
Collaborative Software Development in Ten Years:
Diversity, Tools, and Remix Culture

�– Position Paper �–

Thomas Zimmermann

Microsoft Research
Redmond, WA, USA

tzimmer@microsoft.com

Christian Bird
Microsoft Research

Redmond, WA, USA
cbird@microsoft.com

ABSTRACT
Over the next ten years, collaboration in software engineer-
ing will change in a number of ways and research will need
to shift its focus to enable and enhance such collaboration.
Specifically, we claim that software in the small will be-
come more popular and even large software will be built by
fewer people due to better tools. For large projects, research
will need to address the collaboration needs of project
members other than just developers, including quality as-
surance engineers, build engineers, architects, and opera-
tions managers. Finally, code reuse and sharing will
change as a result of a growing software remix culture,
leading to more loosely coupled and indirect collaboration.

Author Keywords
Diversity, Tools, Collaboration, Remix Culture

ACM Classification Keywords
D.2.9 Software Engineering �– Management, K.4.3 - Organ-
izational Impacts �– Computer-Supported Cooperative Work

INTRODUCTION
The past ten years has seen both an increase in the size of
development teams and a proliferation of software research
in the form of empirical studies providing insight and tools
providing aid for the commensurate collaboration that is
required in such projects. Despite these successes, there is
still much to be done, both because there still exist chasms
between what is needed and what has been provided today
and because the software development landscape is chang-
ing rapidly, particularly in the mobile and web development
spaces.

We claim that due to the collaborative tools that are availa-
ble and recent shifts and fractures in software development,
such as the focus on mobile applications and web develop-
ment, the coordination needs in many projects will de-
crease. Despite this, there is a shrinking but still non-trivial
amount of very large projects that require new forms of
collaborative aid for differing roles in enterprise level soft-
ware development efforts.

In this paper, we make the following assertions:

 Due to better tools and a growing market for
smaller, specialized software, the size of software

teams and in turn the coordination needs will de-
crease over the next ten years.

 For the projects that do continue to grow in terms
of team size, diversity and specialization will in-
creases, leading to a need for collaboration be-
tween project members other than just developers.

 Due to a growing remix culture in software devel-
opment, some forms of collaboration will be indi-
rect and more loosely coupled due to sharing be-
tween multiple parties without necessarily having
direct interaction or even awareness.

FEWER PEOPLE WILL BUILD LARGER SOFTWARE �–
THANKS TO BETTER TOOLS
Over the past decades, the tools, programming languages,
and APIs to build software have dramatically improved.
IDEs such as Microsoft Visual Studio or Eclipse come with
wizards and designers that help with many routine tasks, for
example to create template projects of a certain type or to
simplify the interaction with a database. Many languages
now have syntactic sugar (such as extension methods and
lambda expressions) and availability of APIs has increased.
Service-oriented architectures now facilitate the reuse of
functionality across applications and allow the mash up of
new software by combining existing services. Tools for
program understanding, debugging, collaboration, and co-
ordination have substantially improved and will continue to
improve over the next decade. Search engines and collabo-
rative question and answer sites like Stack Overflow have
changed the way that developers seek answers to any pro-
gramming problems.

At the same time the complexity and size of software has
increased substantially. For example, the size of Microsoft
Windows grew from 5M to 50M lines of code between
1993 and 2003 [1]. For open source, Deshpande and Riehle
found that the �“total amount of source code and the total
number of projects double about every 14 months�” [2].

We believe that this growth of software will not continue
forever. Further, small and medium sized projects will be-
come more common (e.g., mobile apps). However, at the
same time, we expect that tool and technology support will

continue to improve in the next few years. Thanks to better
tools, fewer people are needed to build large(r) software
systems. This will have several implications on collabora-
tive software development:

 As fewer people will be needed to build software,
the coordination needs will become less critical.
Often simple email will be sufficient to coordinate
smaller teams.

 We also expect that for some teams coordination
across different roles (developer, build engineer,
operations) will become more important. Further,
organizational structures will become more fluid
as they will be easier to change thanks to better
tool support.

 As the tools for program understanding and infor-
mation seeking will improve, people will have to
rely less on other people. Rather than finding an
expert and waiting for a response, they can query a
tool and get immediate answers. This will improve
the speed of software development.

DIVERSITY AND SPECIALIZATION OF ROLES
The vast majority of software engineering research today
focuses on the role of developers and software implementa-
tion, maintenance, and testing. While these are critical parts
of any software development project, we have observed that
other roles and activities which are vital to the success of
large development projects have been largely neglected.

As we pointed out in the last section, the size of software
development projects in the future will be both larger and
smaller than they are today. As shown in Figure 1, for those
projects that are large in scope (e.g. Microsoft Windows or
Adobe Photoshop), there is a necessary diversity and spe-
cialization that occurs in project roles and individual devel-
opers. These roles do not involve writing code, but still
require collaboration and coordination.

To illustrate such roles in software development projects
that require focus from research, we briefly survey im-

portant roles in software development that receive little
attention, but require collaboration.

Quality assurance (QA) engineers are primarily concerned
with tasks that assess software quality and dealing with
issues that these tasks uncover. In some cases, such as
failed unit tests, triaging the problem, identifying the person
responsible for fixing the problem, and communicating
critical details are all straightforward tasks. We have ob-
served at Microsoft that when these tasks are not straight-
forward, there is little tool support to aid these engineers
and many hours can be spent doing detective work to deal
with just one issue. A common example is performance
testing. If a product passed the performance tests yesterday,
but not today, the assurance engineer must ascertain what
caused the slowdown, communicate with the team respon-
sible for the change (if in fact, it was the result of one
change and not an intermingling of multiple changes), and
help them determine the actions to take in order to solve the
problem based on the facts available to the QA engineer.

