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Abstract

Open source software is built by teams of volunteers.
Each project has a core team of developers, who have
the authority to commit changes to the repository; this
team is the elite, committed foundation of the project,
selected through a meritocratic process from a larger
number of people who participate on the mailing list.
Most projects carefully regulate admission of outsiders
to full developer privileges; some projects even have
formal descriptions of this process. Understanding the
factors that influence the “who, how and when” of this
process is critical, both for the sustainability of FLOSS
projects, and for outside stakeholders who want to gain
entry and succeed. In this paper we mount a quan-
titative case study of the process by which people join
FLOSS projects, using data mined from the Apache web
server, Postgres, and Python. We develop a theory of
open source project joining, and evaluate this theory
based on our data.

1 Introduction

FLOSS projects are completely dependent on volun-
teer labor; as such, the vitality of a project depends on
it’s ability to attract, absorb and retain developers or
face stagnancy and failure. This process in most cases
begins with mailing list participation. FLOSS projects
have mailing lists on which public discussions (open to
anyone) concerning the engineering and design of the
project are conducted. Through sustained interest and
contributions to the technical discussions, outsiders be-
come trusted, and attain developer status along with
the keys to the project’s source code repository. This
process is a critical element of the phenomenal success
of the FLOSS process. It has been the subject of study
by many researchers [5, 8, 9, 14, 21].

In this paper, we follow previous researchers that

have studied immigration success stories in FLOSS
projects, using a quantitative approach based on ex-
tensive data mining. We build upon existing work by
Ducheneaut [9], von Krogh [21], and others to:

• develop a theory of FLOSS immigration, consid-
ering three (conflicting) relevant factors that in-
fluence if/when a FLOSS participant becomes a
developer: technical commitment, which is diffi-
cult to sustain, and naturally wanes with time,
project-specific skill level, and social status, both of
which increase with time. As a result, we expect
a non-monotonic rate of newcomer immigration,
viz., first an increase in the rate, and then a de-
crease. We also expect that technical commitment
and social status will show a significant effect on
the chances of becoming a developer.

• present a quantitative evaluation of this theory,
using statistical hazard-rate modeling, with data
mined from three case studies: the Apache web
server, Postgres, and Python. From this quan-
titative evaluation we find insights not apparent
in previous, purely qualitative evaluations; for in-
stance that the immigration rate is non-monotonic
(see Figure 1).

2 Background

In this section, we give related work and then de-
scribe the conceptual framework of our approach.

2.1 Related Work

The immigration process in FLOSS has been stud-
ied before. Prior works analyze the attraction of new
immigrants to projects, barriers to their entry, and the
process by which they join the project,

Several papers examine why FLOSS projects attract
newcomers (see, among others e.g., [13, 14, 15, 20]).
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Suggested motivations include personal need for the
software, reputation-seeking, and altruism. There are
also inhibitors: programming is highly knowledge-
intensive. Even experienced programmers have to work
hard to gain specific skills needed for particular devel-
opment tasks. This has been well reported [4, 6, 16].
A case study by Sim & Holt of immigrants in a tradi-
tional software project noted knowledge barriers to en-
try and the importance of mentors [19]. This study also
noted the need for a “minimal interest match” between
a new immigrant and the project. In FLOSS projects,
the immigrants self-select for interest, and voluntarily
overcome the skill barrier.

Barriers notwithstanding, large, popular projects
such as the Apache web server attract plenty of volun-
teers In fact, many of the larger FLOSS projects have,
to varying degrees of formality, developed processes
that regulate the admission of new immigrants into full
developer status. This process, also called a joining
script in the literature, has been studied in the context
of a few OSS projects. Von Krogh, et al study the im-
migration process of the Freenet FLOSS project [21].
They use data gathered from interviews, publicly avail-
able documents such as FAQs, email archives, and ver-
sioned source code repositories. They find that certain
types of email actions, such as offering bug fixes, are
much more common among newcomers who eventually
become developers. They also note that the locus of
the first development activity by immigrants is strongly
determined by modularity, complexity, etc. of the tar-
get file or class. Lastly, newcomers’ first contributions
are specialized according to their prior skills. In an
ethnographic study, Ducheneaut examines the Python
project and the interactions of a particular individual
as he transitions from a newcomer to a full-fledged de-
veloper [9]. He finds that prior technical activity and
social standing in the community are strong indicators
of the likelihood of achieving developer status. Gutwin,
Penner, and Schneider studied group awareness for dis-
tributed OSS projects [12]. They found that communi-
cation in the form of mailing lists, text chat, and com-
mit logs were the primary media from which awareness
was drawn. They note the importance of these tools in
keeping an OSS project organized.

