Empir Software Eng (2013) 18:1047-1089
DOI 10.1007/510664-012-9236-6

Adoption and use of Java generics

Chris Parnin - Christian Bird - Emerson Murphy-Hill

Published online: 6 December 2012
© Springer Science+Business Media New York 2012

Abstract Support for generic programming was added to the Java language in
2004, representing perhaps the most significant change to one of the most widely
used programming languages today. Researchers and language designers anticipated
this addition would relieve many long-standing problems plaguing developers, but
surprisingly, no one has yet measured how generics have been adopted and used in
practice. In this paper, we report on the first empirical investigation into how Java
generics have been integrated into open source software by automatically mining the
history of 40 popular open source Java programs, traversing more than 650 million
lines of code in the process. We evaluate five hypotheses and research questions
about how Java developers use generics. For example, our results suggest that gener-
ics sometimes reduce the number of type casts and that generics are usually adopted
by a single champion in a project, rather than all committers. We also offer insights
into why some features may be adopted sooner and others features may be held back.

Keywords Generics - Annotations - Java - Languages - Post-mortem analysis

Communicated by Arie van Deursen, Tao Xie, and Thomas Zimmermann

C. Parnin
College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
e-mail: chris.parnin@gatech.edu

C. Bird
Microsoft Research, Redmond, WA 98052, USA
e-mail: cbird@microsoft.com

E. Murphy-Hill (<)

Department of Computer Science,

North Carolina State University, Raleigh, NC 27695, USA
e-mail: emerson@csc.ncsu.edu

@ Springer

1048 Empir Software Eng (2013) 18:1047-1089

1 Introduction

Programming languages and tools evolve to match industry trends, revolutionary
shifts, or refined developer tastes. But not all evolutions are successes; the technology
landscape is pocked with examples of evolutionary dead-ends and dead-on-arrival
concepts.

Far too often, greatly heralded claims and visions of new language features fail to
hold or persist in practice. Discussions of the costs and benefits of language features
can easily devolve into a religious war with both sides armed with little more than
anecdotes (Markstrum 2010). Empirical evidence about the adoption and use of past
language features should inform and encourage a more rational discussion when
designing language features and considering how they should be deployed. Collecting
this evidence is not just sensible but a responsibility of our community.

In this paper, we examine the adoption and use of generics, which were introduced
as Java version 5 in 2004. We take the first look at how features of Java generics, such
as type declarations, type-safe collections, generic methods, and wildcards, have been
introduced and used in real programs. With the benefit of seven years of hindsight,
we investigate how the predictions, assertions, and claims that were initially made by
both research and industry have played out in the wild. Further, we investigate the
course and timeline of adoption: what happens to old code, who buys in, how soon
are features adopted, and how many projects and people ignore new features? The
results allow us to adjust our expectations about how developers will adopt future
language features.

This paper extends our prior MSR 2011 paper (Parnin et al. 2011), where we made
the following contributions:

e We enumerate the assumptions and claims made in the past about Java generics
(Section 3);

e We investigate how 20 open source projects have used—and have not used—
Java generics (Sections 5-7); and

e We discuss the implications of the adoption and usage patterns of generics
(Section 9).

In the prior paper, we examined our research questions and hypotheses from
the perspective of established projects, projects which started before generics. This
perspective was unique in that it allowed us to observe the impact of a new feature
on an existing code base. In the present paper, we contrast our prior results with the
adoption patterns of recent projects, projects which started after generics and may
offer different perspectives. Second, we also wanted to compare the adoption of Java
generics with an another feature, Java annotations, that were released in conjunction
with generics in the Java 5 release. By examining annotations, an arguably less risky
and simpler feature, we have the ability to tease apart some of the factors that
influence adoption; for instance, was Java Virtual Machine compatibility the main
barrier to adoption, or was it something else?

In this paper, we add the following new contributions:

e We explore 20 new open source projects that were initiated after the introduction
of generics and

e We contrast our findings about generics with data on another language feature,
Java annotations.

@ Springer

Empir Software Eng (2013) 18:1047-1089 1049

2 Language Feature Overview

In this section we briefly describe the motivation and use of Java generics and
annotations. In an effort to maintain consistent terminology, we present in bold the
terms that we use in this paper, drawing from standard terminology where possible.
Readers who are familiar with Java generics and annotations may safely skip this
section.

2.1 Motivation for Generics

In programming languages such as Java, type systems can ensure that certain kinds
of runtime errors do not occur. For example, consider the following Java code:

List 1 = getList();
System.out.println(1.get(10));

This code will print the value of the 10th element of the list. The type system ensures
that whatever object getList () returns, it will understand the get message, and
no runtime type error will occur when invoking that method. In this way, the type
system provides safety guarantees at compile time so that bugs do not manifest at
run time.

Now suppose we want to take the example a step further; suppose that we know
that 1 contains objects of type File, and we would like to know whether the tenth
file in the List is a directory. We might naturally (and incorrectly) write:

List 1 = getList();
System.out.println(1.get(10).isDirectory());

Unfortunately, this leads to a compile-time error, because the return type of the get
method is specified at compile-time as Object. The type checker gives an error
because it does not know what types of objects are actually in the list.

In early Java, programmers had two ways to solve this problem, the first is casting,
and the second we call home-grown data structures. If the programmer implements
the casting solution, her code would look like this:

List 1 = getList();
System.out.println (((File)1.get(10)).isDirectory());

The cast is the (File) part, which forces the compiler to recognize that the
expression 1.get (10) actually evaluates to the File type. While this solves one
problem, it causes another; suppose that a programmer at some point later forgets
that the list was intended to hold Files, and inadvertently puts a String into
the List. Then when this code is executed, a runtime exception will be thrown at
the cast. A related problem is that the code is not as clear as it could be, because
nowhere does the program explicitly specify what kind of objects the list returned by
getList () contains.

If the programmer instead implements the home-grown data structure solution,
the code will look like this:

FileList 1 = getList();
System.out.println(1.get(10).isDirectory());

@ Springer

1050 Empir Software Eng (2013) 18:1047-1089

Additionally, the programmer would need to create a FileList class. This solution
also introduces new problems. Perhaps the most significant is the code explosion
problem; for each and every list that contains a different type, the programmer will
want to create a different special list class, such as StringList, IntegerList,
and NodeList. These classes will inevitably contain significant duplication, because
they all perform the same functions, differing only by data type.

2.2 Programming with Generics

These problems were solved with the introduction of generics to Java in 2004.
Generics allow programmers to create their own generic type declarations (Bracha
2012) (we call these generic types, for short). For example, a programmer can create
a user-defined generic declaration for a list like so:

class MyList<T>{

List internal ;

public T get(int index){
return (T)internal.get(index);

)

In this code, the T is called the formal type parameter. The programmer can use her
MyList class by instantiating the formal type parameter by using a type argument
(Bracha 2012), such as Integer or File in the following examples:

MyList<Integer> intList = new MyList<Integer>();
MyList<File> fileList = new MyList<File>();

Each place where a generic type declaration is invoked (in this example, there
are four) is known as a parameterized type (Bracha 2005). On the first line, the
programmer has declared the type of the intList object so that the compiler
knows that it contains objects of type Integer, and thus that the expression
intList.get (10) will be of type Integer. The result is that the client code is
both type safe and clearly expresses the programmer’s intent. The programmer can
also use generic type declarations without taking advantage of generics by using
them as raw types, such as MyList objectList, in which case the expression
objectList.get (10) will be of type Object.

In addition to creating their own generic type declarations, programmers can use
generic type declarations from libraries. For example, software developers at Sun
generified (Bracha 2005), or migrated to use generics, the Java collections classes.
For instance, the List class was parameterized, so that the previous problem could
also be solved like so:

List<File> 1 = getList();
System.out.println(1.get(10).isDirectory());

In addition to using generics in type declarations, generics can also be applied to
individual methods to create generic methods, like so:

<A> A head(List<A> 1){
return 1.get(0);

}
In this code, the programmer can pass to the head method a generic list containing
any type.

@ Springer

Empir Software Eng (2013) 18:1047-1089 1051

2.3 Motivation for Annotations

Programmers sometimes want their software to give information to the tools that
run over that software. For example, a program might want to tell a compiler that
a certain method is deprecated and should no longer be called (Java Language
Guide 2012) or a class might want to tell its environment that it represents a web
service (The Advantages of the Java EE 5 Platform 2012). Prior to Java 5, such
mechanisms to communicate with tools were ad hoc. For example, before Java 5, the
Deprecated tagin a JavaDoc comment indicates whether a method is deprecated,
while an external descriptor file indicates that a class is web service.

2.4 Programming with Annotations

With Java 5, the annotation language feature was introduced as a unified syntax for
programs to issue directives to tools. To use an annotation, the programmer puts
an @ symbol followed by an annotation name just before a program element (such
as a class or method), and, if the annotation has values, sets those values in curly
brackets. For instance, to tell the compiler that the head method is deprecated, the
programmer can write the following:

@Deprecated
<A> A head(List<A> 1){

When a program is compiled, the compiler warns the programmer about any code
that references this method. If the programmer wants to mark a class as a web service,
she can write the following:

@WebService
public class MyWebService{

The @Deprecated annotation is an example of an annotation recognized by the
Java 5 compiler. Two other annotations are recognized by default by the compiler:
the @0override annotation, used for indicating that a method overrides a method
in a superclass, and the @SuppressWarnings annotation, used for telling the
compiler not to generate certain warnings when compiling (The Java Tutorials
2012). The @WebService annotation is an example of an annotation defined in
a specific API. Often these types of annotations are discovered and inspected via
reflection and used for purposes such as automatically generating wrapper code or
configuring framework properties. Users can define their own custom annotations as
well, although a discussion of how this is done is beyond the scope of this paper.

3 Related Work

In this section, we discuss previous claims about and studies of generics.

3.1 Claims Regarding Generics

When Sun introduced generics, they claimed that the language feature was “a long-
awaited enhancement to the type system” that “eliminates the drudgery of casting.”

@ Springer

1052 Empir Software Eng (2013) 18:1047-1089

Sun recommended that programmers “should use generics everywhere [they] can.
The extra efforts in generifying code is well worth the gains in clarity and type
safety.”! There have been a number of papers and books that have extolled the
benefits of using generics in several contexts. We list here a sample of such claims.

In Effective Java, Bloch (2008) asserts that when a programmer uses non-generic
collections, she will not discover errors until run time. Even worse, the error is
manifest as a ClassCastException when taking an item out of a collection, yet
to correct the error, she must time-consumingly identify which object was wrongly
inserted into the collection. By using generics, the type system shows the developer
exactly where she inserted the incorrect object, reducing the time to fix the problem.

In their paper on automatically converting Java programs to use generic libraries,
Donovan et al. (2004) assert:

e In pre-generic Java, programmers thought of some classes in pseudo-generic
terms and tried to use them in such a way. However, without a generic type
system, they would make inadvertent errors that would show up at runtime. The
addition of generics to the type system moves these runtime errors to compile
time type errors.

e The type system represents an explicit specification, and generics strengthen
this specification. This is better for developers because they can use this strong
specification to reason about the program better and are less likely to make
mistakes. In addition, the compiler can enforce the specification.

e Prior to generics, programmers that wanted type safe containers would write
their own home-grown data structures, increasing the amount of work and likeli-
hood of error, compared to using data structures in libraries. Such structures also
“introduce nonstandard and sometimes inconsistent abstractions that require
extra effort for programmers to understand.”

