 Motivating Example
Both industrial and open source developers often submit their code
for review prior to check-in [61]. Consider the example of the
class shown in Figure 1 which is part of a change submitted for
review by a Microsoft developer on February 17th, 2014. While
there is nothing functionally wrong with the class, it violates the
coding conventions of the team. A second developer reviewed the
change and suggested that res and str do not convey parameter
meaning well enough, the constructor line is much too long and
should be wrapped. In the checked in change, all of these were
addressed, with the parameter names changed to queryResults
and queryStrings.

Consider a scenario in which the author had access to NATU-
RALIZE. The author might highlight the parameter names and ask
NATURALIZE to evaluate them. At that point it would have not only
have identified res and str as names that are inconsistent with the
naming conventions of parameters in the codebase, but would also
have suggested better names. The author may have also thought
to himself “Is the constructor on line 3 too long?” or “Should the
empty constructor body be on it’s own line and should it have a
space inside?” Here again, NATURALIZE would have provided im-
mediate, valuable answers based on the the conventions of the team.
NATURALIZE would indicate that the call to the base constructor
should be moved to the next line and indented to be consonant with
team conventions and that in this codebase empty method bodies do
not need their own lines. Furthermore it would indicate that some
empty methods contain one space between the braces while others
do not, so there is no implicit convention to follow. After querying
NATURALIZE about his stylistic choices, the author can then be
confident that his change is consistent with the norms of the team
and is more likely to be approved during review. Furthermore, by
leveraging NATURALIZE, fellow project members wouldn’t need to
be bothered by questions about conventions, nor would they need
to provide feedback about conventions during review. We have
observed that such scenarios occur in open source projects as well.

2.1 Use Cases and Tools

Coding conventions are critical during release management, which
comprises committing, reviewing, and promoting (including re-
leases) changes, either patches or branches. This is when a coder’s
idiosyncratic style, isolated in her editor during code composition,
comes into contact with the styles of others. The outcome of this
interaction strongly impacts the readability, and therefore the main-
tainability, of a codebase. Compared to other phases of the develop-
ment cycle like editing, debugging, project management, and issue
tracking, release management is under-tooled. Code conventions are
particularly pertinent here, and lead us to target three use cases: 1) a
developer preparing an individual commit or branch for review or
promotion; 2) a release engineer trying to filter out needless stylistic
diversity from the flood of changes; and 3) a reviewer wishing to
consider how well a patch or branch obeys community norms.

Any code modification has a possibility of introducing bugs [3,
51]. This is certainly true of a system, like NATURALIZE, that is
based on statistical inference, even when (as we always assume) all
of NATURALIZE’s suggestions are approved by a human. Because of
this risk, the gain from making a change must be worth its cost. For

http://groups.inf.ed.ac.uk/naturalize

1 public class ExecutionQueryResponse : ExecutionQueryResponseBasic<QueryResults>
2 {
3 public ExecutionQueryResponse(QueryResults res, IReadOnlyCollection<string> str, ExecutionStepMetrics metrics) : base(res, str, metrics) { }
4 }

Figure 1: A C# class added by a Microsoft developer that was modified due to requests by a reviewer before it was checked in.

Figure 2: A screenshot of the devstyle Eclipse plugin. The user
has requested suggestion for alternate names of the each argument.

this reason, our use cases focus on times when the code is already
being changed. To support our use cases, we have built four tools:
devstyle A plugin for Eclipse IDE that gives suggestions for

identifier renaming and formatting both for a single identifier
or format point and for the identifiers and formatting in a
selection of code.

styleprofile A code review assistant that produces a profile
that summarizes the adherence of a code snippet to the coding
conventions of a codebase and suggests renaming and format-
ting changes to make that snippet more stylistically consistent
with a project.

genrule A rule generator for Eclipse’s code formatter that gen-
erates rules for those conventions that NATURALIZE has in-
ferred from a codebase.

stylish? A high precision pre-commit script for Git that rejects
commits that have highly inconsistent and unnatural naming
or formatting within a project.

The devstyle plugin offers two types of suggestions, single
point suggestion under the mouse pointer and multiple point sug-
gestion via right-clicking a selection. A screenshot from devstyle
is shown in Figure 2. For single point suggestions, devstyle dis-
plays a ranked list of alternatives to the selected name or format. If
devstyle has no suggestions, it simply flashes the current name or
selection. If the user wishes, she selects one of the suggestions. If it
is an identifier renaming, devstyle renames all uses, within scope,
of that identifier under its previous name. This scope traversal is
possible because our use cases assume an existing and compiled
codebase. Formatting changes occur at the suggestion point. Mul-
tiple point suggestion returns a style profile, a ranked list of the
top k most stylistically surprising naming or formatting choices in
the current selection that could benefit from reconsideration. By
default, k = 5 based on HCI considerations [23, 48]. To accept a
suggestion here, the user must first select a location to modify, then
select from among its top alternatives. The styleprofile tool
outputs a style profile. genrule (Section 3.5) generates settings for
the Eclipse code formatter. Finally, stylish? is a filter that uses
Eclipse code formatter with the settings from genrule to accept or
reject a commit based on its style profile.

NATURALIZE uses an existing codebase, called a training corpus,
as a reference from which to learn conventions. Commonly, the train-
ing corpus will be the current codebase, so that NATURALIZE learns
domain-specific conventions related to the current project. Alterna-
tively, NATURALIZE comes with a pre-packaged suggestion model,
trained on a corpus of popular, vibrant projects that presumably
embody good coding conventions. Developers can use this engine
if they wish to increase their codebase’s adherence to a larger com-
munity’s consensus on best practice. Projects that are just starting
and have little or no code written can also use as the training corpus
a pre-existing codebase, for example another project in the same
organization, whose conventions the developers wish to adopt. Here,
again, we avoid normative comparison of coding conventions, and

do not force the user to specify their desired conventions explicitly.
Instead, the user specifies a training corpus, and this is used as an im-
plicit source of desired conventions. The NATURALIZE framework
and tools are available at groups.inf.ed.ac.uk/naturalize.

3 The NATURALIZE Framework
In this section, we introduce the generic architecture of NATURAL-
IZE, which can be applied to a wide variety of different types of
conventions and is language independent. NATURALIZE is general
and can be applied to any language for which a lexer and a parser
exist, as token sequences and abstract syntax trees (ASTs) are used
during analysis. Figure 3 illustrates its architecture. The input is
a code snippet to be naturalized. This snippet is selected based on
the user input, in a way that depends on the particular tool in ques-
tion. For example, in devstyle, if a user selects a local variable
for renaming, the input snippet would contain all AST nodes that
reference that variable (Section 3.3). The output of NATURALIZE
is a short list of suggestions, which can be filtered, then presented
to the programmer. In general, a suggestion is a set of snippets that
may replace the input snippet. The list is ranked by a naturalness
score that is defined below. Alternately, the system can return a
binary value indicating whether the code is natural, so as to support
applications such as stylish?. The system makes no suggestion if
it deems the input snippet to be sufficiently natural, or is unable to
find good alternatives. This reduces the “Clippy effect” where users
ignore a system that makes too many bad suggestions2. In the next
section, we describe each element in the architecture in more detail.

Terminology A language model (LM) is a probability distribution
over strings. Given any string x = x0,x1 . . .xM , where each xi is
a token, a LM assigns a probability P(x). Let G be the grammar
of a programming language. We use x to denote a snippet, that
is, a string x such that αxβ ∈ L (G) for some strings α,β . We
primarily consider snippets that are dominated by a single node in
the file’s AST. That is, there is a node within the AST whose subtree
comprises the entire snippet and nothing else. We use x to denote the
input snippet to the framework, and y,z to denote arbitrary snippets3.

3.1 The Core of NATURALIZE
The architecture contains two main elements: proposers and the
scoring function. The proposers modify the input code snippet to
produce a list of suggestion candidates that can replace the input
snippet. In the example from Figure 1, each candidate replaces all
occurrences of res with a different name used in similar contexts
elsewhere in the project, such as results or queryResults. In
principle, many implausible suggestions could ensue, so, in practice,
proposers contain filtering logic.