In this paper, we also study immigration, but using
a quantitative approach, based on hazard rate analysis.
Hazard rate analysis, or survival analysis [7], is used
to study time-dependent phenomena such as mortal-
ity, employment durations, business failures, etc. Us-
ing statistical models, one can estimate the influence
of time and other predictors on the occurrence of ex-
pected events (e.g., duration since surgery, prior smok-
ing history, diet, chemotherapy, etc. on cancer patient

mortality). We use this method to study the immigra-
tion into FLOSS projects; i.e., we model the duration
from the first appearance on the mailing list of an indi-
vidual to the time the first commit, if any, is made by
that individual. Details of this technique are presented
later; first, we develop the conceptual framework and
the hypotheses of interest.

2.2 Conceptual Framework

This paper considers how the likelihood of becoming
a developer varies with tenure in a community, and also
quantitatively evaluates the importance of factors such
as social status and demonstrated technical skill. We
begin with a conceptual framework for the mechanisms
that influence the attainment of developer status. This
conceptual framework directly leads us to the phenom-
ena we model as predictor variables in the statistical
hazard rate model. It also helps us theoretically explain
the observed non-monotonicity in the hazard rate (as
will be seen later).

We consider three different mechanisms that influ-
ence acceptance into developerhood.

• Technical commitment to project: how committed
is the developer to the success of this project? How
long does s/he sustain that technical commitment?

• Skill Level: How knowledgeable/skillful is this de-
veloper relative to this specific project?

• Individual Reputation: What is the status of the
individual in this community?

To become a developer, a individual must both ac-
quire project-specific technical skills; and then s/he
must win the community’s trust by demonstrating
these skills, via email participation and by contribu-
tion of work products. This takes commitment.

Commitment will arguably decay with time, increas-
ing the likelihood that a given person will quit. Sus-
taining working skills & knowledge in a large, complex
project is a formidable undertaking, and unpaid volun-
teers who have not yet reaped the professional reward
of being admitted into the inner circle cannot be ex-
pected to keep up their effort for too long.

This effect can be expected to be somewhat atten-
uated for people who become developers, since these
people invested effort to earn that privilege, and have
developed valuable relationships within the commu-
nity.

To the variation of commitment with time, we ex-
amine how many different non-developers are active
during each month since their first appearance on the
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mailing list. While all of these are potentially candi-
dates to become developers, prior research shows that
patch submitters are the most technically engaged,and
most likely to become developers(See von Krogh [21]).

The number of non-developers who remain active on
the mailing list (in all the projects we studied) decays
steadily as tenure increases to the maximum (i.e, life-
time of the email archive). In contrast, after a much
shorter tenure interval (relative to email archive life-
time) there are very few active patch submitters re-
maining. All three projects we considered show the
same pattern (though with different time periods).
Knowledge and Skill Level can be expected to in-
crease with the time a person spends with the project.
This difficult, time-consuming process of learning the
details of a specific system and development environ-
ment (sometimes known as discovery, or ramp-up) is
documented by prior research [6, 19]. In many cases,
even the initial email is sent by an individual on the de-
veloper mailing list only after some initial study; quite
often people submit patches during their first month of
activity on the mailing list. Getting their first patch
accepted marks a milestone in skill acquisition. In the
Postgres project, we find that the median time for first
patch submission is during the second month of mail-
ing list participation; median time for first patch accep-
tance is the third month of participation. For Apache,
these median times are second and tenth month, and
for Python, the median times are sixth month and thir-
teenth month respectively. These numbers indicate the
time commitment required for skill acquisition.
Individual Reputation can be expected to increase
with tenure and activity on the mailing list. Prior re-
search has documented the need to build community
reputation before being admitted as a developer [9, 21].

Social network theorists have developed validated
network measures of community importance based on
the network of interactions [22]. In the networks for
our analysis, each node or actor represents a mailing
list participant. If actor A posts a message and actor
B responds, then there is indication that B had some
interest in A’s message. Therefore, we create a directed
tie from B to A.