In his book on C++ templates, Vandevoorde and Josuttis (2003) asserts that when
the same operations need to be performed on different types, the programmer can
implement the same behavior repeatedly for each type. However, if in doing so she
writes and maintains many copies of similar code, she will make mistakes and tend
to avoid complicated but better algorithms because they are more error prone. She
must also deal with all of the difficulties associated with code clones such as making
orchestrated changes to coupled clones (Geiger et al. 2006) and perform maintenance
more frequently (Monden et al. 2002).

Naftalin and Wadler (2006) claim that generics work “synergistically” with other
features of Java such as for-each for loops and autoboxing. They also claim that there
are now fewer details for the programmer to remember. They also claim that generics
can make design patterns more flexible by presenting an example of a visitor pattern
that works on a tree with generic elements.

In summary, the claims made by previous authors are:

e Generics move runtime errors to compile time errors.
e Programmers no longer have to manually cast elements from pseudo-generic
data structures or methods.

Ihttp://download.oracle.com/javase/1.5.0/docs/guide/language/generics.html

@ Springer

http://download.oracle.com/javase/1.5.0/docs/guide/language/generics.html

Empir Software Eng (2013) 18:1047-1089 1053

e Typed data collections such as FileList, create non-standard and sometimes
inconsistent abstractions.

e Generics prevent code duplication and errors resulting from maintaining multi-
ple typed data collections.
Generics enhance readability and specification.
Generics lower cognitive load by requiring the programmer to remember fewer
details.

3.2 Empirical Studies of Generics

There have been few empirical studies related to the use of generics in Java or
parameterized types in object oriented languages in general. Here we discuss the
few that exist.

In 2005, Basit et al. (2005) performed two case studies examining how well
generics in Java and templates in C++ allowed what they termed “clone unification.”
They found that 68 % of the code in the Java Buffer library is duplicate and
tried to reduce these clones through generification. About 40 % of the duplicate
code could be removed. They observed that type variation triggered many other
non-type parametric differences among similar classes, hindering applications of
generics. They also observed heavy cloning in the C++ Standard Template Library
as well.

Fuhrer et al. (2005) implemented refactoring tools that would replace raw ref-
erences to standard library classes with parameterized types. In evaluating the
refactoring tools on several Java programs, they were able to remove 48.6 % of the
casts and 91.2 % of the compiler warnings.

We are not the first to examine how well features intended to aid programmers
live up to their claims. Pankratius et al.performed an empirical study aimed at
determining if transactional memory actually helped programmers write concurrent
code (Pankratius et al. 2009). They found some evidence that transactional memory
(TM) did help; students using TM completed their programs much faster. However,
they also spent a large amount of time tuning performance since TM performance
was hard to predict.

These studies differ from our study in that they investigated generics or another
language feature in an artificial or laboratory context, whereas we investigate
generics in several natural contexts: open source software. As a result, these studies
investigate the ideal impact of generics, while our study investigates their real
impact.

3.3 Empirical Studies of Annotations

In this paper we contrast the adoption of Java generics with adoption of Java
annotations. While many researchers have introduced new types of annotations, such
as for extended type checking (Flanagan et al. 2002) and pluggable types (Papi et al.
2008), little work has studied the use of annotations in existing programs. The most
relevant empirical research that we know of is Shi and colleagues’ study of how
API documentation changes over time (Shi et al. 2011). Specifically, the authors
looked at how Java API annotations are changed in five real-world libraries in order
to understand how API documentation evolves. In contrast, the study presented in

@ Springer

1054 Empir Software Eng (2013) 18:1047-1089

this paper analyzes a wider variety of Java annotations in order to understand how
language features are adopted.

Other research has investigated how annotation-like source code constructs are
used. For example, Liebig and colleagues studied the use of C preprocessor directives
to understand whether those directives align with the source code they accompany
(Liebig et al. 2011). As another example, Storey and colleagues studied how de-
velopers tag their code with task markers (such as “TODO”) to understand how
developers manage tasks (Storey et al. 2008). In contrast to these studies, the current
papers seeks to study the use of annotations as a means to understand language
feature adoption.

4 Investigation

Our investigation begins with understanding how developers use generics in pro-
grams. Are some features of generics widely used and others never touched? Next,
we examine claims made about generics and see if the purported benefits of generics
are realized in practice. Finally, how does adoption play out—how soon does it occur,
what happens to the old code, who buys in?

We start with a data characterization by measuring how widespread generics are
among our selected projects and their developers. Then, we examine in detail how
that usage varies across the features of generics.

4.1 Investigated Claims

One of the claims regarding generics (identified previously) is that they reduce
the number of runtime exceptions (Bloch 2008). Ideally, we would like to know
how many ClassCastExceptions a program threw before generics were intro-
duced, then compare that to the number thrown after generics were introduced.
If the claim is true, the number of thrown ClassCastExceptions should be
reduced. To investigate the feasibility of this type of analysis, we manually searched
the bug repositories of three large projects (JDT, the SPRING FRAMEWORK, and
OPENSSO) for valid bug reports containing ClassCastExceptions. Overall, we
found very few bug reports regarding ClassCastExceptions: in JDT, only about
10 ClassCastException bugs were reported per year; in the SPRING FRAMEWORK,
only about 13 per year, and in OPENSSO, only about 5 per year. In smaller projects,
the number of reported ClassCastExceptions is likely much smaller. We hy-
pothesize that the problem is not so much that ClassCastExceptions occur
infrequently, but that they are usually introduced and fixed before the software is
released. Because of the low number of bug reports about ClassCastExceptions,
we reasoned that this was not a feasible approach to perform a temporal, statistical
analysis to investigate the claim about generics reducing runtime exceptions. We
also rule out dynamic approaches where we would run each version of a program
due to the state space explosion problem, which is compounded by the thousands of
different versions of many open source projects.

However, Bloch, in his remarks about runtime exception, continues with a related
claim that casts would also be reduced by the introduction of generics (Bloch 2008).
Researchers consider casts to be a code smell (Van Emden and Moonen 2002),

@ Springer

Empir Software Eng (2013) 18:1047-1089 1055

indicating poor code structure and a catalyst for runtime exceptions. We reason that
evidence of reducing casts also gives evidence of reducing probability of runtime
exceptions by a non-zero amount. Thus, we investigate:

Hypothesis 1 When generics are introduced into a codebase, the number of type
casts in that codebase will be reduced.

We also investigated Donavan’s claim that without a mechanism such as generics,
it would be necessary for programmers to introduce code duplication in order to
achieve type safety. Donavan argued that developers would be forced to create data
structures for every type of data they wanted to store. If we assume that Donavan’s
claim is valid, then we can measure the worse-case cost for achieving type-safety
via the method proposed by Donavan. Specially, we can estimate the amount of
duplication and bugs that would arise from having to maintain the duplicated type-
safe version of classes. There are several reasons why this is an worse-case estimate:
e.g., developers may find ways to factor out commonalities in non-type safe code.
But, taken more generally, these measures provide a simple way of quantifying
the value of generics by observing if types are instantiated with more than one
parameter.

Hypothesis 2 Manually maintaining type-safe code would be costly due to main-
taining a high number of clones.

4.2 Adoption Research Questions

Although a wealth of prior literature has examined how open source software
(OSS) projects make decisions, assign and accomplish tasks, and organize themselves
(e.g. Ducheneaut 2005; Mockus et al. 2002; O’Mahony and Ferraro 2007), the nature
of adoption of new language features such as Java generics or annotations is not
clear.

Our first research question investigates if there will be a concerted effort to
convert old code to use the new generic language feature. Are the new features
compelling enough to fix old code that may contain problems that would be fixed
by generics or at least to maintain consistency? In other words:

Research Question 1 Will there be large-scale efforts to convert old code using raw
types to use generics?

Our second research question centers around how project members embrace new
language features such as Java generics and annotations. Do they do it together, or
do some members still hold out? Even though “benevolent dictatorships” exist in
OSS, nearly every open source project’s decision-making process is governed in at
least a semi-democratic fashion.

Since the decision to use a new feature has implications directly on the codebase
itself (e.g., it may require using a newer JDK or modify popular method signatures
impacting all call sites), we expect that there will be project-wide acceptance of new

@ Springer

1056 Empir Software Eng (2013) 18:1047-1089

features rather than acceptance by individual members. We would also expect our
research question to have consistent answers for both generics and annotations:

Research Question 2 Will project members broadly use new language features
after introduction into the project?

Finally, Java integrated development environments (IDEs) such as Eclipse,
Netbeans, and IntelliJ] IDEA all support features such as syntax highlighting and
semantic analysis to provide auto completion and identify type errors interactively.
These tools enable developers to be more productive, but not all IDEs supported
generics when they were first introduced. Additionally, developers are often con-
strained by the platforms they are intended to deploy on. We expect that the choice
to use new language features such as generics or annotations will in part depend on
the tool support available and platform support for those features.

Research Question 3 What factors influence adoption of new language features?

4.3 Projects Studied

To test our hypotheses and evaluate our research questions, we automatically
analyzed 40 open source software projects.

For the first 20, we analyzed the top “most used” projects according to ohloh.net,
selecting only projects with significant amounts of Java code. We chose to select
projects from ohloh.net because the site contains the most comprehensive list of
open source projects of which we are aware. The 20 selected projects can be seen
in Table 1.

Table 1 20 open source projects that were established before Java generics existed

Project name Devs Age Start End LOC

ANT 38 10 1/13/2000 11/15/2010 85,736
AZUREUS 29 6 7/7/2003 4/01/2010 130,440
CHECKSTYLE 5 6 6/22/2001 12/13/2007 174,611
ComMONS COLLECTIONS 27 9 4/14/2001 10/22/2010 235,487
EcLIPSE-CS 6 7 5/21/2003 6/30/2010 592,214
Ecuipse-JDT (JDT) 69 9 5/2/2001 11/19/2010 45,979
FinpBuas 29 7 3/24/2003 10/25/2010 27,894
FREEMIND 4 8 8/1/2000 7/17/2009 175,042
HIBERNATE 23 4 11/29/2001 2/27/2006 3,125,097
JEDIT 94 10 1/16/2000 6/30/2010 52,031
JETTY 13 10 8/6/1998 5/15/2009 90,862
JUNIT 6 8 12/23/2000 1/27/2009 154,984
Loc4s 14 9 12/14/2000 8/18/2010 164,710
LUCENE 35 8 9/18/2001 3/23/2010 71,168
MAVEN 29 6 1/3/2004 11/16/2010 417,803
the SPRING FRAMEWORK 27 3 6/17/2005 4/13/2009 292,379
SQUIRREL-SQL 17 8 11/13/2001 10/5/2010 81,889
SUBCLIPSE 16 7 6/20/2003 11/09/2010 39,532
WEKA 25 8 4/20/1999 12/17/2007 35,419
XERCES 28 11 11/9/1999 11/14/2010 21,520

@ Springer

http://ohloh.net
http://ohloh.net

Empir Software Eng (2013) 18:1047-1089 1057

In mining the full version histories of these 20 projects, we analyzed the full
content of each version of each Java source file, a total of 548,982,841 lines.

For the final 20 projects, we decided to use a different sampling methodology for
two reasons. First, after examining the first 20 projects, we realized that the type of
sampled projects tended to be skewed toward developer tools. Second, some of the
first 20 projects appeared not to use generics to be backward compatible with clients
who used Java environments that are not generics-compliant. To address these two
limitations of the first data set, we sampled projects using two criteria. First, with
each of the 20 categories of projects listed on sourceforge.net, we analyzed one Java
project that was tagged on Ohloh with that category name. The categories are mobile,
internet, text editors, religion and philosophy, scientific and engineering, social
sciences, other, formats and protocols, database, security, printing, terminals, office
and business, system, education, games and entertainment, desktop environments,
communications, and multimedia. Second, we chose projects whose first commit
appeared well after 2004, and tried to exclude projects whose first commit appeared
to be a repository migration. The 20 selected projects shown in Table 2.

