
Sociotechnical Coordination and Collaboration in
Open Source Software

Christian Bird
Microsoft Research

Redmond, WA, USA
cbird@microsoft.com

Abstract—Over the past decade, a new style of software
development, termed open source software (OSS) has emerged
and has originated large, mature, stable, and widely used
software projects. As software continues to grow in size and
complexity, so do development teams. Consequently, coordination
and communication within these teams play larger roles in
productivity and software quality. My dissertation focuses on the
relationships between developers in large open source projects
and how software affects and is affected by these relationships.
Fortunately, source code repository histories, mailing list archives,
and bug databases from OSS projects contain latent data from
which we can reconstruct a rich view of a project over time and
analyze these sociotechnical relationships. We present methods
of obtaining and analyzing this data as well as the results of
empirical studies whose goal is to answer questions that can
help stakeholders understand and make decisions about their
own teams. We answer questions such as “Do large OSS project
really have a disorganized bazaar-like structure?” “What is the
relationship between social and development behavior in OSS?”
“How does one progress from a project newcomer to a full-fledged,
core developer?” and others in an attempt to understand how
large, successful OSS projects work and also to contrast them
with projects in commercial settings.

I. INTRODUCTION

Open source is a popular and growing method of devel-
opment that has produced software that rivals and in some
cases even exceeds the scale and quality of traditional software
projects. The last few years has even seen an embrace of
open source projects and methdologies by the commercial
world. But how do the large and successful open source
projects produce high quality artifacts outside the policies,
mandates, and management that accompany more traditional,
industrial development contexts? Development in the large is
a collaborative enterprise and if the success and impact of
work such as Peopleware [1] is any indication, the people and
the ways in which they work together play a large factor in
the success or demise of any sizable software project. Like
Conway [2] I believe that there is also a strong relationship
between the technical and social interactions that occur in any
software project. Understanding these are of importance in
determining how these projects work and avoiding failure in
the future.

My dissertation was primarily focused on studying large
(in terms of people and code) open source projects and the
interplay betweeen the processes that goes on in them. In this
paper, I summarize the techniques, analysis, and questions
that were introduced and at least partially answered during
my graduate work at U.C. Davis. I stress that while this work

comprised my dissertation, like most successful research, it
was performed in concert with many others who I am in debt to
and acknowledge in this paper (and note that I use the pronoun
“We” rather than “I” not by convention, but out of recognition
of those who this work could not have been done without).

We use communication and coordination data from mail-
ing lists, source code repository histories, and bug tracking
databases to characterize the relationship between participants
social and development behavior and examine the social
structure that exists in large OSS projects. For instance, we have
found that OSS projects do not typically follow a “bazaar”-like
organization and instead tend to organically organize into teams.
We examined the process by which OSS project newcomers
enter a community and identified the factors of importance
for an OSS participant migrating from a bystander to a full
fledged, core developer.

Quality (usually measured in defects of one kind or another)
is one of the most important aspects of any software project
and we therefore investigated the relationship between quality
and project coordination & organization. We showed that
collaboration history combined with technical relationships
(such as dependencies within software components) can be
used to predict which components of a system will be the
most failure prone with higher accuracy than previous methods.
We studied distributed development in both open source and
commercial projects, characterized the level of geographic
and organizational distribution, and examine the relationship
between distributed development and software quality in a
number of contexts, leading to a higher level, aggregate theory
of distribution and quality. And finally, We performed an
analysis of code ownership on the same three projects and
show how the relationship between ownership and quality is
affected by the development style used.

Taken together, these data-gathering methods and the em-
pirical studies that they enabled provide an understanding of
the collaboration processes at work in OSS (and in some
cases commercial) projects and also give researchers tools and
techniques that they can use to gather and analyze data to
answer their own related questions.

One possible misconception in studying open source software
is that it encompasses just one method or process for developing
software. In reality, the processes used and development
methodology in open source is as (or more) varied as software
projects in commercial contexts. However, there are categories
of project types and Berkus [3] discusses five types of project



organizations in OSS. In my dissertation, we made an effort
to cover different types of projects. For example Apache is
a foundation with a well-organized, hierarchical governance
structure and formalized policies. Postgres is a community,
more informal, with consensual group decision making and
Python is monarchist. Please see the original work for threats
to validity and contexts in which we believe the results may
or may not hold.