A scoring function sorts these candidates according to a measure
of naturalness. Its input is a candidate snippet, and it returns a
real number measuring naturalness. Naturalness is measured with
respect to a training corpus that is provided to NATURALIZE— thus
allowing us to follow our guiding principle that naturalness must
be measured with respect to a particular codebase. For example,
the training corpus might be the set of source files A from the
current application. A powerful way to measure the naturalness

2In extreme cases, such systems can be so widely mocked that they
are publicly disabled by the company’s CEO in front of a cheering
audience: http://bit.ly/pmHCwI.
3The application of NATURALIZE to academic papers in software
engineering is left to future work.

http://groups.inf.ed.ac.uk/naturalize
http://bit.ly/pmHCwI

Training Corpus
 (other code from project)

Code
for Review Candidates

Top Suggestions

Scoring
Function

(ngram
language

model, SVM)

Proposers
(rename

identifiers,
add formatting)

public void testRunReturnsResult() {
 PrintStream oldOut = System.out;
 System.setOut(new PrintStream(
 new OutputStream() {
 @Override
 public void write(int arg0) throws IOException {
 }
 }
));
 try {
 TestResult result = junit.textui.TestRunner.run(new TestSuite());
 assertTrue(result.wasSuccessful());
 } finally {
 System.setOut(oldOut);
 }
}

public void testRunReturnsResult() {
 PrintStream oldOut = System.out;
 System.setOut(new PrintStream(
 new OutputStream() {
 @Override
 public void write(int arg0) throws IOException {
 }
 }
));
 try {
 TestResult result = junit.textui.TestRunner.run(new TestSuite());
 assertTrue(result.wasSuccessful());
 } finally {
 System.setOut(oldOut);
 }
}

public void testRunReturnsResult() {
 PrintStream oldOut = System.out;
 System.setOut(new PrintStream(
 new OutputStream() {
 @Override
 public void write(int arg0) throws IOException {
 }
 }
));
 try {
 TestResult result = junit.textui.TestRunner.run(new TestSuite());
 assertTrue(result.wasSuccessful());
 } finally {
 System.setOut(oldOut);
 }
}

public void testRunReturnsResult() {
 PrintStream oldOut = System.out;
 System.setOut(new PrintStream(
 new OutputStream() {
 @Override
 public void write(int arg0) throws IOException {
 }
 }
));
 try {
 TestResult result = junit.textui.TestRunner.run(new TestSuite());
 assertTrue(result.wasSuccessful());
 } finally {
 System.setOut(oldOut);
 }
}

public void testRunReturnsResult() {
 PrintStream oldOut = System.out;
 System.setOut(new PrintStream(
 new OutputStream() {
 @Override
 public void write(int arg0) throws IOException {
 }
 }
));
 try {
 TestResult result = junit.textui.TestRunner.run(new TestSuite());
 assertTrue(result.wasSuccessful());
 } finally {
 System.setOut(oldOut);
 }
}

public void testRunReturnsResult() {
 PrintStream oldOut = System.out;
 System.setOut(new PrintStream(
 new OutputStream() {
 @Override
 public void write(int arg0) throws IOException {
 }
 }
));
 try {
 TestResult result = junit.textui.TestRunner.run(new TestSuite());
 assertTrue(result.wasSuccessful());
 } finally {
 System.setOut(oldOut);
 }
}public void testRunReturnsResult() { PrintStream oldOut = System.out;
 System.setOut(new PrintStream(
 new OutputStream() {
 @Override
 public void write(int arg0) throws IOException {
 }
 }
));
 try {
 TestResult result = junit.textui.TestRunner.run(new TestSuite());
 assertTrue(result.wasSuccessful());
 } finally {
 System.setOut(oldOut);
 }
}

Figure 3: The architecture of NATURALIZE: a framework for learning coding conventions. A contiguous snippet of code is selected for review
through the user interface. A set of proposers returns a set of candidates, which are modified versions of the snippet, e.g., with one local
variable renamed. The candidates are ranked by a scoring function, such as an n-gram language model, which returns a small list of top
suggestions to the interface, sorted by naturalness.

of a snippet is provided by statistical language modeling. We use
PA(y) to indicate the probability that the language model P, which
has been trained on the corpus A, assigns to the string y. The
key intuition is that an LM PA is trained so that it assigns high
probability to strings in the training corpus, i.e., snippets with higher
log probability are more like the training corpus, and presumably
more natural. There are several key reasons why statistical language
models are a powerful approach for modeling coding conventions.
First, probability distributions provide an easy way to represent soft
constraints about conventions. This allows us to avoid many of the
pitfalls of inflexible, rule-based approaches. Second, because they
are based on a learning approach, LMs can flexibly adapt to the
conventions in a new project. Intuitively, because PA assigns high
probability to strings t ∈ A that occur in the training corpus, it also
assigns high probability to strings that are similar to those in the
corpus. So the scoring function s tends to favor snippets that are
stylistically consistent with the training corpus.

We score the naturalness of a snippet y = y1:N as

s(y,PA) =
1
N

logPA(y); (1)

that is, we deem snippets that are more probable under the LM as
more natural in the application A. Equation 1 is cross-entropy multi-
plied by -1 to make s a score, where s(x)> s(y) implies x is more
natural than y. Where it creates no confusion, we write s(y), eliding
the second argument. When choosing between competing candidate
snippets y and z, we need to know not only which candidate the LM
prefers, but how “confident” it is. We measure this by a gap func-
tion g, which is the difference in scores g(y,z,P) = s(y,P)− s(z,P).
Because s is essentially a log probability, g is the log ratio of proba-
bilities between y and z. For example, when g(y,z)> 0 the snippet
y is more natural — i.e., less surprising according to the LM — and
thus is a better suggestion candidate than z. If g(y,z) = 0 then both
snippets are equally natural.

Now we define the function suggest(x,C,k, t) that returns the
top candidates according to the scoring function. This function
returns a list of top candidates, or the empty list if no candidates are
sufficiently natural. The function takes four parameters: the input
snippet x, the list C = (c1,c2, . . .cr) of candidate snippets, and two
thresholds: k ∈ N, the maximum number of suggestions to return,
and t ∈ R, a minimum confidence value. The parameter k controls
the size of the ranked list that is returned to the user, while t controls
the suggestion frequency, that is, how confident NATURALIZE needs
to be before it presents any suggestions to the user. Appropriately
setting t allows NATURALIZE to avoid the Clippy effect by making
no suggestion rather than a low quality one. Below, we present an
automated method for selecting t.

The suggest function first sorts C = (c1,c2, . . .cr), the candidate
list, according to s, so s(c1) ≥ s(c2) ≥ . . . ≥ s(cr). Then, it trims

the list to avoid overburdening the user: it truncates C to include
only the top k elements, so that length(C) = min{k,r}. and removes
candidates ci ∈ C that are not sufficiently more natural than the
original snippet; formally, it removes all ci from C where g(ci,x)< t.
Finally, if the original input snippet x is the highest ranked in C,
i.e., if c1 = x, suggest ignores the other suggestions, sets C = /0 to
decline to make a suggestion, and returns C.

Binary Decision If an accept/reject decision on the input x is
required, e.g., as in stylish?, NATURALIZE must collectively
consider all of the locations in x at which it could make suggestions.
We propose a score function for this binary decision that measures
how good is the best possible improvement that NATURALIZE is
able to make. Formally, let L be the set of locations in x at which
NATURALIZE is able to make suggestions, and for each ` ∈ L, let C`
be the system’s set of suggestions at `. In general, C` contains name
or formatting suggestions. Recall that P is the language model. We
define the score

G(x,P) = max
`∈L

max
c∈C`

g(c,x). (2)

If G(x,P) > T , then NATURALIZE rejects the snippet as being
excessively unnatural. The threshold T controls the sensitivity of
NATURALIZE to unnatural names and formatting. As T increases,
fewer input snippets will be rejected, so some unnatural snippets
will slip through, but as compensation the test is less likely to reject
snippets that are in fact well-written.

Setting the Confidence Threshold The thresholds t in the suggest
function and T in the binary decision function are on log probabil-
ities of strings, which can be difficult for users to interpret. Fortu-
nately, these can be set automatically using the false positive rate
(FPR), i.e. the proportion of snippets x that in fact follow convention
but that the system erroneously rejects. We would like the FPR to
be as small as possible, but, unless we wish the system to make no
suggestions at all, we must accept some false positives. So we set
a maximum acceptable FPR α , and search for a threshold t or T
that ensures that NATURALIZE’s FPR is at most α . The principle
is similar to statistical hypothesis testing. To make this work, we
estimate the FPR for a given t or T . To do so, we select a random
set of snippets from the training corpus, e.g., random method bod-
ies, and compute the proportion of these snippets that are rejected
using T . Again leveraging our assumption that our training corpus
contains natural code, this proportion estimates the FPR. We use
a grid search [11] to find the greatest value of T < α (t < α), the
user-specified acceptable FPR bound.