In analyzing the history of these projects, we analyzed 104,069,124 lines of
code.

Throughout this paper, we will focus our discussion on three of the 40 projects:
JEpIt, SQUIRREL-SQL, and MIGEN. We chose these specific projects because they
are a fairly representative cross section of the 40 projects. JEDIT, a text editor
for programming, began development in 2000 and is the most mature project of
the three. SQUIRREL-SQL, a graphical user interface for exploring databases, began
development in 2001. MIGEN, an educational program for teachers of mathematics,
is the least mature of the three projects, beginning in 2007.

Table 2 20 open source projects that were started after Java generics

Project name Devs Age Start End LOC

BBSSH 1 1 1/19/2010 8/17/2011 42,127
EHCACHE 24 5 3/26/2006 8/12/2011 166,808
ENCUESTAME 3 1 4/22/2009 2/18/2011 73,520
FLOWGAME 5 1 5/09/2009 3/14/2011 10,284
HUMMINGBIRD 7 <1 3/3/2010 8/24/2011 16,178
ICE4) 4 1 1/29/2010 8/8/2011 42,444
LIBGDX 18 1 3/6/2010 8/30/2011 166,887
MAKAGIGA 1 5 2/25/2006 8/12/2011 253,187
MiIGEN 9 3 10/19/2007 8/31/2011 207,663
MOBAC 3 2 9/2/2008 8/13/2011 51,971
OPENSSO 97 4 11/1/2005 3/4/2010 241,062
PaTHVISIO 15 5 1/30/2006 8/12/2011 99,273
POSTERITA 10 3 11/21/2005 3/31/2009 166,156
REDS 19 5 1/9/2006 8/29/2011 97,455
RELIGION SEARCH 2 1 10/11/2010 12/17/2011 5,912
SCSREADER 3 <1 7/3/2010 6/5/2011 3,858
SMSLiB 6 3 1/31/2008 8/6/2011 28,448
ViETOCR 1 3 7/27/2008 8/1/2011 10,912
XBUP 1 4 10/7/2006 8/11/2011 104,600
ZEro KELVIN DESKTOP 3 1 12/29/2006 12/12/2008 13,506

@ Springer

http://sourceforge.net

1058 Empir Software Eng (2013) 18:1047-1089

Although we focus on these three projects throughout this paper, we also relate
these results to the other 37 projects. To distinguish our two sets of projects, we refer
to the first set of projects as the established projects and the second set of projects as
the recent projects.

4.4 Methodology

To analyze the 40 projects in terms of our hypotheses, we chose an automated
approach. Our approach involves several linked tools to perform the analysis on each
project.

The first step in our analysis was to copy each project from a remote repository to
alocal machine. We did this to conserve network bandwidth and speed up the second
step. We used rsync to copy projects stored in CVS and SVN, and git-clone for
Git repositories.

The second step of our analysis was to check out every version of every file from
the project’s repository. Using a python script, we stored the different file revisions
in an intermediate format.

Our third step comprised analyzing the generics usage in each revision. We
performed this analysis using Eclipse’s JDT to create an abstract syntax tree of
each revision. From the abstract syntax tree, we extracted information relevant to
generics, such as what kind of generic was used (type or method declaration, and
parameterized type). We then populated a MySQL database with this information.

Finally, we analyzed the data in the database in a number of different ways,
depending on what information we were trying to extract. We primarily used the
R statistical package for analyzing and plotting data. Our data and tools are available
in the PROMISE repositories? (http:/promisedata.org).

4.4.1 Identifying Generification

As part of our analysis, we identified instances in source code evolution where raw
types were replaced by their generic counterparts (e.g. List to List<Strings,
hereafter referred to as corresponding types). We describe our approach in detail
here and describe the results of using such analysis in Section 7.1.

To identify changes in use of generics within a project, we use an approach
similar to APFEL, by Zimmermann (2006). For each file in a project repository, we
examined each pair of subsequent revisions of the file. For each method in each file
(identified by name) we identify the number of uses of each raw and parameterized
type in the method. If the count for a particular raw type decreases from one revision
to the next and the count for the corresponding parameterized type increases by the
same amount, we mark this as a generification.

In an effort to present a precise description of our data collection, we present
a formal definition. This description can be safely passed over by the uninterested

ZDue to potential changes as the paper evolves, the complete data set will be on the PROMISE site
by the final version of the paper and the correct URL to that data set will appear in that version of
the paper.

@ Springer

http://promisedata.org

Empir Software Eng (2013) 18:1047-1089 1059

reader and is not required to understand our results. Let F denote the set of all
files in a project repository and R = {1, 2, ..., n} denote the set of all revisions in
the repository. Thus, f, € F x R represents file f in revision r (or, put another way,
immediately after revision r has been checked into the repository). Let M be the set
of all method names in the source code in the repository and 7, be the set of all raw
types and T be the set of all parameterized types in the source code. We now define
two functions. Types, takes a method m, file f, revision r, and raw type t € T, and
returns the number of uses of ¢ in method m within revision r of file f.

Types; : (M x Fx Rx T,) — 7Z
Similarly, Types, provides the same functionality for a parameterized type t € T,.
Typesg : (M x F x Rx T,) — Z

Finally, let Elide : T, — T, be a function that maps a parameterized type to its
corresponding raw type. For example Elide(List<String>) = List. We record a
generification of type ¢, € T, to type t; € T, in method m € M in revision r € R of
file f € Fiff

3i > 0 : Types,(m, f,r — 1,t,) = Types,(m, f,r.t,) +i
ATypesg(m, fir — 1,t,) = Typesg(m, fir, t,) —i
AElide(ty) = t,

We note that this approach is a heuristic and does not provide conclusive proof
that a generification occurred. To assess this threat, we manually examined over 100
generifications identified by our algorithm and in all cases, the change represented a
generification of a raw type.

One limitation of this approach is that we will miss “implicit” parameterized types.
Consider the following two method signatures:

void printList (List<String> 1)
List<String> getList ()

Our analysis will identify both methods as using generics. However, if these two
method calls are nested in a separate method:

a. printList (b. getList ())

then no parameterized type appears in the AST and we do not count it as a use of
generics. Tackling this problem would require a static analysis beyond the bounds
of an individual source file, heavily decreasing performance at the scale of our
analysis (hundreds of millions LOC). We do not believe this impacts our results,
as in our experience, few methods contain implicit parameterized types without type
declarations.

@ Springer

1060 Empir Software Eng (2013) 18:1047-1089

5 Data Characterization

To give insight into our collected data, we characterize several facets about our
data. Specifically, we break down the use of generics and annotations by established
and recent projects, developers, parameterization behavior, and advanced features
usage such as wildcards. Finally, we relate some observations that arose from our
examination of the data.

5.1 Projects

Did projects adopt generics or annotations? Specifically, we examined the latest
snapshot of each project in our data and then noted the number of instances
of parameterized types, raw types, and annotations. For generics, we equate the
presence of parameterized types as adoption of generics and the presence of raw
types as non-adoption. For annotations, we counted the number of annotations in
the project. Note, these measures only provide a very broad view of adoption.

Established Projects Figure 1 compares the number of raw types, parameterized
types, and annotations in the established projects. 13 projects out of 20 made more
use of raw types than generics, with 4 of those not using generics or annotations at
all. JEpit and SQUIRREL-SQL made prominent use of generics, whereas the SPRING
FraMEwWORK and FINDBUGS made prominent use of annotations.

Recent Projects Figure 2 compares the number of raw types, parameterized types,
and annotations in the recent projects. A different story emerges. Only 2 out of 20
projects had more raw types than generics. All projects used generics and all but one
used annotations. There were 4 projects that did not have any raw types: FLOWGAME,
1CE4J, RELIGION SEARCH, and SCSREADER.

While it is unsurprising that established projects continued to use raw types, we
were surprised that raw types are still used in some recent projects. To get an idea

annotation

H generic

N raw

types/annotations (Thousands)

jedit

junit
freemind
eclipse-cs
checkstyle

findbugs
lucene
squirrel-sql
commons
maven-3
jetty

log4j
xerces2-j
hibernate
an

weka
subclipse
azureus
spring
eclipse.jdt

Fig. 1 Annotation, parameterized type, and raw type counts in 20 established projects

@ Springer

Empir Software Eng (2013) 18:1047-1089 1061

m
- 35
s annotation
230 B
° H generic
£ 25
e mraw
»
@ 20
]
= 15
°
c 10
g
® 5]
8
ao TTTTTTTT-T-T
5 2 £ 2F Q57D Q0 QWL OO X ©O0®CE LS O
35 CO9PEBZBEETT ST o E OB A
@ s o9 cs8L2 8RS 28 2
S EDYW T 5HQLOE QO X828 g2 ¢ E
= 0 o O S £ @ € O = ¢ £ 0 o o
o P35 E = 0 < S © O Q
o c 2) € 5) Q& o
? o N = £ 0 €
o 5 5
= <
o

Fig. 2 Annotation, parameterized type, and raw type counts in 20 recent projects

why, we manually inspected a few raw types from the EncacHE and M1GEN projects.
In a few cases in EHCACHE, use of raw types made sense, such as when a generic
type parameter made no difference in the program. For instance, we observed that
in a custom implementation of a dictionary, two dictionary entries were compared
for equality; in this case, the type of those entries made no difference, since equality
is defined for all Objects. In these cases, developers could have used the wildcard
type with generics, but for some reason, chose not to do so. In most cases, we could
discern no particular reason for usage of raw types over generics in EHcACHE. For
instance, in one class we observed the fully generic code:

List<Thread> requestThreads = new ArrayList<Thread>();
But then a few lines later, we observed generics mixed with raw types:
List<ThreadInformation> threads = new ArrayList();

In MIGEN, the few raw types that did exist appeared to be either in test code or
scrupulously commented. In one inline comment, a developer noted that he did not
generify a raw type because he did not have time; in another, a developer noted that
he tried to generify a collection but the generic version caused unexpected runtime
behavior.

Overall, without systematic inspection and interviewing the developers, we can
only speculate on why some projects adopted generics and annotations and other did
not. We plan on conducting such inspection and interviews as part of future work.

5.2 Developers
Did developers widely embrace generics? How did this compare with annotations?

We examined commits with creation or modification of parameterized types, generic
type declarations, generic method declarations, or annotations.

@ Springer

1062 Empir Software Eng (2013) 18:1047-1089

Established Projects 1In the established projects, 538 developers made 678,551
commits. Of those developers, 71 made generic declarations (13 %), 128 specified
annotations (24 %), and 141 used parameterized types (26 %). Naturally, some
developers commit more than others, which may give them more opportunity to use
generics. Only 272 developers had more than 100 commits, averaging 2467 commits.
Within this group of more frequent committers, 66 used generic declarations (24 %),
99 used annotations (36 %), and 105 used parameterized types (38 %).

Recent Projects In the recent projects, 232 developers made 197,744 commits. Of
those developers, 47 used generic declarations (20 %), 138 used annotations (59 %),
and 142 used parameterized types (61 %). Of the 102 more frequent committers
in the recent projects, with an average 1906 commits, 43 used generic declarations
(42 %), 83 used annotations (81 %), and 87 used parameterized types (85 %).

The data suggests there were several forces shaping use of new features in Java by
developers. In both established and recent projects, a small minority of developers
(perhaps with more authority or involvement) used generic declarations. In most
projects, a single member of a project (perhaps having an architect role) clearly
introduces a disproportionate amount of the generic declarations (see, for example,
Fig. 7). In established projects, developers demonstrated a modest use of generics
and annotations. Potentially, inexperience with the new features, or difficulty in
migrating existing code to fit in with the new features hampered adoption. In more
recent projects, these factors may have been ameliorated, as a larger percentage of
developers have started to use generics and annotations in their code.