II. MINING OPEN SOURCE DATA

To study and perform emprirical analysis on OSS projects,
one first has to obtain data from these projects relative to the
questions that one hopes to answer.

Previous research exists that presents methods of gathering
historical development behavior from source code reposito-
ries [4] as well as issue tracking systems [5] and even linking
the data between them [6]. However, the dominant form of
coordination within OSS is email communication [7], [8].
In my dissertation, we developed techniques for gathering
collaborative behavior from mailing list archives and analyzing
this behavior in a number of ways.

A. Mining Email Social Networks
Most OSS projects archive their mailinglist interactions

because they provide a valuable resource to newcomer project
members as well as a historical reference for what decisions
were made and why. Fortunately, obtaining these archives and
parsing them is not difficult, and we were able to obtain these
for a number of prominent projects including Apache, Perl,
Python, Postgres, and Ant.

Mailinglist messages contain vital information in their
headers, including who sent the message, when it was sent,
and what message it is in response to. In addition, the content
of the message is the actual payload and is amenable to easy
lightweight analysis as well.

One non-trivial problem that crops up when analyzing mail-
inglists is the issue of email aliasing. Many developers use mul-
tiple email addresses (especially over a period of many years)
and for accurate analysis, we need to be able to attribute all mes-
sages sent by a participant to that one participant and not mul-
tiple personas. For example the developer Ian Holsman uses 7
different email aliases, including ian.holsman@cnet.com,
ianh@holsman.net, and ianh@apache.org. Some-
times aliases have very little relationships to developers: the
developer Ken Coar uses the name Rodent of unusual size
associated with email address ken.coar@golux.com.

We developed a clustering method based on email similarity
and email naming conventions to identify aliasing candi-
dates [9]. The results of this clustering still require manual post-
processing, but greatly reduces the amount of work required.

Once aliases have been removed, we determine who was
talking about what and who has responded to who. These
threads of messages between developers create social networks
of their communication activity. From this point, techniques
such as Social Network Analysis [10] provided valuable
information about individual developers’ roles in a project
community as well as the community as a whole that was used
in subsequent studies.

B. Mining Work Contributions
The content of the messages are just as important as the

message metadata. Project participants who do not have write
access to the source code can only contribute code in the
form of patches and even core developers often post patches
for review. Submitting a patch to a project mailinglist is
evidence of project expertise, an investment in time, and a
willingness to contribute. We developed methods of mining
these patch contributions from mailing lists and determining
if they were accepted to the project, even in the presence of
edits to the patches prior to applying them to the source code
repository [11]. This data was valuable in a subsequent study
on OSS project immigration phenomena [12].

III. SOCIOTECHNICAL DYNAMICS

Having developed mining techniques and mined communi-
cation data along with software repository data, we were able
to conduct a number of empirical studies to answer questions
that we and others have posed regarding how OSS projects
actually work. We highlight our key results here.

A. How are social interaction and development behavior
related?

As an activity that involves hundreds and in some cases, thou-
sands of people, we believe that OSS project development is an
inherently social process. To investigate this belief, we gathered
both social (mailing list) and technical (source code repository)
historical data. We used social network analysis to identify the
key participants in the communication social network in apache
using betweenness centrality, a global measure of network
topological importance and degree centrality, a more local
measure [10], [9], and quantitively examined the relationship
between these measures and development behavior. Figure 1
shows a social network from Apache that is derived only of
participants that send at least 150 messages. In a network this
small, it is easy to identify the important participants, but the
Apache mailing list has hundreds of participants.

We used standard statistical analysis, and details can be
found in the original paper [9]. In short, we did find a strong
relationship between development behavior and the level of
importance that participants have in the social network.

In this study we found that:
• Participants who are core developers (have write access to

the project repository) have positions of higher importance
in the project social network than others.

• Both measures of network topological importance show
a strong positive relationship with development activity.
Developers who act as information brokers tend to be
those that contribute the most.