3.2 Choices of Scoring Function

The generic framework described in Section 3.1 can, in principle,
employ a wide variety of machine learning or NLP methods for
its scoring function. Indeed, a large portion of the statistical NLP

literature focuses on probability distributions over text, including
language models, probabilistic grammars, and topic models. Very
few of these models have been applied to code; exceptions include
[4, 35, 46, 49, 53]. We choose to build on statistical language
models, because previous work of Hindle et al.. [35] has shown that
they are particularly able to capture the naturalness of code.

The intuition behind language modeling is that since there is
an infinite number of possible strings, obviously we cannot store
a probability value for every one. Different LMs make different
simplifying assumptions to make the modeling tractable, and will
determine the types of coding conventions that we are able to infer.
One of the most effective practical LMs is the n-gram language
model. N-gram models make the assumption that the next token
can be predicted using only the previous n−1 tokens. Formally, the
probability of a token ym, conditioned on all of the previous tokens
y1 . . .ym−1, is a function only of the previous n−1 tokens. Under
this assumption, we can write

P(y1 . . .yM) =
M

∏
m=1

P(ym|ym−1 . . .ym−n+1). (3)

To use this equation we need to know the conditional probabilities
P(ym|ym−1 . . .ym−n+1) for each possible n-gram. This is a table of
V n numbers, where V is the number of possible lexemes. These
are the parameters of the model that we learn from the training
corpus. The simplest way to estimate the model parameters is to set
P(ym|ym−1 . . .ym−n+1) to the proportion of times that ym follows
ym−1 . . .ym−n+1. In practice, this simple estimator does not work
well, because it assigns zero probability to n-grams that do not occur
in the training corpus. Instead, n-gram models are trained using
smoothing methods [22]. In our work, we use Katz smoothing.
Implementation When an n-gram model is used, we can compute
the gap function g(y,z) very efficiently. This is because when g is
used within suggest, ordinarily the strings y and z will be similar, i.e.,
the input snippet and a candidate revision. The key insight is that in
an n-gram model, the probability P(y) of a snippet y = (y1y2 . . .yN)
depends only on the multiset of n-grams that occur in y, that is,

NG(y) = {yiyi+1 . . .yi+n−1 |0≤ i≤ N− (n−1)}. (4)

An equivalent way to write a n-gram model is

P(y) = ∏
a1a2...an∈NG(y)

P(an|a1,a2, . . .an−1). (5)

Since the gap function is g(y,z) = log[P(y)/P(z)], any n-grams
that are members both of NG(y) and NG(z) cancel, so to compute
g, we only need to consider those n-grams not in NG(y)∩NG(z).
Intuitively, this means that, to compute the gap function g(y,z), we
need to examine the n-grams around the locations where the snippets
y and z differ. This is a very useful optimization if y and z are long
snippets that differ in only a few locations.

When training an LM, we take measures to deal with rare lexemes,
since, by definition, we do not have much data about them. We use
a preprocessing step — a common strategy in language modeling
— that builds a vocabulary with all the identifiers that appear more
than once in the training corpus. Let count(v,b) return the number
of appearances of token v in the codebase b. Then, if a token has
count(v,b) ≤ 1 we convert it to a special token, which we denote
UNK. Then we train the n-gram model as usual. The effect is that
the UNK token becomes a catchall that means the model expects to
see a rare token, even though it cannot be sure which one.

3.3 Suggesting Natural Names
In this section, we instantiate the core NATURALIZE framework
for the task of suggesting natural identifier names. We start by
describing the single suggestion setting. For concreteness, imagine

a user of the devstyle plugin, who selects an identifier and asks
devstyle for its top suggestions. It should be easy to see how this
discussion can be generalized to the other use cases described in
Section 2.1. Let v be the lexeme selected by the programmer. This
lexeme could denote a variable, a method call, or a type.

When a programmer binds a name to an identifier and then uses
it, she implicitly links together all the locations in which that name
appears. Let L denote this set of locations, that is, the set of locations
in the current scope in which the lexeme v is used. For example, if
v denotes a local variable, then Lv would be the set of locations in
which that local is used. Now, the input snippet is constructed by
finding a snippet that subsumes all of the locations in Lv. Specifi-
cally, the input snippet is constructed by taking the lowest common
ancestor in AST of the nodes in Lv.

The proposers for this task retrieve a set of alternative names to v,
which we denote Av, by retrieving other names that have occurred in
the same contexts in the training set. To do this, for every location
`∈ Lv in the snippet x, we take a moving window of length n around
` and copy all the n-grams wi that contain that token. Call this set
Cv the context set, i.e., the set of n-grams wi of x that contain the
token v. Now we find all n-grams in the training set that are similar
to an n-gram in Cv but that have some other lexeme substituted
for v. Formally, we set Av as the set of all lexemes v′ for which
αvβ ∈Cv and αv′β occurs in the training set. This guarantees that
if we have seen a lexeme in at least one similar context, we place it
in the alternatives list. Additionally, we add to Av the special UNK
token; the reason for this is explained in a moment. Once we have
constructed the set of alternative names, the candidates are a list Sv
of snippets, one for each v′ ∈ Av, in which all occurrences of v in x
are replaced with v′.

The scoring function can use any model PA, such as the n-gram
model (Equation 3). N-gram models work well because, intuitively,
they favors names that are common in the context of the input
snippet. As we demonstrate in Section 4, this does not reduce to
simply suggesting the most common names, such as i and j. For
example, suppose that the system is asked to propose a name for
res in line 3 of Figure 1. The n-gram model is highly unlikely to
suggest i, because even though the name i is common, the trigram
“QueryResults i ,” is rare.

An interesting subtlety involves names that actually should be
unique. Identifier names have a long tail, meaning that most names
are individually uncommon. It would be undesirable to replace every
rare name with common ones, as this would violate the sympathetic
uniqueness principle. Fortunately, we can handle this issue in a
subtle way: recall from Section 3.1 that, during training of the n-
gram LM, we convert rare names into the special UNK token. When
we do this, UNK exists as a token in the LM, just like any other name.
We simply allow NATURALIZE to return UNK as a suggestion, just
like any other name. Returning UNK as a suggestion means that
the model expects that it would be natural to use a rare name in the
current context. The reason that this preserves rare identifiers is that
the UNK token occurs in the training corpus specifically in unusual
contexts where more common names were not used. Thus, if the
input lexeme v occurs in an unusual context, this context is more
likely to match that of UNK than of any of the more common tokens.

Multiple Point Suggestion It is easy to adapt the system above
to the multiple point suggestion task. Recall (Section 2.1) that this
task is to consider the set of identifiers that occur in a region x of
code selected by the user, and highlight the lexemes that are least
natural in context. For single point suggestion, the problem is to rank
different alternatives, e.g., different variable names, for the same
code location, whereas for multiple point suggestion, the problem is
to rank different code locations against each other according to how
much they would benefit from improvement. In principle, a score

5 @Override public void
6 write(int arg0) throws IOException {
7 }
8 }

5 INDENT3s
1n @ SPACE0 ID SPACE1s public SPACE1s void

6 INDENT0
1n ID SPACE0 (SPACE0 ID SPACE1s ID SPACE0) SPACE1s

throws SPACE1s ID SPACE1s {
7 INDENT0

1n }
8 INDENT−3s

1n }

Figure 4: A code snippet from TextRunnerTest.java in JUnit
and the corresponding formatting tokenization.

function could be good at the single source problem but bad at the
multiple source problem, e.g., if the score values have a different
dynamic range when applied at different locations.

We adapt NATURALIZE slightly to address the multiple point
setting. For all identifier names v that occur in x, we first compute
the candidate suggestions Sv as in the single suggestion case. Then
the full candidate list for the multiple point suggestion is S=∪v∈xSv;
each candidate arises from proposing a change to one name in x.
For the scoring function, we need to address the fact that some
names occur more commonly in x than others, and we do not want
to penalize names solely because they occur more often. So we
normalize the score according to how many times a name occurs.
Formally, a candidate c ∈ S that has been generated by changing a
name v, we use the score function s′(c) = |Cv|−1s(c).