Build engineers have the task of continuously building the
product and running tests on the resulting builds. The build
infrastructure for a large project can be nearly as complex
as the product itself and can impact product development
[3]. Developers rely on builds in their daily work. Testers
rely on regular builds so that functionality can be tested.
Clearly collaboration is required between build engineers
and other roles as a project continuously changes.

Most non-trivial projects use branches (also known as
workspaces) to divide up development, with code �“moving�”
between branches when a set of functionality is stable and
complete. Moving code too early risks adversly affecting
teams due to poor quality and breaks. Waiting too long can
slow down teams due to dependencies in the development
cycle. What should the branching structure in a project look
like and how should code move through the system
between teams? The role of people making these decisions
and moving code, whether formal or informal, can have a
dramatic effect on the pace of the project. Research will
need to focus on these questions in order to aid these
project members.

Program/project managers [4] facilitate coordination
between stakeholders. They are responsible for drafting
specifications for developers and testers, monitoring
progress of different parts of the software system, and
relaying that information to upper management. While there
has been some effort towards providing analytic tools for
these individuals, the state of research today is that we often
don�’t even know what should be measured and reported to
help them to do their jobs effectively.

For space reasons, we do not elaborate on a number of other
important roles such as those within operations, which
become more important with the growth of software as a
service, software architects who plan the high level of the
system but don�’t produce code, release managers, and
technical writers. These serve to illustrate that not only are

Figure 1. The relationship between project size and

the diversity and specialization that occurs.

there many roles whose collaboration needs have not been
examined, but also that the types of collaboration that occur
in large software projects is quite diverse.

REMIX DEVELOPMENT
We also expect that the style of software development will
change over the next years. Today, software is developed
by teams who collaboratively work on one version of the
software and implement new features. However, with the
increased availability of open source, sharing and building
on existing code will become more common. We expect
that the cost of forking code will be reduced thanks to dis-
tributed version control systems such as Git and Mercurial,
which allow selective integration of changes. We believe
that this will lead to more frequent, smaller releases of
software by different groups of people, often even individu-
als. Because of the similarity to remix culture [5], which
allows and actually encourages derivative works, we term
this new development style remix software development.

Figure 2 further illustrates the difference to traditional soft-
ware development. In remix development, people will share
code with others who then use this code to derive new ver-
sions of the same or another project. We expect that fewer
people will work on a remixed version but ultimately there
will be more versions and variants (forks) of a project, often
even for individual features. While in traditional develop-
ment team members typically know each other (either per-
sonally or electronically), in remix development two people
(e.g., Alice and Bob) do not necessarily need to know about
each other but technically collaborate on the same software.

There has been already first evidence of a remix culture in
software development. For example many developers now

use code examples from Stack Overflow,1 a question-and-
answer website on computer programming, in their soft-
ware. Another example is scripts, which are often shared
and customized across people. The TouchDevelop2 app for
Windows phones actively facilitates the remix of scripts
with a Script Bazaar that allows users to share, reuse, and
publish the derived scripts.

In remix software development, people will collaborate in
the sense that they use and build on each other�’s code, but
actually have no or little need of coordinating. Future col-
laboration tools should include support for remix activities.

BIOGRAPHIES

Christian Bird is a researcher in the Re-
search in Software Engineering Group at
Microsoft Research. He is primarily interest-
ed in how groups work together to develop
software and his area of research is empirical
studies of collaborative activities in software projects. He
has studied software development in the open source realm,
at IBM, and at Microsoft.

Thomas Zimmermann is a researcher in the
Research in Software Engineering Group at
Microsoft Research. His research interests
include empirical software engineering, min-
ing software repositories, software reliabil-
ity, development tools, recommender systems, and social
networking. He is best known for his work on systematic
mining of version archives and bug databases to conduct
empirical studies and to build tools to support developers
and managers.

To learn more about the research of both authors, please
visit: http://research.microsoft.com/en-us/groups/ese/

ACKNOWLEDGEMENTS
Thanks to the reviewers for their insightful comments.

BIBLIOGRAPHY
[1] O'Brien, L. How Many Lines of Code in Windows?

Knowing.Net (December 2005).

[2] Deshpande, A. and Riehle, D. The total growth of open
source. Open Source Development, Communities and
Quality (2008), 197--209.

[3] McIntosh, S., Adams, B., Nguyen, T.H.D., Kamei, Y.,
and Hassan, A.E. An empirical study of build
maintenance effort. In 33rd International Conference on
Software Engineering (2011), 141--150.

[4] Sinofsky, S. PM at Microsoft. http://blogs.msdn.com/
b/techtalk/archive/2005/12/16/504872.aspx, 2005.

[5] Lessig, L. Remix: Making Art and Commerce Thrive in
the Hybrid Economy. The Penguin Press HC, 2008.

1 http://stackoverflow.com/
2 http://www.touchdevelop.com/

Figure 2. Illustration of the difference between traditional and
remix software development. In the latter, fewer people (who
may or may not know about each other) work on remixed
versions, but there will be more versions and variants.

Figure 2. Illustration of the difference between traditional and
remix software development. In the latter, fewer people (who
may or may not know about each other) work on remixed
versions, but there will be more versions and variants.