• Betweenness centrality, a measure of global importance,
is a better indicator of development behavior than degree
centrality.

• There is a much lower correlation between documentation
changes and social network importance than between
source code changes and social network importance.
Documentation contributors do not coordinate with others
at a high level.



alexei kosut

ben laurie

dean gaudet

brian behlendorf

jim jagielski

marc slemko

ryan bloom

rodent of unusual size (coar)

roy t. fielding

rob hartill

ralf s. engelschall

randy terbush

bill stoddard

william a. rowe_jr.

greg stein

jeff trawick justin erenkrantz

robert s. thau

Figure 1: Pruned Social Network of Apache Emailers (Each
link indicates at least 150 messages sent, or replied-to).

B. How does a project newcomer become a core developer?
Each OSS project has a core team of developers who have

the authority to commit changes to the repository; this team
is the elite core of the project, selected through a meritocratic
process from a larger number of people who participate on the
mailing list. Understanding the factors that influence the “who,
how and when” of this process is critical for the sustainability
of OSS projects and for outside stakeholders who want to gain
entry and succeed. Prior research indicates that certain types of
behaviors, such as the duration and intensity of participation on
the developer mailing list, and the submission of patches, play
a role in immigration [13], [14], [15]. However, this work has
largely been qualitative and/or descriptive. We used quantitative
hazard rate modeling, which supports the statistical testing of
hypotheses concerning the influence of these factors on the rate
of immigration [12]. We developed a theory of open source
project joining, and used data from Postgres, Python, and the
Apache web server to statistically evaluate this theory using a
piecewise-constant proportional hazard rate model. Quantitative
modeling reveals variations across the projects in the effects
of a participant’s a) duration in an OSS community; b) their
volume of patch submission; and c) and their social status.
These variations can be attributed to differences across the
projects in institutional norms for joining, technical complexity
of the projects and governance mechanisms.

In both Apache and Postgres, the statistical models supported
the hypothesis that the rate of promotion to core developer
first increases, and then decreases with tenure time (see
Figure 2). In all three cases, the data, when plotted, shows
this trend; however, in Python the results are not statistically
significant. The difference may be due to the centralized
community structure and more ad hoc immigration policies in
this monarchist project or could be attributable to the calendar
duration of the projects: Python is 4 years younger than both

.0
00

5
.0

01
.0

01
5

.0
02

.0
02

5

0 1 2 3 4 5
analysis time

Smoothed hazard estimate

Figure 2: Fitted hazard rate for immigration events (promotions
to core developer) in postgres by project membership time in
years. Note an initial peak around 1 year followed by a drop-off.

Apache and Postgres; perhaps the community’s reaction to
newcomers is still evolving.

In Python and Postgres, prior history of patch submission
has a significant effect positive effect. The effect is positive
and within the same order of magnitude, but not statistically
significant in Apache. We thus conclude that demonstrated skill
level via patch submission plays an important role in Python
and Postgres, but results are inconclusive in Apache. The effect
in Python is especially strong. This is consistent with stated
institutional norms of the Python project, which emphasize
display of skills through patch submissions and other technical
contributions as a way of gaining status.

The social network measure, indegree, which is a measure of
the breadth of response to an individual, and thus status within
the community also had a significant effect on immigration,
although the effect is moderate. This is especially interesting
given the varied governance structures and levels of formality
with regard to the immigration process in the projects. The
effect of social network status is specially strong in Postgres,
reflecting Josh Berkus’s description [3] of Postgres as a
community project, where decisions are made communally.
Still, the significance in all projects indicates a phenomenon
that may generalize well to a significant portion of other OSS
projects.