3.4 Suggesting Natural Formatting

We apply NATURALIZE to build a language-agnostic code format-
ting suggester that automatically and adaptively learns formatting
conventions and generates rules for use by code formatters, like
the Eclipse formatter. An n-gram model works over token streams;
for the n-gram instantiation of NATURALIZE to provide formatting
suggestions, we must tokenize whitespace. We change the tokenizer
to encode contiguous whitespace into tokens using the grammar

S ::= T W S | ε

W ::= SPACEspace/tab | INDENTspace/tabs
lines

T ::= ID | LIT | { | } | . | (|) | <keywords>.
Figure 4 shows a code snippet drawn from JUnit followed by our
tokenization of it. We collapse all identifiers to a single ID token and
all literals to a single LIT token because we presume that the actual
identifier and literal lexemes do not convey formatting information.
Starting whitespace determines the indentation level and usually
signifies nesting. We replace it with a special INDENT token, along
with metadata encoding the increase of whitespace (that may be
negative or zero) relative to the previous line. We also annotate
INDENT with the number of new lines before any proceeding (non-
whitespace) token. This captures code that is visually separated with
at least one empty line. In Figure 4, line 5 indents by 3 spaces from
the previous line. Whitespace within a line controls the appearance
of operators and punctuation: “if(vs. if (” and “x<y vs. x < y”.
We encode this whitespace into the special token SPACE, along with
the number of spaces/tabs that it contains. When no space occurs
between two non-whitespace tokens, we inject SPACE0. To capture
the increasing probability of an INDENT in a long line, we annotate
all tokens of type T with their size (number of characters) and the
current column of that token. To reduce sparsity, we quantize these
annotations into buckets of size q.

In the original code listing, an empty method is straddling lines
6–7 in Figure 4. If a programmer asks “Is this conventional?”,
NATURALIZE considers alternatives for the underlined token. We
train the LM over the whitespace-modified tokenizer, then, since
the vocabulary of whitespace tokens (assuming bounded numbers
in the metadata) is small, we rank all whitespace token alternatives
according to the scoring function (Section 3.2).

3.5 Converting Conventions into Rules
NATURALIZE can convert the conventions it infers from a codebase
into rules for a code formatter. We formalize a code formatter’s rule
as the set of settings S = {s1,s2, . . . ,sn} and C, a set of constraints
over the elements in S. For example si could be a boolean that
denotes “{ must be on the same line as its function signature” and
s j might be the number of spaces between the closing) and the {.
Then C might contain (s j ≥ 0)→ si ∧ (s j < 0)→¬si. To extract
rules, we handcraft a set of minimal code snippets that exhibit each
different setting of si, ∀si ∈ S. After training NATURALIZE on a
codebase, we apply it to these snippets. Whenever NATURALIZE is
confident enough to prefer one to the other, we infer the appropriate
setting, otherwise we leave the default untouched, which may well
be to ignore that setting when applying the formatter.

4 Evaluation
We now present an evaluation of the value and effectiveness of NAT-
URALIZE. While our evaluation is on a Java corpus, NATURALIZE is
language-agnostic. We first present two empirical studies that show
NATURALIZE solves a real world problem that programmers care
about (Section 4.1). These studies demonstrate that 1) programmers
do not always adhere to coding conventions and yet 2) that project
members care enough about them to correct such violations. Then,
we move on to evaluating the suggestions produced by NATURAL-
IZE. We perform an extensive automatic evaluation (Section 4.2)
which verifies that NATURALIZE produces natural suggestions that
matches real code. Automatic evaluation is a standard methodology
in statistical NLP [56, 45], and is a vital step when introducing a new
research problem, because it allows future researchers to test new
ideas rapidly. This evaluation relies on perturbation: given code text,
we perturb its identifiers or formatting, then check if NATURALIZE
suggests the original name or formatting that was used. Furthermore,
we also employ the automatic evaluation to show that NATURALIZE
is robust to low quality corpora (Section 4.3).

Finally, to complement the automatic evaluation, we perform
two qualitative evaluations of the effectiveness of NATURALIZE
suggestions. First, we manually examine the output of NATURAL-
IZE, showing that even high quality projects contain many entities
for which other names can be reasonably considered (Section 4.4).
Finally, we submitted patches based on NATURALIZE suggestions
(Section 4.5) to 5 of the most popular open source projects on
GitHub — of the 18 patches that we submitted, 12 were accepted
by the core members of these projects.

Methodology Our corpus is a set of well-known open source Java
projects. From GitHub4, we obtained the list of all Java projects that
are not forks and scored them based on their number of “watchers”
and forks. The mean number of watchers and forks differ, so, to
combine them, we assumed these numbers follow the normal distri-
bution and summed their z-scores. For these evaluations reported
here, we picked the top 10 scoring projects that are not in the train-
ing set of the GitHub Java Corpus [4]. Our original intention was to
also demonstrate cross-project learning, but have no space to report
these findings. Table 1 shows the selected projects.

Like any experimental evaluation, our results are susceptible to
the standard threat of external validity. Interestingly, this threat does
not extend to the training corpus, because the whole point is to bias
NATURALIZE toward the conventions that govern the training set.
Rather, our interest is to ensure that NATURALIZE’s performance
on our evaluation corpus matches that of projects overall, which is
why we took such care in constructing our corpus.

Our evaluations use leave-one-out cross validation. We test on
each file in the project, training our models on the remaining files.

4http://www.github.com, on 21 August, 2013.

http://www.github.com

Name Forks Watchers Commit Pull Request Description

elasticsearch 1009 4448 af17ae55 #5075merged REST Search Engine
libgdx 1218 1470 a42779e9 #1400merged Game Development Framework
netty 683 1940 48eb73f9 did not submit Network Application Framework
platform_frameworks_base 947 1051 a0b320a6 did not submit Android Base Framework
junit* 509 1796 d919bb6d #834merged Testing Framework
wildfly 845 885 9d184cd0 did not submit JBoss Application Server
hudson 997 215 be1f8f91 did not submit Continuous Integration Server
android-bootstrap 360 1446 e2cde337 did not submit Android Application Template
k-9 583 960 d8030eaa #454merged Android Email Client
android-menudrawer 422 1138 96cdcdcc #216open Android Menu Implementation

*Used as a validation project for tuning parameters.

Table 1: Open-source Java projects used for evaluation. Ordered by popularity.

This reflects the usage scenario that we recommend in practice. We
report the average performance over all test files. For an LM, we
have used a 5-gram model, chosen via calibration on the validation
project JUnit. We picked JUnit as the validation project because
of its medium size.

4.1 The Importance of Coding Conventions

To assess whether obeying coding conventions, specifically follow-
ing formatting and naming conventions, is important to software
teams today, we conducted two empirical studies that we present in
this section. But first, we posit that coding style is both an important
and a contentious topic. The fact that many languages and projects
have style guides is a testament to this assertion. For example, we
found that the Ruby style guide has at least 167 un-merged forks and
the Java GitHub Corpus [4] has 349 different .xml configurations
for the Eclipse formatter.

Commit Messages We manually examined 1,000 commit mes-
sages drawn randomly from the commits of eight popular open
source projects looking for mentions of renaming, changing format-
ting, and following other code conventions. We found that 2% of
changes contained formatting improvements, 1% contained renam-
ings, and 4% contained any changes to follow code conventions
(which include formatting and renaming). We observed that not all
commits that contain changes to adhere to conventions mention such
conventions in the commit messages. Thus, our percentages likely
represent lower bounds on the frequency of commits that change
code to adhere to conventions.

Code Review Discussions We also examined discussions that oc-
curred in reviews of source code changes. Code review is practiced
heavily at Microsoft in an effort to ensure that changes are free of
defects and adhere to team standards. Once an author has completed
a change, he creates a code review and sends it to other developers
for review. They then inspect the change, offer feedback, and either
sign off or wait for the author to address their feedback in a subse-
quent change. As part of this process, the reviewers can highlight
portions of the code and begin a discussion (thread) regarding parts
of the change (for more details regarding the process and tools used,
see Bacchelli et al. [10]).

We examined 169 code reviews selected randomly across Mi-
crosoft product groups during 2014. Our goal was to include enough
reviews to examine at least 1,000 discussion threads. In total, these
169 reviews contained 1093 threads. We examined each thread to
determine if it contained feedback related to a) code conventions
in general, b) identifier naming, and c) code formatting. 18% of
the threads examined provided feedback regarding coding conven-
tions of some kind. 9% suggested improvements in naming and 2%
suggested changes related to code formatting (subsets of the 18%).
In terms of the reviews that contained feedback of each kind, the
proportions are 38%, 24%, and 9%.

Type Reviews (CI) Commits (CI) p− val

Conventions 38% (31%–46%) 4% (3%–6%) p� 0.01
Naming 24% (17%–31%) 1% (1%–2%) p� 0.01
Formatting 9% (6%–15%) 2% (1%–3%) p� 0.01

Table 2: Percent commits with log messages and reviews that con-
tained feedback regarding code conventions, identifier naming, and
formatting with 95% confidence intervals in parentheses.