Social network metrics include in-degree, out-degree
and other measures. In-degree and out-degree are de-
fined as the number of ties directed towards and away
from an actor respectively. If A has high in-degree,
that indicates that many people found A’s messages of
interest, and thus that information contributed by A
is relevant and interesting. High out-degree indicates
that A finds many people’s messages of interest.

In all the projects we studied we found that median
in-degree, as a function of tenure, first increases, then

flattens, and then decreases, until some point when
there are so few mailing list participants remaining
(with such long tenures) that the data becomes un-
stable. The decrease in in-degree can be related to the
patch submission data; after around 3-4 years in Post-
gres, non-developers tend to stop submitting patches
and are presumably less technically engaged.
Summary Acceptance into the core, elite developer
group of an open source project is likely to be mod-
ulated by three effects: commitment, skill acquisi-
tion/demonstration, and reputation. For every indi-
vidual there is a “race” going on: will s/he become
skilled and reputable enough to become a developer
before s/he loses interest? We therefore expect the fol-
lowing:
Hypothesis 1 Likelihood of attaining developer sta-
tus will rise with tenure, peak at some point, and then
decline.
Hypothesis 2 Demonstration of skill level, such as
patch submissions and/or acceptances, will increase the
likelihood of becoming a developer.
Hypothesis 3 Social status will positively influence
attainment of developer status.

Note that non-monotonic rates of event occurrences,
which grow with time, and then decline (or vice versa)
are observed in other settings. Divorce rates in mar-
riage tend to be high initially, and decline before in-
creasing again. Fichman & Levinthal [10] describe “the
liability of adolescence” in the case of employment du-
ration where new hires tend have an initial honeymoon
period, after which they are at greater risk of job dis-
satisfaction; if they survive this period, skill acquisition
may lead to improved job performance and satisfaction.
Fichman & Levinthal argue that this phenomenon ex-
plains a non-monotonic rate of job changes.

2.3 Project-Specific Considerations

Most mature FLOSS communities have policies that
regulate how one gains write-access to the project
repository, thus becoming a developer.

The Apache project is governed by the Project Man-
agement Committee (PMC) which makes decisions re-
garding major changes to the source code or documen-
tation and grants write-access to developers through
a voting system1. One can only become a member
of the PMC through at least six months of contribut-
ing activity, nomination by an existing member, and
unanimous approval by the current members. There
is a much larger body of “committers” outside of this
core group that we consider developers. Admission to

1Please see http://httpd.apache.org/ABOUT APACHE.html
for details
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this group is less stringent, though still regulated and
is the focus of our study.

The PostgreSQL project also has two “levels” of de-
velopers: the core development group, which someone
must be invited into; and the normal contributors with
write-access to the repository2. Acceptance into the
latter category requires demonstration of technical ex-
pertise, but does not include as careful a screening pro-
cess as the former.

The Python project does not appear to have a for-
mal policy for accepting contributors into the develop-
ers circle. In typical Python fashion, a rather tongue
in cheek description of the road to developer-hood is
given in “The school of hard knocks”3 by Raymond
Hettinger, a core Python developer. Tips include mak-
ing ones self visible to the core developers through writ-
ing Python Enhancement Proposals (PEPs), submit-
ting documentation and unit tests with patches, fol-
lowing code conventions, and “submitting great ideas”
(with implementations being an added bonus).

While these specific policies necessarily influence the
developer immigration, we argue that all of them are
consistent with our conceptual framework: potential
committers acquire skills, display them on the mail-
ing list through discussions and work gift-offerings, and
will sometimes actually be given the right to commit.
We argue therefore that our analysis still lends valuable
insight into the determining factors of developerhood.
Below are descriptions of the policies for each project
studied.

3 Analysis

In this section we present our data extraction
methodology, some background on the statistical mod-
els used, and the results.

3.1 Data Extraction & Cleaning

We gathered source code repository information
(who changed what file and when?) and email archive
information (who sent an email? who replied to
it? when?) in a manner similar to previous re-
search [11, 17]. Extra effort was spent to ensure
that email aliases and repository author identities were
properly resolved, using automated and manual meth-
ods [2]. We built a social network from the email corre-
spondence and computed social network measures [22]
on a monthly and cumulative basis. We also extracted
patch submissions from emails and searched the project

2http://www.varlena.com/GeneralBits/74.php
3http://mail.python.org/pipermail/python-dev/2002-

September/028725.html

repository for evidence of at least partial patch appli-
cation4[1]. Prior research has indicated the importance
of patch submission and acceptance in gaining devel-
oper status [9]; so we expected that this data would be
an important predictor.