In general, we observed that developers generally adopt usage of both features,
although there were a handful of developers that only adopted use of either annota-
tions or generics exclusively.

5.3 Features Breakdown

We characterize how different aspects of a feature were used to identify any
differences between established and recent projects and between usage of aspects of
those features. In both cases, these differences give insight into adoption factors, such
as the difficulty in learning aspects of a new feature and whether those differences
persist over time. We focus mostly on generics, simply because there are many more
aspects of generics to investigate in comparison with annotations.

5.3.1 Common Parameterized Types

We classified parameterized types as either user-defined or from the standard Java
Collections (java.util) based on name signatures. We found that on the whole,
use of Collections types accounts for about 70 % of parameterized types across all
of the codebases that we examined. The most popular parameterized types across all
projects were Lists, followed by Maps. Table 3 illustrates this finding by showing
use of the top 14 parameterized types in the SQUIRREL-SQL project.

In comparison, Table 4 illustrates how annotations were used in SQUIRREL-SQL,
showing a similar usage distribution to generics. Annotations from the standard Java
library, such as Override and Before, are the only annotations used by the majority
of the 40 projects analyzed. Otherwise, in addition to unit testing, annotations were
used for a variety of domain- and project-specific cases.

@ Springer

Empir Software Eng (2013) 18:1047-1089 1063

Table 3 Number of

o Type Parameterizations

parameterizations of several

generic types in SQUIRREL-SQL ~ List<String> 351
ArrayList<String> 221
HashMap<String, Strings> 157
List<ITableInfo> 96
Class<?> 91
Collection<Stringl] > 77
List<ArtifactStatuss> 61
Vector<String> 58
List<ObjectTreeNode> 55
List<TableColumnInfo> 55
Iterator<Strings> 40
List<Object[]> 33
ArrayList<MappedClassInfo> 28

5.3.2 Common Arguments

We also investigated which type arguments were used most frequently. Again,
there was a very clear dominant usage pattern. Strings were by far the most
common arguments. Table 3 shows the number of parameterized types of each
kind of type argument in SQUIRREL-SQL for the most commonly used types. In
fact, it appears that Lists and Maps of Strings account for approximately one
quarter of parameterized types in SQUIRREL-SQL. We observed similar patterns in
other projects with generics, with Collections of Strings being the predominant
parameterized type in half of projects studied. This trend tended to be stronger in
the established projects, which predominantly used String parameters in 78 % of
projects with generics, compared to recent projects in only 22 %. The second most
popular parameter was ? as an argument to the Class parameterized type, the most
popular parameterized type in 14 % projects.

Overall, the most common usage of generics was to parameterize a collection of
strings.

5.3.3 Generic Types versus Methods

We compared the number of user-defined generic types and methods across the
established and recent projects.

Table 4 Number of uses of

. . Annotation Use count
annotations in SQUIRREL-SQL
Override 1935
Test 636
Before 274
SuppressWarnings 196
After 158
Ignore 16
GUITest 4
Deprecated 3
TestExecutionListeners 2
RunWith 2
ContextConfiguration 2

@ Springer

1064 Empir Software Eng (2013) 18:1047-1089

Established Projects In the established projects, 979 generic methods and 1684
generic types existed during the lifetime of the projects. Out of the projects that
used generics, 4 projects had fewer than 10 generic types, and 4 had more than
100 generic types. This trend was not necessarily a function of size; for example,
FinpBucGs made extensive use of generic types (116) in comparison to JEpiT (39)
even though FINDBuUGS is roughly half the size of JEpIT. Figure 3 shows box plots
depicting the number of type and method declarations across all projects. In all but 4
established projects there were more generic classes than generic methods, an almost
2-to-1 ratio.

Recent Projects In the recent projects, 666 generic methods and 1234 generic types
existed during the lifetime of the projects. Seven projects had fewer than 10 generic
types, and 2 had more than 100 generic types. Only 3 projects had more generic
methods than generic types, again matching the near 2-to-1 ratio also seen in the
established projects. Overall, there were little differences between the established
and recent projects.

A final observation we found was that introduction of generic types lagged
behind the introduction of parameterized types, a tendency followed by most of the
established projects that we studied. Exceptions include an early adoptor of generics,
FinpBuas, which began using generic types and parameterized types at about the
same time, and ANT and SUBCLIPSE, which never used any generic types. However,
we did not observe this trend as strongly in recent projects. This lag suggests that
adoption may grow in stages as developers become more comfortable with the new
feature.

5.3.4 Unique Parameterizations

For generics to be advantageous, each type declaration must be parameterized
by multiple types, otherwise a simple non-generic solution would suffice. But, for
example, a generic type may be parameterized many times throughout the code
but only have one unique parameter (e.g., String). In practice, how many unique
parameterizations are made of type declarations? Is the number small or are generics
preventing thousands of clones from being created? From our data, we counted
user-defined type declarations and their parameterizations. Figure 4 shows box plots
depicting the number of parameterizations of each user-defined type.

method }— I
I — |

00L—
000} —

1
-
o

Fig. 3 Box plots displaying the number of method and type declarations in the projects under
investigation

@ Springer

Empir Software Eng (2013) 18:1047-1089 1065

established IO o © @)

*

recent }— 4< O O Q0D *& Mk Kk #k * * *

T
N
o

00l —

Fig. 4 Box plots displaying the number of parameterizations of each user-defined type in the
established and recent projects

Established Projects In our established projects, 330 user-defined generic type
declarations were instantiated in total 1123 times. Of those, 38 % had a single
parameterization. The remaining 62 % ranged from 2 to 49 parameterizations
(mean = 4.8). The distribution was very positively skewed such that 80 % of generic
classes had fewer than 5 parameterizations.

Recent Projects In our recent projects, 332 user-defined generic type declarations
were instantiated in total 2027 times. Of those, 23 % had a single parameterization.
The remaining 77 % ranged from 2 to 100 parameterizations (mean = 7.5). Still, 76 %
of generic classes had fewer than 5 parameterizations.

Overall, the lower portion of the distribution for both the established and recent
projects were similar, differing on the tail-end in magnitude. This suggests that the
cost savings envisioned by the language designers may not have been fully realized
in practice.

5.3.5 Advanced Parameterizations

We examined several advanced uses of parameterization, including wildcard types,
such as List<?>, where the type argument matches any type; bounded types, such
as List<? extends Integers, where the argument matches a certain set of
types; nesting, such as List<List<String> >; and multiple type arguments such
as Map<String,Doubles>.

Established Projects As a percentage of all parameterized types for the established
projects, each advanced use made up the following percentages: nesting (1 %),
bounded types (4 %), wildcards (11 %), and multiple type arguments (22 %).

Recent Projects The break down was similar for the recent projects, as a percentage
of all parameterized types each advanced use made up the following percentages:
nesting (1 %), bounded types (2 %), wildcards (15 %), and multiple type arguments
(14 %).

The consistent levels of usage between established and recent projects suggests
that there was an inherent difficulty or limited applicability in the more advanced
features of generics, limiting their adoption.

@ Springer

1066 Empir Software Eng (2013) 18:1047-1089

6 Investigating Claims

In this section, we examine Hypothesis 1 and Hypothesis 2. Here we do not
specifically compare results for established projects against those for recent projects,
as we did not find any substantial differences between the two project sets.

6.1 Generics Reduce Casts

An argument for introducing generics is that they reduce the number of runtime
exceptions because they reduce the need to cast (Hypothesis 1). Thus, it is reasonable
to expect that the addition of generics will reduce casts.

To test Hypothesis 1, we examined our data to determine if an increase in
generics leads to a decrease in casts. However, comparing just the raw number of
generics against the raw number of casts could be misleading, because an increase in
generics may not actually cause a decrease in casts whenever new code containing
parameterized types is added. To control for this, we calculated the density of
program elements (parameterized types or casts) by dividing the number of program
elements by Halstead’s program length (Halstead 1977). Halstead’s program length
is the sum of the total number of operators (such as method calls) and the total
number of operands (such as a variable). We used Halstead’s program length here
because it measures program size, but also disregards code formatting, whitespace
and comments, making it preferrable to a simple lines-of-code metric. Thus,
Halstead’s program length allows us to more fairly compare projects that use
different conventions for formatting, whitespace, and comments. This is important
because, for example, AZUREUS has about half has many comments per line of code
as WEKA, according to ohloh.net.

Figure 5 plots the cast and parameterized type density for three projects. The
x-axis represents time and the y-axis is the density of program elements. The number
on the y-axis represents the number of program elements per unit program length.
Red (top) lines represent the density of casts over time. Blue (bottom) lines represent
the density of parameterized types over time. Because the density of parameterized
types is small relative to that of casts, to improve the readability of the figure, the
blue line is scaled by 10. Similar time series graphs are shown in the Appendix for all
projects.

0.045 - q — 1 -
0.044 squirrel-sql | jedit | migen
0.035-1 — 1

0.031 g 1
0.025-] — 1

0.021 — 1
0.015-] E 1

0.01 \r__/—_—]]

0.005 1 b

o
o
o
3V

Fig. 5 Casts (red, top line) and parameterized type (blue, bottom line) density. Parameterized type
density is scaled by a factor of ten to aid visual comparison

@ Springer

http://ohloh.net

Empir Software Eng (2013) 18:1047-1089 1067

Overall, the graphs do suggest a relationship between the use of casts and the
use of parameterized types. In SQUIRREL-SQL, an increase in generics in 2007
corresponds to a decrease in casts. The same is true about JEpIT from 2005 onward
and over the lifetime of MIGEN. Ten other projects also distinctively showed this
trend (1ce4J, EcLiPSE-CcS, FLOWGAME, FINDBUGS, JUNIT, LUCENE, MAVEN, MOBAC,
the SPRING FRAMEWORK, and PATHVIsI0). Interestingly, a few projects showed the
opposite trend (RELIGION SEARCH, LIBGDX, HUMMINGBIRD, COMMONS COLLECTIONS),
where increases in generics tended to correspond to increases in casts. We speculate
that this opposite trend may be due to changes that require use of generic types
and APIs that require casting. For instance, using Java’s reflection API, the object
returned from Class. forName (.. .) will likely need to be cast.

In addition to a visual inspection, we used Spearman’s rank correlation to ex-
amine the relationship between generics density and cast density over time. We
also employed Benjamini—-Hochberg p-value correction to mitigate false discovery
(Benjamini and Hochberg 1995). Only RELIGION SEARCH did not show a statistically
significant correlation (p > .05). Of the remaining 35 projects that used generics,
we found that: 6 projects showed a strong inverse correlation (above —0.84); 9
showed a moderate inverse correlation (between —0.4 and —0.8); and 8 showed
a weak inverse correlation (between 0 and —0.4). However, 10 projects showed a
weak positive correlation (between 0 and —0.4) while, surprisingly, MAKAGIGA (0.69)
and ENCUESTAME (0.65) showed strong positive correlations, indicating that increased
generics use coincided with more casts. Again, this positive correlation may be due
to changes that require use of generic types and APIs that require casting.

On the whole, the data that we collected supports Hypothesis 1.

One limitation to this analysis is that we considered trends across all contributors.
While this illustrates a more project-wide trend, it may be that if we considered only
the trends of generics and casts for developers who embraced generics, there would
be a stronger relationship.