During February 2014, just over 126,000 reviews were com-
pleted at Microsoft. Thus, based on confidence intervals of these
proportions, between 7,560 and 18,900 reviews received feedback
regarding formatting changes that were needed prior to check-in
and between 21,420 and 39,060 reviews resulted in name changes
in just one month.

Table 2 summarizes our findings from examining commit mes-
sages and code reviews. We also present 95% confidence intervals
based on the sampled results [25]. These results demonstrate that
changes, to a nontrivial degree, violate coding conventions even af-
ter the authors consider them complete and also that team members
expect that these violations be fixed. We posit that, like defects,
many convention violations die off during the lifecycle of a change,
so that few survive to review and fewer still escape into the repos-
itory. This is because, like defects, programmers notice and fix
many violations themselves during development, prior to review, so
reviewers must hunt for violations in a smaller set, and committed
changes contain still fewer, although this number is nontrivial, as we
show in Section 4.4. Corrections during development are unobserv-
able. However, we can compare convention corrections in review
to corrections after commit. We used a one-sided proportional test
to evaluate if more coding conventions are corrected during review
than after commit. The last column in Table 2 contains the p-values
for our tests, indicating that the null hypothesis can be rejected with
statistically significant support.

4.2 Suggestion

In this section we present an automatic evaluation of NATURAL-
IZE’s suggestion accuracy. First we evaluate naming suggestions
(Section 3.3). We focus on suggesting new names for (1) locals, (2)
arguments, (3) fields, (4) method calls, and (5) types (class names,
primitive types, and enums) — these are the five distinct types of
identifiers the Eclipse compiler recognizes [26]. Recall from Sec-
tion 3.3 that when NATURALIZE suggests a renaming, it renames
all locations where that identifier is used at once. Furthermore, as
described earlier, we always use leave-one-out cross validation, so
we never train the language model on the files for which we are
making suggestions. Therefore, NATURALIZE cannot pick up the
correct name for an identifier from other occurrences in the same
file; instead, it must generalize by learning conventions from other

https://github.com/elasticsearch/elasticsearch/pull/5075
https://github.com/libgdx/libgdx/pull/1400
https://github.com/junit-team/junit/pull/834
https://github.com/k9mail/k-9/pull/454
https://github.com/SimonVT/android-menudrawer/pull/216

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Suggestion Frequency

0.6

0.7

0.8

0.9

1.0
Su

gg
es

ti
on

A
cc

ur
ac

y

k=1
k=5

(a) Variables

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Suggestion Frequency

0.5

0.6

0.7

0.8

0.9

1.0

Su
gg

es
ti

on
A

cc
ur

ac
y

k=1
k=5

(b) Method Calls

0.1 0.2 0.3 0.4 0.5 0.6
Suggestion Frequency

0.80

0.85

0.90

0.95

1.00

Su
gg

es
ti

on
A

cc
ur

ac
y

k=1
k=5

(c) Typenames
Figure 5: Evaluation of single point suggestions of NATURALIZE, when it is allowed to suggest k = 1 and k = 5 alternatives. The shaded area
around each curve shows the interquartile range of the suggestion accuracy across the 10 evaluation projects.

files in the project.

Single Point Suggestion First we evaluate NATURALIZE on the
single point suggestion task, that is, when the user has asked for
naming suggestions for a single identifier. To do this, for each test
file, for each unique identifier we collect all of the locations where
the identifier occurs and names the same entity, and ask NATURAL-
IZE to suggest a new name, renaming all occurrences at once. We
measure accuracy, that is, the percentage of the time that NATURAL-
IZE correctly suggests the original name. This is designed to reflect
the typical usage scenario described in Section 2, in which a devel-
oper has made a good faith effort to follow a project’s conventions,
but may have made a few mistakes.

Figure 5 reports on the quality of the suggestions. Each point
on these curves corresponds to a different value of the confidence
threshold t. The x-axis shows the suggestion frequency, i.e., at
what proportion of code locations where NATURALIZE is capable
of making a suggestion does it choose to do so. The y-axis shows
suggestion accuracy, that is, the frequency at which the true name is
found in the top k suggestions, for k = 1 and k = 5. As t increases,
NATURALIZE makes fewer suggestions of higher quality, so fre-
quency decreases as accuracy increases. These plots are similar in
spirit to precision-recall curves in that curves nearer the top right cor-
ner of the graph are better. Figure 5a, Figure 5b, and Figure 5c show
that NATURALIZE performance varies with both project and the
type of identifiers. Figure 5a combines locals, fields, and arguments
because their performance is similar. NATURALIZE’s performance
varies across these three categories of identifiers because of the data
hungriness of n-grams and because local context is an imperfect
proxy for type constraints or function semantics. The results show
that NATURALIZE effectively avoids the Clippy effect, because by
allowing the system to decline to suggest in a relatively small pro-
portion of cases, it is possible to obtain good suggestion accuracy.
Indeed, NATURALIZE can achieve 94% suggestion accuracy across
identifier types, even when forced to make suggestions at half of the
possible opportunities.

Multiple Point Selection To evaluate NATURALIZE’s accuracy at
multiple point suggestion, e.g., in devstyle or styleprofile, we
mimic code snippets in which one name violates the project’s con-
ventions. For each test snippet, we randomly choose one identifier
and perturb it to a name that does not occur in the project, compute
the style profile, and measure where the perturbed name appears in
the list of suggestions. NATURALIZE’s recall at rank k = 7, chosen
because humans can take in 7 items at a glance [23, 48] is 64.2%.
The mean reciprocal rank is 0.47: meaning that, on average, we
return the bad name at position 2.

Single Point Suggestion for Formatting To evaluate NATURAL-
IZE’s performance at making formatting suggestions, we follow the
same procedure as the single-point naming experiment to check if

NATURALIZE correctly recovers the original formatting from the
context. We train a 5-gram language model using the modified token
stream (q = 20) discussed in Section 3.4. We allow the system to
make only k = 1 suggestions to simplify the UI. We find that the
system is extremely effective (Figure 9) at formatting suggestions,
achieving 98% suggestion accuracy even when it is required to re-
format half of the whitespace in the test file. This is remarkable for
a system that is not provided with any hand-designed rules about
what formatting is desired. Obviously if the goal is to reformat all
the whitespace an entire file, a rule-based formatter is called for. But
this performance is more than high enough to support our use cases,
such as providing single point formatting suggestions on demand,
rejecting snippets with unnatural formatting and extracting high
confidence rules for rule-based formatters.

Binary Snippet Decisions Finally, we evaluate the ability of
stylish? to discriminate between code selections that follow
conventions well from those that do not, by mimicking commits
that contain unconventional names or formatting. Uniformly at
random, we selected a set of methods from each project (500 in
total), then uniformly (1

3), we either made no changes or perturb one
identifier or whitespace token to a token in the n-gram’s vocabulary
V . This method for mimicking commits is probably a worst case for
our method, because the perturbed methods will be very similar to
existing methods, which are likely to be conventional.

We run stylish? and record whether the perturbed snippet is re-
jected because of its names or its formatting. stylish? is unaware
of the perturbation (if any), identifier or whitespace, made to the
snippet. Figure 6 reports NATURALIZE’s rejection performance as
ROC curves. In each curve, each point corresponds to a different
choice of threshold T , and the x-axis shows FPR (estimated as in
Equation 3.1), and the y-axis shows true positive rate, the proportion
of the perturbed snippets that we correctly rejected. NATURALIZE
achieves high precision, making it suitable for use as a filtering
pre-commit script. When the FPR is at most 0.05, we are able to cor-
rectly reject 40% of the snippets. NATURALIZE is somewhat worse
at rejecting snippets whose variable names have been perturbed;
in part, this is because predicting identifier names is more difficult
than predicting formatting. New advances in language models for
code [46, 53] are likely to improve these results. Nonetheless, these
results are promising: stylish? still rejects enough perturbed
snippets that if deployed at 5% FPR, it would enhance convention
adherence with minimal disruption to developers.

4.3 Robustness of Suggestions

We show that NATURALIZE avoids two potential pitfalls in its iden-
tifier suggestions: first, that it does not simply rename all tokens
to common “junk” names that appear in many contexts, and sec-
ond, that it retains unusual names that signify unusual functionality,
adhering to the SUP.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Stylish
Formatting
Identifiers

Figure 6: Evaluation of stylish? tool for rejecting unnatural
changes. To generate unnatural code, we perturb one identifier or
formatting point or make no changes, and evaluate whether NATU-
RALIZE correctly rejects or accepts the snippet. The graph shows the
receiver operating characteristic (ROC) of this process for stylish?
when using only identifiers, only formatting or both.