For each developer, the transition interval is the time
between their first appearance on the mailing list and
their first commit to a file. This interval is essentially
the “response variable” we are trying to model statis-
tically, in order to shed light on the factors affecting
time interval until immigration.

3.2 Predictors & Univariate Statistics

All the variables used in our study are gathered
monthly for the complete population of potential im-
migrants (i.e. all mailing list participants who are not
yet developers). Each record described below is for one
email participant, for one month. In each case, n is the
number of records, c is the number of candidates, and
i is the number finally immigrating.

First, based on previous research, we conjectured
that patch submission is important; the binary vari-
able patch indicates if this individual has previously
submitted a patch. Second, as discussed earlier, we
expect that indegree, as a measure of the degree of re-
sponse/interest to this individual, is important. This
is measured as the proportion of the total population
that has responded to this candidate since his/her first
post. The variable success pct measures the percent-
age of patches submitted by this individual that were
marked as accepted. The variable sent cum measures
the total number of messages sent by this individual
prior to this month. Finally, devs cum is the total
number of developers in the community. This is used
as a control variable which allows us to control for the
effects arising from size, such as greater openness to
immigrants in smaller projects (with fewer developers)
seeking to attain critical mass. Another control vari-
able, time trend, is simply calendar time in years (as
opposed to the tenure time, which begins for each per-
son with their first observed email) to control for un-
observed effects relating to project age.

It should be noted that Apache and Postgres have
much longer histories; the email list for both is avail-
able for over 10 years. Python is shorter with 7 years
worth of email data available. Although Apache’s so-
cial network has been building for well over a decade,
the source code repository that we used (which con-
tained the data for the 2.0 version of the Apache web

4We encourage the reader to see our companion MSR 2007 pa-
per located at http://wwwcsif.cs.ucdavis.edu/∼bird/papers/
bird2007dps.pdf for details of this process
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server) only contained data for 5 years. As a result, we
only consider those who joined the mailing list (mailed
for the first time) after the source code repository be-
came available, on January 5, 1999. There are 1,445
such individuals.

.0
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5
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1 2 3 4 5
analysis time

Smoothed hazard estimate

Figure 1. Fitted hazard rate estimate for immigration
events in Postgres with time scale in years

After gathering the variables, we accounted for mul-
ticollinearity between variables by checking correla-
tions. We omit these details here for brevity 5.

Variable Mean Std. Dev Min Max
(Postgres) n = 169,118 c = 3,283 i = 19

patch .04 .20 0 1
norm indegree .0024 .0065 0 .18
success pct 1.27 9.78 0 100
devs cum 13.92 4.14 1 20
sent cum 13.12 63.55 1 2370

(Apache) n = 50,170 c = 1,445 i = 30
patch .10 .30 0 1
indegree .0026 .0049 0 .087
success pct 1.13 8.98 0 100
sent cum 7.34 18.18 1 273
devs cum 46.24 9.76 3 57

(Python) n = 45,216 c = 1,320 i = 62
patch .04 .20 0 1
norm indegree .0098 .032 0 .70
success pct .62 6.98 0 100
devs cum 58.69 14.21 0 79
sent cum 13.87 54.44 1 1648

Table 1. Univariate Statistics of the predictors

In figure 1, we show a smoothed plot of the the
rate at which people become developers as a func-
tion of time in years. This curve suggests that the
hazard rate does indeed increase and then decrease.

5More details are available at http://macbeth.cs.ucdavis.
edu/hazard

This curve is estimated by smoothing the raw data;
we present the actual statistical model later. More
figures for our 3 subject projects are available at
http://macbeth.cs.ucdavis.edu/hazard