Another limitation is that our density function used in the cast analysis sometimes
may not accurately measure the effect of parameterized types on casts. For example,
if a program contains generics, and then a large class is deleted that contains many
casts and no generics, the density of generics in the program goes up while the density
of casts goes down. Our analysis would mis-interpret this change as the addition of
generics causing the removal of casts. Further study with more sophisticated metrics
are needed to mitigate this threat.

6.2 Generics Prevent Code Duplication

Another claim regarding generics is that a generic type Pair<S, T> would pre-
vent the need for countless clones of classes such as StringIntPair and
StringDoublePair if a developer wanted to create a type-safe container. But in
practice, how many clones would actually be needed? How many duplicated lines of
code and bugs would be introduced from having to maintain these clones?

To test Hypothesis 2, we measured the number of unique parameterizations for
all parameterized types to determine the number of clones. Further, we take our
previous measures of unique parameterizations of just user-defined generics (shown
in Section 5.3.4), and use the lines of code and number of revisions in the source
repository to estimate the impact of code duplication. Total lines of duplicated

@ Springer

1068 Empir Software Eng (2013) 18:1047-1089

code are calculated by taking the number of unique parameters (P), lines of code
(LOC) and applying this formula: D = LOC * (P — 1). This estimates the amount
of additional code needed to provide implementations of non-generic code for each
type parameter, P. Next, we take the total duplicated lines (D), the number of
revisions (R), and an error constant (K) to estimate the potential faults in the code
in this manner: £ = D *x R x K. This is a rough estimate that assumes a relatively
uniform bug rate across lines of code.

From our 40 projects, we found a large number of clones would need to be
created for a small number of types. We observed parameterization of 1152 types, but
actually found about 46 % of these types (532) only had exactly one type argument
ever used throughout the project’s history, suggesting that needless or premature
generification of objects occurs fairly frequently. From the top ten generic classes
having the most parameterizations (all were Java collection classes), we found a
total of 8686 different parameterizations. To accommodate all the parameterizations
of these ten classes, 8676 clones would need to be created, or about 868 clones
per class. But the number of parameterizations dropped drastically for the remain-
ing 1142 classes; 5275 clones would need to be created, or about 4.6 clones per
class. Interestingly, we only found 13 parameterizations of Pair types across all
projects. We speculate that a generic version of Pair is less useful than we initially
expected.

Next, we analyzed the user-defined generic class from each project that had the
most parameterizations, for the purpose of estimating the impact of code duplication.
In total, we analyzed 12 user-defined generic classes from the established projects
and 12 from the recent projects. The generic classes had a total of 347 parameteriza-
tions. The mean code size of the classes was 176 lines of code and the classes were
changed a total of 244 times (mean 10). We estimate, as a result from these 24 generic
classes alone, an estimated 109,816 lines of duplicated code were prevented. With our
error estimation, 195 errors would have been prevented based on our metric and an
error constant of 7.4/100000 (1/100 errors per commit, and 7.4/1000 errors per LOC
(Humphrey 1995)). However, the number of errors prevented varied significantly
between generic classes; of the 24 total generic classes, we estimate that 16 of them
prevented no bugs at all.

Overall, this supports Hypothesis 2; however, the impact may not have been as
extensive as expected. The benefit of preventing code duplication is largely confined
to a few highly used classes.

Using a Wilcoxon signed-ranks test, we observed that there were no significant
differences between the set of 20 established projects and the set of 20 recent
projects. More specifically, there were no significant differences in terms of either
group’s 12 user-defined generic types in any of the following metrics: lines of code,
duplication prevented, or errors prevented. This suggests that projects that “grew up
with generics” did not benefit from generics’ duplication prevention any more than
established projects.

There are limitations to our results. We may over-estimate the code duplication
if inheritance could have shared non-generic methods. We may under-estimate the
number of unique parameterizations, as some generic types are intended for client
use and were not used in the code we analyzed, for example the library CoMMONSs
CoLLECTIONS; there were 674 generic classes that were never parameterized. Further,
we excluded 119 generic types from analysis that had only one unique parame-
ter which themselves were other generic parameters. This might be common, for

@ Springer

Empir Software Eng (2013) 18:1047-1089 1069

example, with a GenericHashKey that might be used by other generic types.
Finally, we did not exclude generics that were introduced for testing purposes, such
as in JDT, where some generics are used to test Eclipse’s Java language tools. As a
consequence, projects that used generics for testing may not be representative of the
average Java project.

7 Factors for Adoption

Risk, legacy code, backward compatibility, developer politics, feature complexity,
and learning; these are several factors that may influence adoption. By comparing
differences in adoption by established and recent projects of generics and annota-
tions we attempt to tease apart some of these factors.

7.1 Do Developers Change Old Code to Use New Features?

Since generics supposedly offer an elegant solution to a common problem, we
investigated how pre-existing code is affected by projects’ adoption of generics in an
effort to answer Research Question 1. Conversely, for this research question, we did
not examine annotations, as there was no corresponding old feature to “upgrade”.
Is old code modified to use generics when a project decides to begin using generics?
There are competing forces at play when considering whether to modify existing
code to use generics. Assuming that new code uses generics extensively, modifying
existing code to use generics can make such code stylistically consistent with new
code. In addition, this avoids a mismatch in type signatures that define the interfaces
between new and old code. In contrast, the argument against modifying old code to
use generics is that it requires additional effort on code that already “works” and it
is unlikely that such changes will be completely bug-free.

To address this question as presented in Research Question 1, we examined if
and how old code is modified after generics adoption. Figure 6 depicts a gross
comparison by showing the growth in raw types (solid red) and generic types (dashed

Types usage in squirrel-sql Types usage in jedit Types usage in migen

4000
L

— Raw Types — Raw Type:

VP / ypes — Raw Type
- Parameterized Types - Parameterized Types

ypes
- Parameterized Types

3000
n

1000 1500 2000 2500
n L N n
2000
L

Number of Type Uses
IOPO

5?0
Number of Type Uses

Number of Type Uses
2000 4000 6000 8000 10000

0
L
0
L

2002 2004 2006 2008 2010 2000 2002 2004 2006 2008 2010 2008 2009 2010 2011
Date Date Date

(a) Squirrel-SQL (b) JEdit (c) MiGen
Fig. 6 Migration efforts in switching old style collections was mostly limited in projects: old code

remains. Solid lines indicate use of raw types (types such as List that provide an opportunity for
generification) and dashed lines, generic types

@ Springer

1070 Empir Software Eng (2013) 18:1047-1089

blue) over time for the three projects of interest (see Appendix for graphs of all
projects). Note that raw types are types used in the system for which a corresponding
generic type exists, such as List. A drop in raw types that is coincident with an
increase in parameterized types (e.g. in mid 2007 in SQUIRREL-SQL, which we
manually verified by inspection as a large generification effort) indicate evidence
of possible generification. Changes in types may not themselves be evidence of
actual generification, however. We therefore determined generifications in a more
principled way. Specifically, we identified raw types in the code as candidates for
parameterization. We then examined what proportion of these candidates actually
were removed and replaced by their generic counterparts by using the approach
described in Section 4.4.1.

Established Projects Consider SQUIRREL-SQL—a total of 1411 raw types were intro-
duced into the codebase over the life of the project (note that some were removed
before others were added, so the maximum shown in Fig. 6 is 1240). Of these, 574
(40.7 %) were converted to use generics over a five month period starting when
they were adopted in early 2007 (we identified these using the approach described
in Section 4.4.1). In contrast, JEpit had 517 of a total of 4360 introduced raw types
converted to use generics (11.9 %). Of the other projects studied, only CoMmmoNs
CoLLECTIONS (28 %) and LUCENE (33.4 %) had more than 10 % of their existing raw
types generified. In aggregate, only 3 of the 15 projects that use generics converted
more than 12 % of their raw types and none of them converted more than half of
their raw types use. We therefore conclude that although we do see a few large-
scale migration efforts, most projects do not show a large scale conversion of raw to
parameterized types.

Recent Projects For recent projects, we see even fewer and smaller migration
efforts. In the REDS project, 134 of the 416 total raw types that were added were
eventually converted to parameterized types (yielding a final total of 1082 parame-
terized types). No other recent projects had more than 100 raw types converted to
parameterized types, and seven projects had no migrations at all.

The reasons behind the lack of migration in the established and recent projects
may actually be different. For projects that had a substantial code base when generics
were added to the language, raw types were already heavily used and thus developers
decided not to modify that code, taking an “if it’s not broken, then don’t fix it”
mentality. In contrast, most projects that started after 2005 used generics from the
start and did not use raw types extensively to begin with (notables exceptions were
Encacae and BBSSH). In these projects, we did not see migrations because there
was not a large set of raw types that could be converted to use generics.

7.2 Who Buys-In?

Research Question 2 relates to who uses a new feature in the projects that adopt
them. We expect that since most large projects depend on the principle of community
consensus, the decision to use a new feature would be made as a group and would not
be dominated by one developer. We separately analyzed developer’s use of generics
and annotations. We also looked for any differences between established and recent

@ Springer

Empir Software Eng (2013) 18:1047-1089 1071

projects, where the newness of a feature may affect the dynamics of how community
consensus occurs.

To answer Research Question 2, we first examined the introduction and removal
of a feature by developers over time. We performed a Fisher’s exact test (Dowdy
et al. 2004) of introduction of raw and parameterized types comparing the top
contributor with each of the other contributors in turn (using Benjamini-Hochberg
p-value correction to mitigate false discovery, Benjamini and Hochberg 1995) to
determine if any one contributor uses a feature on average much more than the
others. This test examines the ratio of raw types to parameterized types rather than
the total volume, so that the difference of overall activity is controlled for.

To illustrate these results, we make use of several graphs detailing different
author’s usage of a feature in a project. Figure 7 shows the introduction (and
removal) of parameterized types by contributor for the five most active contrib-
utors to each project. A solid line represents the number of raw types, which are
candidates for generification, and a dashed line, parameterized types. Pairs of lines
that are the same color denote the same contributor. A downward sloping solid line
indicates that a contributor removed raw types. For instance, Fig. 7a shows that in
SQUIRREL-SQL, one contributor began introducing parameterized types in early 2007
while concurrently removing raw types. The Appendix contains similar graphs of all
projects.

Contributors’ Use of Generics The most common pattern that we observed across
projects was one contributor introducing the majority of generics. This pattern is
illustrated in SQUIRREL-SQL (Fig. 7a) and similar phenomena were observed in
EcLipse-cs, JDT, HIBERNATE, AZUREUS, LUCENE, WEKA, and CoMMONS COLLECTIONS.
In established projects, one contributor dominates all others in their use of parame-
terized types to a statistically significant degree (o = .05).

In recent projects, we hypothesized that there may be different phenomena at
work since there was no pre-existing non-generic code base that would make the
decision to use generics a debated topic. Therefore, we expected broad community
usage of generics. However, even in these newer projects, there was still a clear

squirrel-sql jedit migen

---- Generic 7 - Generic
— Raw — Raw

---- Generic
— Raw

1000 1500 2000

200 400 600 800 1000
I I I I h

500

0
I

0
0 1000 2000 3000 4000 5000 6000 7000
I 1 h n n n h

Type Introductions/Removals
Type Introductions/Removals

Type Introductions/Removals
-290

2002 2004 2006 2008 2010 2000 2002 2004 2006 2008 2010 2008 2009 2010 2011 2012
Date Date Date

(a) Squirrel-SQL (b) JEdit (c) MiGen

Fig. 7 Contributors’ introduction and removal of type uses over time for the five most active
contributors in each project. Solid lines indicate use of raw types (types such as List that provide
an opportunity for generification) and dashed lines, parameterized types. Each color represents a
different contributor

@ Springer

1072 Empir Software Eng (2013) 18:1047-1089

champion that accounted for most generics use in all but two projects (the contrary
projects were PATHVIsio and SCSREADER).