10−2 10−1

Percent of junk identifiers introduced in corpus

10−3

10−2

10−1

Pe
rc

en
t

of
id

en
ti

fie
rs

re
na

m
ed

to
ju

nk
na

m
es

Figure 7: Is NATURALIZE robust to low-quality corpora? The x-axis
shows percentage of identifiers perturbed to junk names to simulate
low quality corpus. The y-axis is percentage of resulting low quality
suggestions. Note log-log scale. The dotted line shows y = x. The
boxplots are across the 10 evaluation projects.

Junk Names A junk name is a semantically uninformative name
used in disparate contexts. It is difficult to formalize this concept:
for instance, in almost all cases, foo and bar are junk names, while
i and j, when used as loop counters, are semantically informative
and therefore not junk. Despite this, most developers “know it when
they see it.” One might at first be concerned that NATURALIZE
would often suggest junk names, because junk names appear in
many different n-grams in the training set. We argue, however,
that in fact the opposite is the case: NATURALIZE actually resists
suggesting junk names. This is because if a name appears in too
many contexts, it will be impossible to predict a unsurprising follow-
up, and so code containing junk names will have lower probability,
and therefore worse score.

To evaluate this claim, we randomly rename variables to junk
names in each project to simulate a low quality project. Notice that
we are simulating a low quality training set, which should be the
worst case for NATURALIZE. We measure how our suggestions
are affected by the proportion of junk names in the training set.
To generate junk variables we use a discrete Zipf’s law with slope
s = 1.08, the slope empirically measured for all identifiers in our
evaluation corpus. We verified the Zipfian assumption in previous
work [4]. Figure 7 shows the effect on our suggestions as the eval-
uation projects are gradually infected with more junk names. The
framework successfully avoids suggesting junk names, proposing
them at a lower frequency than they exist in the perturbed codebase.

Sympathetic Uniqueness Surprise can be good in identifiers,
where it signifies unusual functionality. Here we show that NATU-
RALIZE preserves this sort of surprise. We find all identifiers in the
test file that are unknown to the LM, i.e. are represented by an UNK.

2 4 6 8 10
Threshold t

0.2

0.4

0.6

0.8

1.0

%
su

rp
ri

si
ng

na
m

es
pr

es
er

ve
d

variables
methods
types

Figure 8: NATURALIZE does not cause the “heat death” of a code-
base: we evaluate the percent of single suggestions made on UNK
identifiers that preserve the surprising name. The threshold t on the
x-axis controls the suggestion frequency of suggest; lower t gives
suggest less freedom to decline to make low-quality suggestions.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Suggestion Frequency

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Su
gg

es
ti

on
A

cc
ur

ac
y

Figure 9: Evaluation of single point evaluation for formatting. Only
k = 1 suggestions are allowed in the ranked list. The boxplots show
the variance in performance across the 10 evaluation projects.

We then plot the percentage of those identifiers for which suggest
does not propose an alternative name, as a function of the threshold
t. As described in Equation 3.1, t is selected automatically, but it is
useful to explore how adherence to the SUP varies as a function of t.
Figure 8 shows that for reasonable threshold values, NATURALIZE
suggests non-UNK identifiers for only a small proportion of the
UNK identifiers (about 20%). This confirms that NATURALIZE does
not cause the “heat death of a codebase” by renaming semantically
rich, surprising names into frequent, low-content names.

4.4 Manual Examination of Suggestions

As a qualitative evaluation of NATURALIZE’s suggestions, three
human evaluators (three of the authors) independently evaluated the
quality of its suggestions. First, we selected two projects from our
corpus, uniformly at random, then for each we ran styleprofile
on 30 methods selected uniformly at random to produce suggestions
for all the identifiers present in that method. We assigned 20 profiles
to each evaluator such that each profile had two evaluators whose
task was to independently determine whether any of the suggested
renamings in a profile were reasonable. The evaluators attempted
to take an evidence based approach, that is, not to simply choose
names that they liked, but to choose names that were consistent
with existing practice in the project. We provided access to the full
source code of each project to the evaluators.

One special issue arose when suggesting changes to method
names. Adapting linguistic terminology to our context, homonyms
are two semantically equivalent functions with distinct names. We
deem NATURALIZE’s suggested renaming of a method usage to
be reasonable, if the suggestion list contains a partial, not neces-
sarily perfect, homonym; i.e., if it draws the developer’s attention
to another method that is used in similar contexts. Each evaluator
had 15 minutes to consider each profile and 30 minutes to explore

each project before starting on a new project. In fact, the evaluators
required much less time than allocated, averaging about 5 minutes
per example. The human evaluations can be found on our project’s
webpage. Surprisingly, given the quality of our evaluation code-
bases, 50% of the suggestions were determined to be useful by both
evaluators. Further, no suggestion works well for everyone; when
we consider NATURALIZE’s performance in terms of whether at
least one evaluator found a suggestion useful, 63% of the sugges-
tions are useful, with an inter-rater agreement (Cohen’s kappa [21])
of κ = 0.73. The quality of suggestions is strikingly high given that
these projects are mature, vibrant, high-profile projects.

This provides evidence that the naming suggestions provided by
NATURALIZE are qualitatively reasonable. Of course, an obvious
threat to validity is that the evaluators are not developers of the
test projects, and the developers themselves may well have had
different opinions about naming. For this reason, we also provided
the NATURALIZE naming suggestions to the project developers
themselves, as described in the next section.

4.5 Suggestions Accepted by Projects

Using NATURALIZE’s styleprofile, we identified high confi-
dence renamings and submitted 18 of them as patches to the 5
evaluation projects that actively use GitHub. Table 1 shows the pull
request ids and their current status. Four projects merged our pull
requests (14 of 15 commits); the last ignored them without comment.
Developers in the projects that accepted NATURALIZE’s patches
found the NATURALIZE useful: one said “Wow, that’s a pretty cool
tool!” [31]. JUNIT did not accept two of the suggested renamings
as-is. Instead, the patches sparked a discussion. Its developers con-
cluded that another name was more meaningful in one case and that
the suggested renaming of another violated the project’s explicit
naming convention: “Renaming e to t is no improvement, because
we should consistently use e.” [30]. We then pointed them to the
code locations that supported NATURALIZE’s suggestion. This trig-
gered them to change all the names that had caused the suggestion
in the first place — NATURALIZE pointed out an inconsistency,
previously unnoticed, that improved the naming in the project. Our
project webpage has links to these discussions.

5 Related Work
Coding conventions, readability, and identifiers have been exten-
sively studied in the literature. Despite this, NATURALIZE is —
to our knowledge — the first to infer coding conventions from a
codebase, spanning naming and formatting.

Coding conventions are standard practice [15, 34]. They facili-
tate consistent measurement and reduce systematic error and gen-
erate more meaningful commits by eliminating trivial convention
enforcing commits [73]. Some programming languages like Java
and Python suggest specific coding styles [55, 64], while consortia
publish guidelines for others, like C [8, 34].

High quality identifier names lie at the heart of software engi-
neering [6, 16, 20, 24, 42, 66, 69, 54]; they drive code readability
and comprehension [12, 19, 20, 41, 44, 68]. According to Deißen-
böck and Pizka [17], identifiers represent the majority (70%) of
source code tokens. Eshkevari et al. [27] explored how identifiers
change in code, while Lawrie et al. [41] studied the consistency
of identifier namings. Abebe et al. [1] discuss the importance of
naming to concept location [59]. Caprile and Tonella [20] propose
a framework for restructuring and renaming identifiers based on
custom rules and dictionaries. Gupta et al. present part-of-speech
tagging on split multi-word identifiers to improve software engineer-
ing tools [33]. Høst and Østvold stem and tag method names, then
learn a mapping from them to a fixed set of predicates over bytecode.
Naming bugs are mismatches between the map and stemmed and

tagged method names and their predicates in a test set [37]. In
contrast, our work considers coding conventions more generally,
and takes a flexible, data-driven approach. Several styles exist for
engineering consistent identifiers [14, 20, 24, 65]. Because longer
names are more informative [44], these styles share an agglutination
mechanism for creating multi-word names [5, 60].