3.3 Hazard Rate Analysis: background

Hazard rate analysis, or survival analysis [3, 7], can
model stochastic time-dependent phenomena such as
cancer survival, employment duration, etc. We use sur-
vival analysis to understand which factors influence the
duration abd occurrence of such events and to what de-
gree. If a model has a statistically significant fit, then
the details (based on the estimated coefficients of the
predictors) shed light on hypotheses concerning the ef-
fects of the predictors on the survival. It is thus a nat-
ural method for a quantitative study of the process by
which a mailing list participant immigrates to become
a developer in a FLOSS project. We now informally
present some background for the hazard rate model
(see [3] for details) The hazard rate function captures
the rate at which events of interest occur, and models
their dependence on time and the other predictor vari-
ables. First, we present a definition of the hazard rate,
and its dependence on the time variable t. Suppose
the event does not occur until exactly time T . The
hazard rate of the event of interest is the probability of
the event occurring in an infinitesimal time interval δt
starting at time t (given that it hasn’t occurred until
then) divided by δt. It is modeled as a hazard rate
function λ(t):

λ(t) = lim
δt→0

P (t ≤ T < t + δt | T > t)
δt

Consider the probability of “survival”, that is, the
probability that the event has not occurred yet. As-
suming that the event actually occurs at time X, the
probability that X is later than t is given by:

P (X > t) = exp(−
∫ t

0

λ(s)ds)

The simplest possible model is that the rate is a con-
stant, λc, which gives rise to the common exponential
model for survival, with survival becoming always less
probable as time increases:

P (X > t) = exp(−λct)

The problem with this simple model is that it
doesn’t allow for modeling multiple predictors (e.g.,
age, gender, ethnicity, profession) or non-monotonic
rates of failure. A general class of models, called the
proportional hazards model, allows the introduction of
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other predictors (besides time). Such models in general
are written as:

λ(t) = f(t) ∗ g(x)

where f is purely a function of time, x is a vector of
predictors, and g is an appropriate function. In our
setting, we seek to investigate a) if there is a non-
monotonic dependence on tenure, and b) if social fac-
tors and prior evidence of knowledge and skill have an
effect. For our purposes, the easiest model to use is
the piecewise constant exponential hazard rate model.
We assume that the purely time dependent part f(t)
is fixed over each time interval. Thus,

f(t) = exp(αtpk
) for t ε tpk, where

tpk = (ck−1, ck]

and the intervals (ck−1, ck] are chosen to cover the du-
ration of the available data, and αtpk

, one for each
interval, are constants. This gives us the flexibility of
seeing if the data supports the hypothesis that these
rates change non-monotonically; in fact any pattern of
increasing/decreasing rates is possible. For the para-
metric part g(x), we use an exponential model, thus:

g(x) = exp(b · x)

where b is a vector of parameters derived by statistical
fitting. This allows us to examine the influence of pre-
dictors such as prior patch acceptance history, social
network status, etc. on the time to immigration.

3.4 Results

As explained above in section 3.3, the hazard rate
function is modeled in this form:

λ(t) = exp(αtpk
) ∗ exp(b · x)

The first part (previously denoted f(t)) is a con-
stant for each time interval tpk, and the second part
depends on the vector of variables x. We fit this model
for each of the mined projects. During the analysis,
we first started with a baseline model, consisting of
the piecewise time periods, and the control variables
(devs cum and time trend). We then added the 3 vari-
ables patch, sent cum, and success pct, which all have
to do with an individual behavior and skill level. Fi-
nally, we added the indegree variable, which represents
the community response. For each of these 3 steps, we
built the piecewise constant proportional hazard rate
model and calculated the likelihood ratio χ2 to judge
the improvement in fit. The results are shown in ta-
ble 2. It can be seen that the improvement in fit is

Variable Apache Postgres Python
Added Model Model Model

LR χ2 LR χ2 LR χ2

sent cum, patch, 184 74 114
acceptance rate
indegree 10 44 11.6

Table 2. Improvement in fit (likelihood ratio χ2 ) pro-
vided by variables in the model. The base model in-
cluded the time periods, and control variables devs cum
and time trend. All χ2 values are highly significant. All
variables were checked for statistical independence

highly significant in the first step (3 degrees of free-
dom) as well as the second (one degree).

The results from the final model in each case are
shown in table 3. The table shows one variable in each
row, with coefficients and their significance in each col-
umn, separated out for each project. We show the es-
timated values of all αtpk

s and the components of the
vector b; the size of these coefficients represents the
size of the effect of the variable, and Z score represents
the statistical significance of the estimated value. The
Z score is calculated by dividing the estimated value
by the standard deviation (not shown). The probabil-
ity (next column) is the likelihood that the coefficient
is actually zero in the proportional hazards model (i.e.
the variable has no effect on the rate, since e0 is 1).
The lower the probability, the more statistically signif-
icant the result. The absolute values of the coefficients
are quite different because the range of values of the
relevant variables is different. The actual effects can
be judged by considering both the value range and the
coefficient, as we illustrate below.