There were some outliers. JEpiT (Fig. 7b) represents a less common pattern in
that all of the active contributors began using generics at the same time (towards
the end of 2006). This is more representative of the SPRING FRAMEWORK, JUNIT, and
MaveN. Although our graph of JEpiT shows that most contributors began using
parameterized types, a Fisher’s exact test showed that one contributor (shown in
yellow) still used parameterized types more often than raw types compared to all
other contributors to a statistically significant degree. Lastly, FINDBuGs (not shown)
is an outlier as the two main contributors began using generics from the very
beginning of recorded repository history and parameterized types were used almost
exclusively where possible; we found almost no use of raw types in FINDBuGs at all.

Contributors Use of Annotations As a contrast to our generic buy-in results, we
also examined individual contributors’ adoption of annotations. Consistent with our
results of analysis individuals’ adoption of generics, we found that the majority of
the projects that used annotations had a clear “champion” that used them more than
the rest of the contributors to a statistically significant degree. Figure 8 shows the
adoption graphs for the most active contributors in three projects. The graphs for the
JDT and LIBGDX projects are representative of the vast majority of projects, as there
is an obvious contributor that accounts for most annotations. The graph for MiGEN
is uncharacteristic, as there were a number of contributors that all actively added
annotations to the codebase at roughly the same rate and time interval. Annotation
graphs for all projects are shown in the Appendix.

The reader may notice that each of these graphs shows occurrences of steep
increases over short time periods (e.g., the user sergut in MIGEN in the early part
of 2011). Interestingly, we also observed abrupt introductions of hundreds and
sometimes even thousands of annotations in very short time periods. For instance,
one contributor in the LUCENE project added 2,182 annotations (across multiple files)
in just one commit and one contributor added 16,019 to HUMMINGBIRD in just two
days! We speculate that this level of activity may be indicative of use of an automatic
technique for adding annotations. While not quite as extreme, we observed “bursts”
of annotation introduction (usually on the order of hundreds in a short time period)
in all projects that actually used annotations (36 out of 40) except for MAKAGIGA,

org.eclipse.jdt libgdx

600

500
L
1500

300 400
L L
1000
L

1000 2000 3000 4000 5000
L L L L L
500
L

100 200
L L

Annotations Introductions/Removals
Annotations Introductions/Removals
Annotations Introductions/Removals

[
0

od

T T T T T T T , T T T r T
2002 2004 2006 2008 2010 2010 2011 2012 2008 2009 2010 2011 2012
Date Date Date

(a) IDT (b) libgdx (c) MiGen

Fig. 8 Contributors’ introduction and removal of annotations over time for the most active contrib-
utors in each project. Each color represents a different contributor

@ Springer

Empir Software Eng (2013) 18:1047-1089 1073

which showed a fairly constant monotonic increase, and WEkA and ANT, which did
not use annotations extensively.

Overall, the data and our analysis indicates that features are usually introduced
by one or two contributors who “champion” their use and broad adoption by the
project community is uncommon.

In further work, we plan to investigate and contact these early adopters to identify
why and how they began introducing new features as well as the obstacles (both
technological and social) that they encountered.

7.3 What Factors Affect Adoption?

Is backward compability the dominating concern, or do other factors such as risk,
learning, or tool support play a role as well? In legacy codebases, are less risky
features adopted earlier than more risky features? Do these trends disappear in more
recent projects?

To evaluate Research Question 3, we focused on the factors of compatibility
and IDE support. We separately analyzed established and recent projects where
applicable to identify consistent trends.

7.3.1 Compatibility or Other Factors

To evaluate the factor of compatibility, we examined the difference between adop-
tion dates of annotations and adoption dates of generics. Our reasoning is that
if concerns of compatibility was the primary factor holding back adoption, then
we should observe near simultaneous adoption of both features once the concerns
had been removed. Alternatively, if we observe large differences in adoption dates
between the features, then some other factors may had held back adoption of a
particular feature.

Non-Simultaneous Adoption in Most Established Projects We examined the dates
of the first annotation and generic used in the established projects. Although we
did find a few projects that introduced annotations and generics simulanteously,
the majority of projects staggered adoption, often by years. Specifically, we found 4
projects adopted generics before annotations, ranging from months to years while 7
projects adopted annotations before generics, ranging from several days to years (for
SuBcCLIPSE annotations appeared 5 years before the first generic). Interestingly, Log4s
introduced annotations in 2007, but never introduced generics. There were 5 projects
that first used annotations and generics on the same day. Overall, established projects
staggered adoption between features by an average of 296 days. Figure 9 shows box
plots depicting the number of days between adoption of generics and annotations.

Near-Simultaneous Adoption in Recent Projects Interestingly, the trend seen in
established projects does not hold for recent projects. Instead, the recent projects
were much quicker to use both features in a near-simultaneous fashion. We found
6 projects used generics before annotations, ranging from days to months, while
14 projects use annotations and generics on the same day. There was a near-
simultaneous adoption of annotations and generics (an average 53 days lag), suggest-
ing that projects used the available features in a major language upgrade together.

@ Springer

1074 Empir Software Eng (2013) 18:1047-1089

established I 4{

recent o li

0001~ —
004
ol
3
0l —
001 —
0001 —
00001 —

Fig. 9 Box plots displaying the number of days between when generics were introduced and
when annotations were introduced in established and recent projects. Negative values indicate that
annotations were introduced before generics

This delay of 53 days is significantly shorter than the 296 days experienced by
established projects (p < .02 by an unpaired 2 tailed t-test).

If compatibility was the sole important factor, we might have expected more
simultaneous adoption. Still, we do believe compatibility plays a role. For example,
we did see examples of people holding back code (e.g., List/+*<String>*/) and a
few projects adding in both features on the same day. Further, there is evidence of
delay between the release of Java 5 and adoption of either annotations or generics.
We found an average adoption lag of 500 days after the official release by the
established projects. However, other factors delay adoption even further (an average
296 days).

Overall, from the data that we collected to answer if compatibility is the sole factor
in Research Question 3, the results indicate that compatibility is an important, but
not sole factor in adoption and other factors such as legacy code may contribute to
even further delays.

7.3.2 IDE Support

To evaluate IDE support, we first had to determine which projects used which
IDEs and were active prior to IDE support (the 20 established projects). We found
evidence that IDEs were used for development for most of the projects that we
studied. This evidence existed in the form of files created by IDEs (. project filesin
the case of Eclipse) or discussions on mailing lists. Eclipse was the most predominant
IDE that we found evidence for, used by developers in AZUREUS, CHECKSTYLE,
Ecrirse-cs, FINDBuUGS, JETTY, JUNIT, JDT, the SPRING FRAMEWORK, SQUIRREL-SQL,
SuBcLIPSE, WEKA, and XERCES.

Although Java 5 with generics was released in September of 2004, Eclipse did not
support generics until the public release of version 3.1 in late June, 2005. NetBeans
supported generics at the same time that they were introduced, making a study of
the effects of support for this IDE difficult if not impossible. We therefore examined
each of the eight established projects that use Eclipse as an IDE to determine if they
adopted generics prior to the 3.1 release. Of these projects, CHECKSTYLE, JUNIT, JDT
and FINDBUGS started using generics prior to generics support in Eclipse. The other
four projects waited until after generics support appeared in Eclipse and did not

@ Springer

Empir Software Eng (2013) 18:1047-1089 1075

switch until sometime in 2006 or later (SuscLipst did not begin using generics until
2010). We examined the developer mailing lists at the time that generics support was
added to Eclipse and also at the time that they began using generics and found no
discussion of generics support in Eclipse as a factor in decision-making. Although
these eight projects technically adopted generics after Eclipse support for them, the
fact that adoption did not occur for at least six months after such support along with
an absence of evidence on the developer mailing lists, leads us to believe that IDE
support may not be critical.

The following quote from Jason King in a discussion of generics support in Eclipse
provides one way to reconcile the perceived importance of tool support with our
findings.?

Our team adopted Java 5.0 back in November 2004 and incrementally adopted
the [Eclipse] 3.1 milestone builds as they came out throughout the first 6 months
of this year. We found the product to be remarkably stable from an early stage,
with few serious bugs.

As the entire team was learning the Java 5 features, we started manually coding
in generics (and enums, varargs, annotations etc). A few times we complained
that autocompletion and refactoring would help, but the absence didn’t stop us.
When a new [Eclipse] milestone came out our pairing sessions were really fun
as we discovered new features appearing in the IDE.

Although tool support does not appear to be critical, we also looked at time of
adoption to identify other possible factors affecting uptake time. However, we found
no trend related to when generics were adopted. For instance, JEDIT started using
them in 2004, SQUIRREL-SQL in 2006, EcLipse-cs in 2008, and SuscLIPsE in 2010.
FinDBuGs is again an anomaly as it used generics before generics were of ficially
released! The only statement we can confidently make is that there was not strong
adoption of generics immediately following their introduction into Java.

We also saw wide variation in the rate of generics adoption within the codebases.
Figure 6 shows that SQUIRREL-SQL and JEDIT introduced generics into the code at a
rapid rate once the decision to use them was made. A number of projects, LUCENE,
HIBERNATE, AZUREUS, CHECKSTYLE, and JUNIT show a lull in generics use for months
or even years following first generics use. MIGEN, a recent project, is shown in Fig. 6
to illustrate a recent project where no migration took place.

Overall, the data that we collected to answer the factor of IDE support in
Research Question 3, the results indicate that lack of IDE support for generics
did not have an impact on its adoption. This finding raises more questions than
it answers. Deciding to use a new language feature is non-trivial and can have
large consequences. If many projects adopted generics, but did so at vastly different
times and rates, what factors affect the decision of when to begin using them? In
the future, we plan to contact project developers, especially those that first began
using generics, to identify these factors. Finally, although we did not investigate tool
support for annotations, we did observe several instances were annotations appeared
to be introduced via tool support.

3http://www.theserverside.com/news/thread.tss?thread_id:37183

@ Springer

http://www.theserverside.com/news/thread.tss?thread_id=37183

1076 Empir Software Eng (2013) 18:1047-1089

8 Limitations

There are several threats to validity in this study.

External Validity The projects we have sampled are all open-source projects, and
they may not be representative of all software development projects. For example,
certain industries, such as the defense industry, have stricter standards and slower
timelines in supporting new versions of software, such as language runtimes, which
may amplify or alter the conclusions of the study.

Even within open-source projects, the number of projects and the type of cat-
egories we have selected from may not be sufficient to draw conclusions for all
open-source projects. Although, the data we have examined has highlighted several
significant results, future research should confirm these findings at a larger scale
within the open-source community.

General Validity The conclusions of this study are particular to adoption of lan-
guage features in Java and may not hold for other languages. For example, a parallel
adoption story of generics exists in C#—generics were also introduced in a new
version of the language; however, subtle differences in the design and deployment
of C# generics may have resulted in a different adoption story.

Further, the conclusions about the language features we have examined—Java
generics and annotations—may not extend to other newly introduced language
features such as Java closures. Future research needs to draw parallels between
differences in adoption of language features and channel differences as insight into
future design of language features.

Construct Validity Several conclusions in our study rely on complex analysis tech-
niques. Limitations in those analysis techniques may have caused some results to be
underestimated. For example, the migration analysis relies on the assumption that
a raw type is migrated to a generic type if the fully qualified name of the method
remains the same across revisions. This assumption may fail to count migrations that
occurred during structural changes such as a file or signature rename. Note, that this
assumption is not used for the other analyses, which tracks features at a project-wide
level per revision.