Many rule-based code formatters exist but, to our knowledge,
are limited to constraining identifier names to obey constraints like
CamelCase or underscore and cannot handle conventions like the
use of i as a loop control variable. Pylint [58] checks if names
match a simple set of regular expressions (e.g., variable names
must be lowercase); astyle, aspell and GNU indent [9, 32]
only format whitespace tokens. gofmt formats the code aiming
to “eliminating an entire class of argument” among developers [57,
slide 66] but provides no guidance for naming. Wang et al. have
developed a heuristic-based method to automatically insert blank
lines into methods (vertical spacing) to improve readability [72].
NATURALIZE is unique in that it does not require upfront agreement
on hard rules but learns soft rules that are implicit in a codebase.
The soft rules about which NATURALIZE is highly confident can be
extracted for a formatter.

API recommenders, code suggestion and completion systems
aim to help during editing, when a user may not know the name
of an API she needs [63], the parameters she should pass to the
API [75], or that the API call she is making needs to preceded by
another [29, 70, 71, 76]. Code suggestion and completion tools
[18, 35, 52, 53, 62] suggest the next token during editing, often
from a few initial characters. Essentially these methods address a
search problem, helping the developer find an existing entity in code.
Our focus is instead on release management and improving code’s
adherence to convention. For example, code completion engines
will not suggest renaming parameters like str in Figure 1.

Language models are extensively used in natural language pro-
cessing, especially in speech recognition and machine translation
[22, 38]. Despite this extensive work, LMs have been under-explored
for non-ambiguous (e.g. programming) languages, with only a few
recent exceptions [4, 35, 46, 53]. The probabilistic nature of lan-
guage models allows us to tackle the suggestion problem in a princi-
pled way. There is very little work on using NLP tools to suggest
revisions to improve existing text. The main exception is spelling
correction [39], to which LMs have been applied [47]. However,
spelling correction methods often rely on strong assumptions about
what errors are most common, a powerful source of information
which has no analog in our domain.

6 Conclusion
We have presented NATURALIZE, the first tool that learns local
style from a codebase and provides suggestions to improve stylistic
consistency. We have taken the view that conventions are a matter of
mores rather than laws: we suggest changes only when a codebase
evinces stylistic consensus. We showed that NATURALIZE effec-
tively makes natural suggestions, achieving 94% accuracy in its top
suggestions for identifier names, and even suggests useful revisions
to mature, high quality, open source projects.

Acknowledgements
This work was supported by Microsoft Research through its PhD
Scholarship Programme. Charles Sutton was supported by the En-
gineering and Physical Sciences Research Council [grant number
EP/K024043/1]. We acknowledge Mehrdad Afshari who first asked
us about junk variables and the heat death of the codebase.

https://github.com/libgdx/libgdx/pull/1400
https://github.com/libgdx/libgdx/pull/1400
http://groups.inf.ed.ac.uk/naturalize/
http://groups.inf.ed.ac.uk/naturalize/

7 References
[1] S. L. Abebe, S. Haiduc, P. Tonella, and A. Marcus. The effect

of lexicon bad smells on concept location in source code. In
Source Code Analysis and Manipulation (SCAM), 2011 11th
IEEE International Working Conference on, pages 125–134.
IEEE, 2011.

[2] A. Abran, P. Bourque, R. Dupuis, J. W. Moore, and L. L.
Tripp. Guide to the Software Engineering Body of Knowledge -
SWEBOK. IEEE Press, Piscataway, NJ, USA, 2004 version
edition, 2004.

[3] E. N. Adams. Optimizing preventive service of software
products. IBM Journal of Research and Development,
28(1):2–14, Jan. 1984.

[4] M. Allamanis and C. Sutton. Mining source code repositories
at massive scale using language modeling. In Proceedings of
the Tenth International Workshop on Mining Software
Repositories, pages 207–216. IEEE Press, 2013.

[5] N. Anquetil and T. Lethbridge. Assessing the relevance of
identifier names in a legacy software system. In Proceedings
of the 1998 Conference of the Centre for Advanced Studies on
Collaborative Research, page 4, 1998.

[6] N. Anquetil and T. C. Lethbridge. Recovering software
architecture from the names of source files. Journal of
Software Maintenance, 11(3):201–221, 1999.

[7] C. Arthur. Apple’s SSL iPhone vulnerability: How did it
happen, and what next? bit.ly/1bJ7aSa, 2014. Visited Mar
2014.

[8] M. I. S. R. Association et al. MISRA-C 2012: Guidelines for
the Use of the C Language in Critical Systems. ISBN
9781906400118, 2012.

[9] astyle Contributors. Artistic style 2.03.
http://astyle.sourceforge.net/, 2013. Visited
September 9, 2013.

[10] A. Bacchelli and C. Bird. Expectations, outcomes, and
challenges of modern code review. In ICSE, 2013.

[11] J. Bergstra and Y. Bengio. Random search for
hyper-parameter optimization. The Journal of Machine
Learning Research, 13:281–305, 2012.

[12] T. J. Biggerstaff, B. G. Mitbander, and D. Webster. The
concept assignment problem in program understanding. In
Proceedings of the 15th International Conference on Software
Engineering, pages 482–498. IEEE Computer Society Press,
1993.

[13] D. Binkley, M. Davis, D. Lawrie, J. Maletic, C. Morrell, and
B. Sharif. The impact of identifier style on effort and
comprehension. Empirical Software Engineering,
18(2):219–276, 2013.

[14] D. Binkley, M. Davis, D. Lawrie, and C. Morrell. To
CamelCase or Under_score. In IEEE International Conference
on Program Comprehension (ICPC), pages 158–167, 2009.

[15] C. Boogerd and L. Moonen. Assessing the value of coding
standards: An empirical study. In H. Mei and K. Wong,
editors, Proceedings of the 24th IEEE International
Conference on Software Maintenance (ICSM 2008), pages 277
– 286. IEEE, October 2008.

[16] F. P. Brooks. The Mythical Man-Month. Addison-Wesley
Reading, 1975.

[17] M. Broy, F. Deißenböck, and M. Pizka. A holistic approach to
software quality at work. In Proc. 3rd World Congress for
Software Quality (3WCSQ), 2005.

[18] M. Bruch, M. Monperrus, and M. Mezini. Learning from
examples to improve code completion systems. In

ESEC/SIGSOFT FSE, pages 213–222. ACM, 2009.
[19] R. P. Buse and W. R. Weimer. Learning a metric for code

readability. Software Engineering, IEEE Transactions on,
36(4):546–558, 2010.

[20] B. Caprile and P. Tonella. Restructuring program identifier
names. In International Conference on Software Maintenance
(ICSM’00), pages 97–107, 2000.

[21] J. Carletta. Assessing agreement on classification tasks: the
kappa statistic. Computational Linguistics, 22(2):249–254,
1996.

[22] S. Chen and J. Goodman. An empirical study of smoothing
techniques for language modeling. In Proceedings of the 34th
Annual Meeting on Association for Computational Linguistics,
pages 310–318. Association for Computational Linguistics,
1996.

[23] N. Cowan. The magical number 4 in short-term memory: A
reconsideration of mental storage capacity. Behavioral and
Brain Sciences, 24(1):87–114, 2001.

[24] F. Deißenböck and M. Pizka. Concise and consistent naming
[software system identifier naming]. In Proceedings of the
13th International Workshop on Program Comprehension
(IWPC’05), pages 97–106, 2005.

[25] S. Dowdy, S. Wearden, and D. Chilko. Statistics for Research,
volume 512. John Wiley & Sons, 2011.

[26] Eclipse-Contributors. Eclipse JDT.
http://www.eclipse.org/jdt/, 2013. Visited September
9, 2013.

[27] L. M. Eshkevari, V. Arnaoudova, M. Di Penta, R. Oliveto,
Y.-G. Guéhéneuc, and G. Antoniol. An exploratory study of
identifier renamings. In Proceedings of the 8th Working
Conference on Mining Software Repositories, pages 33–42.
ACM, 2011.

[28] M. Gabel and Z. Su. A study of the uniqueness of source code.
In Proceedings of the 18th ACM SIGSOFT International
Symposium on Foundations of software engineering, FSE ’10,
pages 147–156, New York, NY, USA, 2010. ACM.

[29] M. G. Gabel. Inferring Programmer Intent and Related Errors
from Software. PhD thesis, University of California, 2011.

[30] GitHub. JUnit Pull Request #834. bit.ly/O8bmjM, 2014.
Visited Mar 2014.

[31] GitHub. libgdx Pull Request #1400. bit.ly/O8aBqV, 2014.
Visited Mar 2014.

[32] gnu-indent Contributors. GNU Indent – beautify C code.
http://www.gnu.org/software/indent/, 2013. Visited
September 9, 2013.