We first discuss the effect of variables that are de-
pendent on the individual. These variables in the
column (indicated with *), at the lower part of the
table). Their coefficients are to be interpreted as
log(proportional effect) on the hazard rate for unit
change in the value. For example, patch is a binary
variable that indicates previous patch submission his-
tory. The effect of this variable is very strong in Apache
and Python: previous patch submit history in Apache
increases the hazard rate by a factor e2.71, about 15-
fold. In Python, this effect is about e2.09 or 8-fold.
Previous acceptance rate in getting patches accepted
shows a strong, significant effect in Apache: the stan-
dard deviation of acceptance rate in Apache is 8.98
(from Table 1). Thus the proportional increase in haz-
ard rate one standard deviation change is e8.98∗0.15 or
roughly 3.8-fold. The effect of this variable is not sta-
tistically significant in Postgres and Python. Sent cum
is the total number of messages sent by an individual.
The effect in Apache is statistically significant, increas-
ing the hazard rate by a factor of e0.014∗63.55 (2.5 fold
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Variable Apache Model Postgres Model Python Model

Coef. z P >|Z| Coef. z P >|Z| Coef. z P >|Z|
tp1 (0-6 months) -6.69 -2.97 0.003 -20.63 -10.62 0.000 1.10 0.67 0.5
tp2 (6-12) -6.09 -2.66 0.008 -5.20 -2.32 0.021 1.18 0.69 0.492
tp3 (12-24) -6.48 -2.7 0.007 -6.51 -2.9 0.004 0.098 0.06 0.955
tp4 (24-36) -7.98 -2.93 0.003 -5.77 -3.00 0.003 -0.23 -0.13 0.9
tp5 (36-48) -6.79 -2.53 0.011 -5.98 -2.88 0.004 0.10 0.06 0.96
tp6 (48-60) -8.16 -2.60 0.009 -8.14 -2.88 0.004 0.91 0.47 0.64
indegree* 61.21 2.78 0.005 72.2 5.46 0.000 5.49 2.92 0.004
patch* 2.71 5.09 0.000 0.98 1.42 0.154 2.09 5.95 0.000
acceptance rate* 0.15 2.03 0.043 0.0039 0.45 0.656 0.0062 0.10 0.918
sent cum* 0.014 4.20 0.000 .00158 1.16 0.246 0.0041 1.86 0.062
devs cum 0.14 1.84 0.066 1.09 2.17 0.03 0.14 2.81 0.005
time trend -0.91 -1.90 0.057 -2.06 -1.93 0.054 -1.46 -3.19 0.001

Table 3. Results of Hazard rate model fit. Coefficients represent log-proportional effect of the relevant variable on the hazard
rate. For example, in the case of Apache, prior experience of patch acceptance (binary variable) increases the rate by e2.71,
or nearly 15 fold. tp1, tp2, etc. are time periods with ranges marked in months. Note that in Postgres and Apache the rate
increases and then decreases as we move through from tp1 to tp4. Since there are very few non-developers that stay past 4 years,
the interpretation beyond this point is unclear.

increase) in the rate for one standard deviation increase
in value. There is no significant effect in other projects.
The social network measure indegree is statistically
very significant in all 3 models; however, the effect is
more moderate, increasing the rate by about 34% in
apache, 60% in Postgres and 19% in Python for one
standard deviation increase in normalized indegree.

Turning to the time dependent variables in the haz-
ard rate model we show two classes of variables: the
first class, tp1 etc., constitute the pure time dependence
of the hazard rate model. The proportional effect of the
rate function can be interpreted as:

eαtp1∗tp1 ∗ eαtp2∗tp2 ∗ eαtp3∗tp3 ∗ . . .

Each variable tp1 . . . tp6 should be interpreted as bi-
nary, taking on a value of 1 while t is in that time
period, and 0 otherwise. Thus during time period
tp1, the proportional effect on the rate function is sim-
ply eαtp1∗tp1. The absolute value of the rate resulting
from this is quite low in both Apache and Postgres
reflecting the low base rate at which people join the
project. In both cases where the fit is significant, we
see an increase and then a decrease in the hazard rate.
The Python model does not have a good fit for the
piecewise-constant time-dependent part of the hazard
rate model.