In other cases, an analysis may only offer one perspective on the data when mul-
tiple perspectives might be needed. For example, one limitation of the cast analysis
is that it is coarse-grained, examining the general relationship of casts and generics.
However, the analysis is not sufficient for understanding why that relationship exists.
In future work, a more fine-grained analysis can identify individual casts that were
removed due introductions of generic functionality and compare that with other
contexts for removal.

9 Discussion and Future Work

Overall, we were surprised by several of our findings about generics, which are at
odds with our initial hypotheses. For instance, we were surprised that over half of

@ Springer

Empir Software Eng (2013) 18:1047-1089 1077

the established projects and developers we studied did not use generics; for those
that did, use was consistently narrow.

Empirically, we have found the usage of generics are almost entirely accounted
by standard library collections, dwarfing the usage of user-defined generic types and
methods. Additionally, given all the advanced parameterization options, their actual
use appeared sparingly. We also found several places where the concept of generics
were prematurely generified. Generics assumes that there are multiple candidates
for parameterization. Instead, in practice we see that half of generic classes are only
instantiated with one type, the other half with just a handful—only a very small
generic classes are instantiated with numerous types.

Overall, the patterns of usage could indicate that a language enhancement as large
scale and sweeping as generics may have been more than what was really needed.
The disparity of different usage patterns presents an interesting conundrum for the
language designer—should language features be added to address exceptional cases?
Were there simpler solutions that language designers could have considered? For
instance, had the language designers of Java generics instead opted to introduce a
single StringList class, then they would have succeeded in satisfying a significant
portion of Java generic usage. Are there more concise and incremental methods of
introducing language features that language designers may consider?

Validating the many claims surrounding the benefits of generics remains a chal-
lenge. Our data only scratches the surface. Although we found merit to Danovan’s
claim that manually maintaining code clones would be costly, we found the impact
to be limited to a few generic classes that are instantiated many times. And while
our data indicates that generics reduce casts in most projects, a few projects showed
the opposite trend. In future studies, we would like to investigate in more detail
the underlying reasons and other unanswered claims. For example, developers may
still be required to use casts in certain situations such as an implementation of
.equals () or interfacing with older libraries.

While our results have painted a broad picture of how generics are used, different
projects adopted generics at different times, and different people made use of
generics in different ways.

The adoption of generics by established projects may have been encumbered by
issues other than backward compatibility. Some features may be more difficult to in-
troduce than others. Projects with legacy code at risk may have found it more difficult
to introduce generics than annotations. For example, introducing a generic type in
a method signature may have an unintended consequence of changing many more
method signatures than the programmer had signed up for. In contrast, an annotation
can be easily added to a method with little impact. As evidence, we did see more
projects adopt annotations over generics sooner. We also saw that very few projects
made the effort to migrate old code to take advantage of generics. But certainly
other features such as developer familiarity or prior exposure with features may have
played a role as well. Interestingly, these issues do seem to recede with time, as we
see more recent projects quickly embrace both new features at nearly the same time.

In the future we plan to better understand what are deciding factors or barriers
for adopting new language features by contacting the developers to understand their
thoughts and opinions of generics. We have measured use of generics by examining
the frequency of their occurrences within the source code, but there may be other
measures of impact such as number of uses dynamically at run-time and we are
investigating these measures. Further, we plan on manually inspecting less-frequently

@ Springer

1078 Empir Software Eng (2013) 18:1047-1089

used aspects of generics to more qualitatively identify the value and impact of
generics on the software.

10 Conclusion

We have explored how Java developers have used, and not used, Java generics over
the past few years. We uncovered surprising generics usage trends, but also observed
variation between projects and between developers. However, the results presented
here illustrate only broad trends; future work will explain why these trends and
variations exist.

While we expect that our retrospective results will, at this point, have little impact
on Java generics, our results may help us adjust our expectations about the adoption
of future language features. For example, based on our results, developers may
not replace old code with new language features, so perhaps the introduction of a
language feature alone is not enough to assure adoption. In future language-design
wars, we hope that empirical data about how developers use language features may
be an antidote to anecdotes.

Acknowledgements Thanks to NCSU students Brad Herrin, Donghoon Kim, Michael Kolbas,
and Chris Suich, who contributed code to our analysis framework. Thanks to Jonathan Aldrich,
Andrew Black, Prem Devanbu, Mike Ernst, Ron Garcia, Gail Murphy, Zhendong Su, and Thomas
Zimmerman, who provided valuable advice.

Errata

In the MSR paper on which this paper is based (Parnin et al. 2011), we made three
mistakes that have been corrected in this article. Because of these corrections, the
results in this paper supersede the results from the MSR paper. We highlight the
corrections here.

First, our time series analysis of casts versus generics undercounted the number
of casts and generics. The time series appears in Fig. 5, along with a corrected
correlation analysis (Section 6.1). This change reverses our original conclusion, which
originally stated that generics do not have a strong influence on casts in a project.

Second, we originally miscounted the number of generic language features due
to two bugs in our analysis software. The corrected numbers and graphs appear
throughout this paper. The corrected numbers and graphs do not change our original
conclusions because the shape of the data remains nearly identical.

Third, our original example of a generic method declaration in Section 2.2 was not
correctly typed code. The new example is correctly typed.

Appendix

In this Appendix, we show extended figures for all projects.

@ Springer

Empir Software Eng (2013) 18:1047-1089

ant azureus
o0n ocs
oos o0t
oca oca
0.01: ,\W 001

checkstyle

1079

commons collections

:HHBEE

N eclipse-cs o findbugs freemind
00z o0z s N———

BTEIETEE R

hibernate

=

g

jedit jetty
oo oo
oo oo
o o

" " /\HJ,N, .

HHHE:

oo

log4j

MM

‘HHBHEBABBHBER N

N lucene o maven-3 "

HHAHHBBBABBA]

org.eclipse.jdt

oaz oz e M

&

il

:HEABHABEBERER

springframework

NN

tHHHABHHBBBABABER N H HEB
squirrel-sql subclipse weka
-

M~

:HEABHABEBEAER

xerces2-j

HHBHERABBHBER N

Fig. 10 Cast versus generic density in established projects

‘HHBHHBHHBHHE

&

B

:HHBBHHHBBHEBE

@ Springer

1080

Empir Software Eng (2013) 18:1047-1089

" bbssh . ehcache encuestame flowgame
FETETETETETE] RETETETETETE] RETETETETETel WETETET \
" hummingbird " ice4j libgdx makagiga
— ~
gelelelelelel BelTealelelelel §elTelealelslel
" migen - mobac opensso pathvisio
—~———
gelelelelelel WelTelelelelel BaTelelelelal BeTlalalelsl el
- posterita - red5 religion-search scsreader
e o
P
gelelelelels slelalelelel Belalels
" smslib - vietocr xbup zkdesktop
gelelelelelel Halel FaTs T8l

Fig. 11 Cast versus generic density in recent projects

@ Springer

Empir Software Eng (2013) 18:1047-1089 1081

Types usage in ant Types usage in azureus Types usage in checkstyle Types usage in commons-collections

8 | = Pzt oo

o |[—= mawrwes J P Ty
§ 4| Foanmios iy Fosrrrasa Tpes
H
g 2
§ g ¢ % g &
3 3 E 3
S S £t g
5 5 £ 5
23 £ H 2
Date Date Date Date
Types usage in eclipse-cs Types usage in findbugs Types usage in freemind Types usage in hibernate
§ o s o 8= v
5 . e oo & Ptz Tpee Faemerssd Toee
ER 3 g 33 ER S
] S g & s
s 5 8 s 5
I 5 5¢ 35
£ £= £ H
2 2 H 2
g H
B H
Date Date Date Date
Types usage in jedit Types usage in jetty Types usage in junit Types usage in log4j
g R T H v Tpes H o pes R T
Pramatsa s etz Prsmretasa Tpes Pramansa e
. g 8 g B .
£ £ 3 I
T £ s £
B £ 2
g N
o me me me me wo RS Py 04 06 w0 w2 e e me w0
Date Date Date Date
Types usage in lucene Types usage in maven-3 Types usage in org.eclipse.jdt Types usage in springframework
Fasmarrasd Tpes s P |
H g g
ER ER 3 3
g g . 28 -4
& £ 8 e e
3 g s s s
5 i 58 3
H £° £ £%
2 EIN el 2
g = N
8 g - N
Date Date Date Date
Types usage in squirrel-sql Types usage in subclipse Types usage in weka Types usage in xerces2-|

g8 P A .
gt §t HE £

3 3 R 3

S8 £3 & s

H s ° 3 H

N N 5 H

£ EE 5 g

z 7 z 7 z z

8 8 ?

Date Date Date Date

Fig. 12 Usage of raw and generic types in established projects

@ Springer

1082

Types usage in bbssh

Types usage in ehcache

Empir Software Eng (2013) 18:1047-1089

Types usage in encuestame

Types usage in flowgame

g R Typee
Parsmrarzea s

120

R T
Tarzad Types

Tipes

R Typee
Parmeraz s

3 § s g & 3
3 g2 3 g
= e g =]
s s 5 § s
H 3¢ 5 H
£ £ £ £
23 2 2 2
H R
H
- - P O e —
Date Date Date Date
Types usage in hummingbird Types usage in iced] Types usage Types usage in makagiga
= i . T
H 8
8 g g 23 g &
£ & & &
5 5 5 5 &
i] 3 2
£ £ £ £
2, E 2, 2
8 H
- F — - B I S
o 2o o me wr me e wo n
Date Date Date Date
Types usage in migen Types usage in mobac Types usage in opensso Types usage in pathvisio
ow Toee " R Ty o Types A Faw Types
R Pzt pes et Tyes g Pzt oo Peemrrasstpes
g
2 3 3 s 3
3 2 g " ¥
g . s = [
2§ s T H
3] 58 5
3 £ £ £:
E g 2 z 2
2 H s
H & 8
ot - . N
Date Date Date Date
Types usage in posterita Types usage in red5 Types usage in religion-search Types usage in scsreader
H B R
o oes g
».Wi,mm L s i
® E]
2 LA @ @ 9 7
3 38 N 3
£ & S &
R ERN H 2,
Py o ws o am am e an [P WA S Oa Nov
Date Date Date Date
Types usage in smslib Types usage in vietocr Types usage in xbup Types usage in zkdesktop
T Peatrasa s Ko . s
H g
3 3 3, El
F¥ F g ° 2
& & g 2.
s 5 g 5 g -
2 2 B E
8 N
Date Date Date Date

Fig. 13 Usage of raw and generic types in recent projects

@ Springer

Empir Software Eng (2013) 18:1047-1089 1083

ant azureus checkstyle commons-collections

" s s ¥ 2
"] (] s
R g £ £
5 & g g :
g S -] |
El fl 2 2 2
J—'iﬁ_;_f—.z\—f—”_‘l, FRE g i
L+ & & &
Date Date Date Date
eclipse-cs org.eclipse.jdt findbugs freemind

Type Introductions/Removals
Type Introductions/Removals
Type Introductions/Removals

Type Introductions/Removals

o0 2o o0 200 e aw o awe om0
Date Date
hibernate jedit

Type Introductions/Removals

Type Itroductions/Removals
Type Inroductions/Removals
Type Introductions/Removals

Date Date Date Date

lucene maven-3 springframework

% H K H
§° § § 5§
& & & &
H 2 2 H
s 1 1 1
e g]]
2 2 2 2
£ K £ £
& &g & &g
H
Date Date Date
squirrel-sql subclipse
2 8
&
8 g g .]
s 8 8 8 & 8
g " g . g g
g & &]]
g g g% H
£E 2 89 z
g -4 28
s) &
we e wes am w0 04 06 0 o o me me me e
Date Date Date