[33] S. Gupta, S. Malik, L. Pollock, and K. Vijay-Shanker.
Part-of-speech tagging of program identifiers for improved
text-based software engineering tools. In International
Conference on Program Comprehension, pages 3–12. IEEE,
2013.

[34] L. Hatton. Safer language subsets: an overview and a case
history, MISRA C. Information and Software Technology,
46(7):465–472, 2004.

[35] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On
the naturalness of software. In International Conference on
Software Engineering (ICSE), pages 837–847. IEEE, 2012.

[36] A. Hindle, M. W. Godfrey, and R. C. Holt. Reading beside the
lines: Using indentation to rank revisions by complexity.
Science of Computer Programming, 74(7):414–429, May
2009.

[37] E. W. Høst and B. M. Østvold. Debugging method names. In
In European Conference on Object-Oriented Programming
(ECOOP), pages 294–317. Springer, 2009.

http://bit.ly/1bJ7aSa
http://astyle.sourceforge.net/
http://www.eclipse.org/jdt/
http://bit.ly/O8bmjM
http://bit.ly/O8aBqV
http://www.gnu.org/software/indent/

[38] D. Jurafsky and J. H. Martin. Speech and Language
Processing: An Introduction to Natural Language Processing,
Computational Linguistics and Speech Recognition. Prentice
Hall, 2nd edition, 2009.

[39] K. Kukich. Techniques for automatically correcting words in
text. ACM Computing Surveys, 24(4):377–439, Dec. 1992.

[40] A. Langley. Apple’s SSL/TLS bug. bit.ly/MMvx6b, 2014.
Visited Mar 2014.

[41] D. Lawrie, H. Feild, and D. Binkley. Syntactic identifier
conciseness and consistency. In IEEE International Workshop
on Source Code Analysis and Manipulation, pages 139–148.
IEEE, 2006.

[42] D. Lawrie, H. Feild, and D. Binkley. An empirical study of
rules for well-formed identifiers: Research articles. Journal of
Software Maintenance Evolution: Research and Practice,
19(4):205–229, July 2007.

[43] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s in a
Name? A Study of Identifiers. In Proceedings of the 14th
IEEE International Conference on Program Comprehension
(ICPC’06), ICPC ’06, pages 3–12, Washington, DC, USA,
2006. IEEE Computer Society.

[44] B. Liblit, A. Begel, and E. Sweetser. Cognitive perspectives
on the role of naming in computer programs. In Annual
Psychology of Programming Workshop, 2006.

[45] C.-Y. Lin. Rouge: A package for automatic evaluation of
summaries. In Text Summarization Branches Out:
Proceedings of the ACL-04 Workshop, pages 74–81, 2004.

[46] C. J. Maddison and D. Tarlow. Structured generative models
of natural source code. arXiv preprint arXiv:1401.0514, 2014.

[47] E. Mays, F. J. Damerau, and R. L. Mercer. Context based
spelling correction. Information Processing and Management,
27(5):517–522, 1991.

[48] G. A. Miller. The magical number seven, plus or minus two:
some limits on our capacity for processing information.
Psychological review, 63(2):81, 1956.

[49] D. Movshovitz-Attias and W. W. Cohen. Natural language
models for predicting programming comments. In Proc of the
ACL, 2013.

[50] E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor,
and how we know it. Software Engineering, IEEE
Transactions on, 38(1):5–18, 2012.

[51] N. Nagappan and T. Ball. Using software dependencies and
churn metrics to predict field failures: An empirical case study.
In ESEM, pages 364–373, 2007.

[52] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi, H. V.
Nguyen, J. Al-Kofahi, and T. N. Nguyen. Graph-based
pattern-oriented, context-sensitive source code completion. In
ACM/IEEE International Conference on Software Engineering
(ICSE). IEEE, 2012.

[53] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen.
A statistical semantic language model for source code. In
Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, pages 532–542. ACM, 2013.

[54] M. Ohba and K. Gondow. Toward mining concept keywords
from identifiers in large software projects. In ACM SIGSOFT
Software Engineering Notes, volume 30, pages 1–5. ACM,
2005.

[55] Oracle. Code Conventions for the Java Programming
Language. http://www.oracle.com/technetwork/
java/codeconv-138413.html, 1999. Visited September 2,
2013.

[56] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. BLEU: a
method for automatic evaluation of machine translation. In

Association for Computational Linguistics (ACL), pages
311–318, 2002.

[57] R. Pike. Go at Google.
http://talks.golang.org/2012/splash.slide, 2012.
Visited September 9, 2013.

[58] Pylint-Contributors. Pylint – code analysis for Python.
http://www.pylint.org/, 2013. Visited September 9,
2013.

[59] V. Rajlich and P. Gosavi. Incremental change in
object-oriented programming. Software, IEEE, 21(4):62–69,
2004.

[60] D. Ratiu and F. Deißenböck. From reality to programs and
(not quite) back again. In IEEE International Conference on
Program Comprehension (ICPC), pages 91–102. IEEE, 2007.

[61] P. C. Rigby and C. Bird. Convergent software peer review
practices. In Proceedings of the the Joint Meeting of the
European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software
Engineering (ESEC/FSE). ACM, 2013.

[62] R. Robbes and M. Lanza. How program history can improve
code completion. In Automated Software Engineering (ASE),
pages 317–326. IEEE, 2008.

[63] M. Robillard, R. Walker, and T. Zimmermann.
Recommendation systems for software engineering. Software,
IEEE, 27(4):80–86, 2010.

[64] G. v. Rossum, B. Warsaw, and N. Coghlan. PEP 8–Style
Guide for Python Code.
http://www.python.org/dev/peps/pep-0008/, 2013.
Visited September 8, 2013.

[65] C. Simonyi. Hungarian notation. http://msdn.microsoft.
com/en-us/library/aa260976(VS.60).aspx, 1999.
Visited September 2, 2013.

[66] E. Soloway and K. Ehrlich. Empirical studies of programming
knowledge. Software Engineering, IEEE Transactions on,
(5):595–609, 1984.

[67] W. Strunk Jr and E. White. The Elements of Style. Macmillan,
New York, 3rd edition, 1979.

[68] A. Takang, P. Grubb, and R. Macredie. The effects of
comments and identifier names on program comprehensibility:
an experiential study. Journal of Program Languages,
4(3):143–167, 1996.

[69] A. A. Takang, P. A. Grubb, and R. D. Macredie. The effects of
comments and identifier names on program comprehensibility:
an experimental investigation. J. Prog. Lang., 4(3):143–167,
1996.

[70] G. Uddin, B. Dagenais, and M. P. Robillard. Analyzing
temporal API usage patterns. In Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software
Engineering, pages 456–459. IEEE Computer Society, 2011.

[71] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang.
Mining succinct and high-coverage API usage patterns from
source code. In Proceedings of the Tenth International
Workshop on Mining Software Repositories, pages 319–328.
IEEE Press, 2013.

[72] X. Wang, L. Pollock, and K. Vijay-Shanker. Automatic
segmentation of method code into meaningful blocks to
improve readability. In Working Conference on Reverse
Engineering, pages 35–44. IEEE, 2011.

[73] Wikipedia. Coding Conventions. http:
//en.wikipedia.org/wiki/Coding_conventions.

[74] H. P. Young. The economics of convention. The Journal of
Economic Perspectives, 10(2):105–122, 1996.

http://bit.ly/MMvx6b
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://talks.golang.org/2012/splash.slide
http://www.pylint.org/
http://www.python.org/dev/peps/pep-0008/
http://msdn.microsoft.com/en-us/library/aa260976(VS.60).aspx
http://msdn.microsoft.com/en-us/library/aa260976(VS.60).aspx
http://en.wikipedia.org/wiki/Coding_conventions
http://en.wikipedia.org/wiki/Coding_conventions

[75] C. Zhang, J. Yang, Y. Zhang, J. Fan, X. Zhang, J. Zhao, and
P. Ou. Automatic parameter recommendation for practical api
usage. In Proceedings of the 34th International Conference on
Software Engineering, pages 826–836. IEEE Press, 2012.

[76] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. MAPO:
Mining and recommending API usage patterns. In ECOOP
2009–Object-Oriented Programming, pages 318–343.
Springer, 2009.

	Introduction
	Motivating Example
	Use Cases and Tools

	The Naturalize Framework
	The Core of Naturalize
	Choices of Scoring Function
	Suggesting Natural Names
	Suggesting Natural Formatting
	Converting Conventions into Rules

	Evaluation
	The Importance of Coding Conventions
	Suggestion
	Robustness of Suggestions
	Manual Examination of Suggestions
	Suggestions Accepted by Projects

	Related Work
	Conclusion
	References