Finally, we control for two potentially confounding
variables: first, in order to control for effects aris-
ing from project age, time trend measures the age
of the email archives in years. This is different from
tp1 . . ., which are tenure periods per individual. The
model shows a negative effect, suggesting that all three
projects become harder to join as time goes on. The to-
tal number of developers, devs cum, is used to control
for the size of the population who play a central role in
deciding if someone becomes an immigrant. This ap-
pears to have a positive effect, perhaps indicating that

in all three projects increasing developer pools makes
it easier to gain admission.
Summary: The model results for the three projects
are somewhat different; however, we can draw some
conclusions from the fit of these models.
Non-monotonic tenure dependence: In both Apache
and Postgres, the models support the hypothesis that
the hazard rate increases, and then decreases. In all
three cases, the data, when plotted, shows this trend;
however, in Python the results are not statistically sig-
nificant. The difference is possibly attributable to the
calendar duration of the projects: Python is 4 years
younger than both Apache and Postgres; perhaps the
community’s reaction to newcomers is still evolving.
Thus, we conclude that Hypothesis 1 is supported in
Apache and Postgres, but is indeterminate in Python.
Patch submission effect: In Apache and Python, prior
history of patch submission has a very strong effect.
The effect is not statistically significant in Postgres.
We found some difference between Postgres and the
other projects that may account for this. In Post-
gres, a much greater proportion (50%) of patches are
submitted by non-developers than in Apache (31%)
and Python (23%). This would suggest that submit-
ting patches is a behavior more common among non-
developers in the Postgres project; therefore patch sub-
mitters are less distinguished, and have less of an ad-
vantage in gaining developer status. So we conclude:
demonstrated skill level, via patch submission plays a
very strong role in Apache and Python, but not so
in Postgres. Hypothesis 2 is supported in Apache and
Python, but not in Postgres.
Social Status/Activity: In all three models the social
network measure, indegree, which is a measure of the
breadth of response to an individual within the com-
munity has a significant effect, although the effect is
moderate. So we conclude that Hypothesis 3 is sup-
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ported in all three projects.

4 Threats to Validity

We now discuss possible threats to validity and ex-
plain how we address them (when possible).

We inspect emails for patches, and then check if they
were successfully applied. Although we are very confi-
dent in our ability to recognize submitted patches and
acceptance of unmodified patches, detecting modified
patches is difficult. A companion paper in MSR 2007
explains our approach to this problem [1].

Our patch and social network data are extracted
from the project development mailing lists. We may
be missing some data if participants interact on IRC
channels, via direct email or in other ways (even face
to face in some instances). This method is justified for
a few reasons. Current research literature [2, 9, 13, 17]
suggests that patch submissions and community dis-
cussions occurs on developer mailing lists. Second,
accepted open source tradition (and policies within
many FLOSS communities) indicates that the devel-
oper mailing list is the standard place to discuss the
software, for newcomers wanting to contribute, to in-
teract with the community, and one of the standard
places to submit patches6.

One of our hypotheses is that community perception
of a participant’s technical skills and knowledge has an
effect on becoming a developer. Our method of measur-
ing perceived technical skill is by examining the num-
ber of patches submitted and accepted. While there is
accepted literature [18] that supports the notion that
contributing patch “work-gifts” is one the best ways
to exhibit technical skill, there are other ways such as
technical discussion that we do not capture.

There are limitations to how well these results may
generalize to other FLOSS communities. For analy-
sis, we needed projects with a long history of public
archived data and a large community and developer
base. These criteria necessarily introduce some bias
into our results, which may not hold for other projects.
Since we have the tools and theoretical infrastructure,
we hope to test our hypotheses on other projects.

5 Conclusions

We mounted a quantitative study of the immigration
process in FLOSS projects. We hypothesized that 1)
the rate of immigration is non-monotonic; 2) demon-
strated technical skill has an impact on the chances
becoming a developer 3) social reputation also has an

6see http://httpd.apache.org/ABOUT APACHE.html

impact on becoming a developer. We mined data from
the Apache web server, Postgres, and Python projects,
and used a piecewise-constant proportional hazard rate
model to estimate these effects. Our three case studies
lend support to these hypotheses.
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