Fig. 14 Contributors’ introduction and removal of parameterized types over time in established
projects

@ Springer

1084 Empir Software Eng (2013) 18:1047-1089

bbssh ehcache encuestame flowgame

§EE

H g H Is H
£ £ £ s -~ E £
€ 29 ¢ e F ! 3
H]] / g
g g g £
Y z. i g ¢
= = & &
Date Date Date
hummingbird icedj makagiga
!
H] %5 38
H H H -
H § g 5
H H H H
H H H 2
3 3 g% g°
3 & H H H /
£ S £ £
2 F 28 2 g
ERE g g & &
P P P o 0 an e ww mn wm we w0 am aw
Date Date Date Date
mobac opensso pathvisio
N H
< 8
s H
H S g8 HE
g g g g
H [H H
3 g5 g% H
3 g3]]
2 H 23
£ £y =, £
& o s N I
Date Date Date
posterita religion-search scsreader

Type Introductions/Removals
Type Introductions/Removals
Type Introductions/Removals
Type Introductions/Removals

Date Date Date
smslib vietoer zZkdesktop
g H
8
R H
H p— H [g e
§ § £ e £
€ s H H H
@ Kl g 3 z 8
£ £¢] H
3 g g 3
R H fs £s
RN & £ g £ I
Date Date Date Date

Fig. 15 Contributors’ introduction and removal of parameterized types over time in recent projects

@ Springer

Empir Software Eng (2013) 18:1047-1089 1085

ant azureus checkstyle commons-collections

1 i, i H
2 g3 g g
e 4 -4 -4
Z H z H
g3 1 s = g8
g ERER 32 H
£y £ H g3
£ . g g s
Date Date Date Date
eclipse-cs org.eclipse.jdt findbugs freemind

Annotations Introductions/Removals

Annotations Introductions/Removals
Annotations Introductions/Removals

208 2005 2008 a0 me owo ows e o 04 06 Y 201 ;o owe e s e 20
Date Date Date Date

hibernate jedit jetty junit

1000

Annotations Introductions/Removals
Annotations \mmd;/cnon&/Removzls
Annotations Introductions/Removals
Annotations Introductions/Removals

0

w2 wa wos mes s I L) 20 0 206 2000
Date Date Date Date

lucene maven-3 springframework

HB H R

§° § 5

L3 -3 <

g° g]]

g H % H

2 g % g8 2y

< ARk = : cﬁ,ﬁ

Date Date Date Date
squirrel-sql subclipse xerces2-j

H
5
€

Annotations Introductions/Removals

Annotations Introductions/Removals
Annotations Introductions/Removals
0

Date Date Date Date

Fig. 16 Contributors’ introduction and removal of annotations over time in established projects

@ Springer

1086 Empir Software Eng (2013) 18:1047-1089

bbssh ehcache encuestame flowgame

= roer

Annotations Introductions/Removals
Annotations Introductions/Removals
Annotations Introductions/Removals

one Date oue

hummingbird libgdx makagiga

=

3 3
H 3
g £
£ 5
H H
2 H 2
2 2 2
E E H
£ £
J = .
migen mobac opensso pathvisio

ictions/Removals

™

Annotations Introductions/Removals
0

Annotations Introductions/Removals

Date Date Date ous

posterita religion-search scsreader

a

Annotations Introductions/Removals
Annotations Introductions/Removals

Date Date o
smslib vietocr zkdesktop
Y = "
H s g
H 5"
g . 3
R H
5 5
N HE
H £
Y w00 w0 o o2 Y o0 aon o ae we mo an e o7 e 200
Date Date Date Date

Fig. 17 Contributors’ introduction and removal of annotations over time in recent projects

References

Basit H, Rajapakse D, Jarzabek S (2005) An empirical study on limits of clone unification using
generics. In: Proceedings of the 17th international conference on software engineering and
knowledge engineering, pp 109-114

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J R Stat Soc B 57(1):289-300

@ Springer

Empir Software Eng (2013) 18:1047-1089 1087

Bloch J (2008) Effective Java, 2nd edn. Prentice-Hall PTR

Bracha G (2005) Generics in the java programming language. Web. http://java.sun.com/j2se/1.5/pdf/
generics-tutorial.pdf. Accessed 1 Mar 2012

Bracha G (2012) Lesson: generics. Web. http://download.oracle.com/javase/tutorial/extra/generics/
index.html. Accessed 1 Mar 2012

Donovan A, Kiezun A, Tschantz, MS, Ernst MD (2004) Converting java programs to use generic
libraries. In: OOPSLA ’04: proceedings of the 19th annual ACM SIGPLAN conference on
object-oriented programming, systems, languages, and applications

Dowdy S, Wearden S, Chilko D, (2004) Statistics for research, 3rd edn. Wiley, New York

Ducheneaut N (2005) Socialization in an open source software community: a socio-technical analysis.
Comput Support Coop Work 14(4):323-368

Flanagan C, Leino KRM, Lillibridge M, Nelson G, Saxe JB, Stata R (2002) Extended static checking
for java. SIGPLAN Not 37:234-245

Fuhrer R, Tip F, Kiezun A, Dolby J, Keller M (2005) Efficiently refactoring java applications to use
generic libraries. In: Eurpoean conference on object oriented programming, pp 71-96

Geiger R, Fluri B, Gall H, Pinzger M (2006) Relation of code clones and change couplings. FASE
3922:411-425

Halstead MH (1977) Elements of software science (operating and programming systems series).
Elsevier Science Inc., New York, NY, USA

Humphrey WS (1995) A discipline for software engineering. Addison-Wesley Longman Publishing

Java Language Guide: Annotations (2012). Web. http://download.oracle.com/javase/1.5.0/docs/guide/
language/annotations.html. Accessed 1 Mar 2012

Liebig J, Kastner C, Apel S (2011) Analyzing the discipline of preprocessor annotations in 30 million
lines of c code. In: Proceedings of the tenth international conference on aspect-oriented software
development, AOSD ’11. ACM, New York, NY, USA, pp 191-202

Markstrum S (2010) Staking claims: a history of programming language design claims and evidence.
In: Proceedings of the workshop on the evaluation and usability of programming languages and
tools

Mockus A, Fielding R, Herbsleb J (2002) Two case studies of open source software development:
apache and mozilla. ACM Trans Softw Eng Methodol 11(3):309-346

Monden A, Nakae D, Kamiya T, Sato S, Matsumoto K (2002) Software quality analysis by code
clones in industrial legacy software. In: Proceedings of the 8th international symposium on
software metrics

Naftalin M, Wadler P (2006) Java generics and collections. O’Reilly Media, Inc

O’Mahony S, Ferraro F (2007) The emergence of governance in an open source community. Acad
Manage J 50(5):1079-1106

Pankratius V, Adl-Tabatabai A, Otto F (2009) Does transactional memory keep its promises?:
results from an empirical study. Technical Report 2009-12, Universitdt Karlsruhe, Fakultiat fiir
Informatik

Papi MM, Ali M, Correa Jr TL, Perkins JH, Ernst MD (2008) Practical pluggable types for java.
In: Proceedings of the 2008 international symposium on software testing and analysis, ISSTA *08.
ACM, New York, NY, USA, pp 201-212

Parnin C, Bird C, Murphy-Hill E (2011) Java generics adoption: how new features are introduced,
championed, or ignored. In: Proceedings of the 8th working conference on mining software
repositories, MSR "11. ACM, New York, NY, USA, pp 3-12

Shi L, Zhong H, Xie T, Li M (2011) An empirical study on evolution of api documentation.
In: Proceedings of the 14th international conference on fundamental approaches to software
engineering: part of the joint European conferences on theory and practice of software,
FASE’11/ETAPS’11. Springer, Berlin, Heidelberg, pp 416431

Storey M-A, Ryall J, Bull RI, Myers D, Singer J (2008) Todo or to bug: exploring how task
annotations play a role in the work practices of software developers. In: Proceedings of the
30th international conference on software engineering, ICSE "08. ACM, New York, NY, USA,
pp 251-260

The Advantages of the Java EE 5 Platform: A Conversation with Distinguished Engineer Bill
Shannon (2012) Web. http://java.sun.com/developer/technical Articles/Interviews/shannon_qa.
html. Accessed 1 Mar 2012

The Java Tutorials: Annotations (2012). Web. http://download.oracle.com/javase/tutorial/java/
javaOO/annotations.html. Accessed 1 Mar 2012

@ Springer

http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf
http://download.oracle.com/javase/tutorial/extra/generics/index.html
http://download.oracle.com/javase/tutorial/extra/generics/index.html
http://download.oracle.com/javase/1.5.0/docs/guide/language/annotations.html
http://download.oracle.com/javase/1.5.0/docs/guide/language/annotations.html
http://java.sun.com/developer/technicalArticles/Interviews/shannon_qa.html
http://java.sun.com/developer/technicalArticles/Interviews/shannon_qa.html
http://download.oracle.com/javase/tutorial/java/javaOO/annotations.html
http://download.oracle.com/javase/tutorial/java/javaOO/annotations.html

1088 Empir Software Eng (2013) 18:1047-1089

Van Emden E, Moonen L (2002) Java quality assurance by detecting code smells. In: Proceedings
of the ninth working conference on reverse engineering (WCRE’02), pp 97-106. IEEE
Computer Society, Washington, DC, USA

Vandevoorde D, Josuttis N (2003) C++ templates: the complete guide. Addison-Wesley Profes-
sional

Zimmermann T (2006) Fine-grained processing of CVS archives with APFEL. In: Proceedings of the
OOPSLA workshop on eclipse technology eXchange. ACM Press

Chris Parnin is a Phd Student at Georgia Tech. He walks the line between being a
professional software developer and researching them. He specializes in empirical, cognitive
studies, and user studies of software development. Contact him at chris.parnin@gatech.edu.
http://www.cc.gatech.edu/~vector/.

30N

Christian Bird is a researcher at Microsoft Research in Redmond, Washington. His interests are
in empirical studies of software engineering, predominantly examining the problems encountered
in large software development projects. He received his Ph.D. from U.C. Davis. Contact him at
cbird@microsoft.com. http://research.microsoft.com/people/cbird.

@ Springer

http://www.cc.gatech.edu/~vector/
http://research.microsoft.com/people/cbird

Empir Software Eng (2013) 18:1047-1089 1089

Emerson Murphy-Hill is an assistant professor at North Carolina State University. His re-
search interests include human-computer interaction and software tools. He holds a Ph.D.
in Computer Science from Portland State University. Contact him at emerson@csc.ncsu.edu.
http://www.csc.ncsu.edu/faculty/emerson.

@ Springer

http://www.csc.ncsu.edu/faculty/emerson

	Adoption and use of Java generics
	Abstract
	Introduction
	Language Feature Overview
	Motivation for Generics
	Programming with Generics
	Motivation for Annotations
	Programming with Annotations

	Related Work
	Claims Regarding Generics
	Empirical Studies of Generics
	Empirical Studies of Annotations

	Investigation
	Investigated Claims
	Adoption Research Questions
	Projects Studied
	Methodology
	Identifying Generification

	Data Characterization
	Projects
	Developers
	Features Breakdown
	Common Parameterized Types
	Common Arguments
	Generic Types versus Methods
	Unique Parameterizations
	Advanced Parameterizations

	Investigating Claims
	Generics Reduce Casts
	Generics Prevent Code Duplication

	Factors for Adoption
	Do Developers Change Old Code to Use New Features?
	Who Buys-In?
	What Factors Affect Adoption?
	Compatibility or Other Factors
	IDE Support

	Limitations
	Discussion and Future Work
	Conclusion
	Errata
	Appendix
	References