C. Are OSS communities haphazard and “bazaar” like or are
they more organized?

Commercial software project managers design project or-
ganizational structure carefully, mindful of available skills,
division of labour, geographical boundaries, etc. We contrasted
these organizational “cathedrals” with the “bazaar-like” nature
of Open Source Software (OSS) Projects, which have no
pre-designed organizational structure (referencing Raymond’s
famous essay [7]. Any structure that exists is dynamic, self-
organizing, latent, and usually not explicitly stated. Still, in
large, complex, successful, OSS projects, we do expect that
subcommunities will form spontaneously within the developer
teams. Studying these subcommunities, and their behavior
can shed light on how successful OSS projects self-organize.
This phenomenon could well hold important lessons for how
commercial software teams might be organized. Building on
known well-established techniques for detecting community



Finding and evaluating community structure in networks

M. E. J. Newman1,2 and M. Girvan2,3
1Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48109-1120, USA

2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
3Department of Physics, Cornell University, Ithaca, New York 14853-2501, USA

!Received 19 August 2003; published 26 February 2004"

We propose and study a set of algorithms for discovering community structure in networks—natural divi-

sions of network nodes into densely connected subgroups. Our algorithms all share two definitive features:

first, they involve iterative removal of edges from the network to split it into communities, the edges removed

being identified using any one of a number of possible ‘‘betweenness’’ measures, and second, these measures

are, crucially, recalculated after each removal. We also propose a measure for the strength of the community

structure found by our algorithms, which gives us an objective metric for choosing the number of communities

into which a network should be divided. We demonstrate that our algorithms are highly effective at discovering

community structure in both computer-generated and real-world network data, and show how they can be used

to shed light on the sometimes dauntingly complex structure of networked systems.

DOI: 10.1103/PhysRevE.69.026113 PACS number!s": 89.75.Hc, 87.23.Ge, 89.20.Hh, 05.10.!a

I. INTRODUCTION

Empirical studies and theoretical modeling of networks

have been the subject of a large body of recent research in

statistical physics and applied mathematics #1–4$. Network
ideas have been applied with success to topics as diverse as
the Internet and the world wide web #5–7$, epidemiology
#8–11$, scientific citation and collaboration #12,13$, metabo-
lism #14,15$, and ecosystems #16,17$, to name but a few. A
property that seems to be common to many networks is com-
munity structure, the division of network nodes into groups
within which the network connections are dense, but be-
tween which they are sparser—see Fig. 1. The ability to find
and analyze such groups can provide invaluable help in un-
derstanding and visualizing the structure of networks. In this
paper, we show how this can be achieved.
The study of community structure in networks has a long

history. It is closely related to the ideas of graph partitioning
in graph theory and computer science, and hierarchical clus-
tering in sociology #18,19$. Before presenting our own find-
ings, it is worth reviewing some of this preceding work to
understand its achievements and shortcomings.
Graph partitioning is a problem that arises in, for ex-

ample, parallel computing. Suppose we have a number n of
intercommunicating computer processes, which we wish to
distribute over a number g of computer processors. Processes
do not necessarily need to communicate with all others, and
the pattern of required communications can be represented as
a graph or network in which the vertices represent processes
and edges join process pairs that need to communicate. The
problem is to allocate the processes to processors in such a
way as roughly to balance the load on each processor, while
at the same time minimizing the number of edges that run
between processors, so that the amount of interprocessor
communication !which is normally slow" is minimized. In
general, finding an exact solution to a partitioning task of this
kind is believed to be an NP-hard problem, making it pro-
hibitively difficult to solve exactly for large graphs, but a
wide variety of heuristic algorithms have been developed

that give acceptably good solutions in many cases, the best
known being perhaps the Kernighan-Lin algorithm #20$,
which runs in time O(n3) on sparse graphs.
A solution to the graph partitioning problem is, however,

not particularly helpful for analyzing and understanding net-
works in general. If we merely want to find if and how a
given network breaks down into communities, we probably
do not know how many such communities there are going to
be, and there is no reason why they should be roughly the
same size. Furthermore, the number of intercommunity
edges need not be strictly minimized either, since more such
edges are admissible between large communities than be-
tween small ones.
As far as our goals in this paper are concerned, a more

useful approach is that taken by social network analysis with
the set of techniques known as hierarchical clustering. These
techniques are aimed at discovering natural divisions of !so-
cial" networks into groups, based on various metrics of simi-
larity or strength of connection between vertices. They fall
into two broad classes, agglomerative and divisive #19$, de-
pending on whether they focus on the addition or removal of
edges to or from the network. In an agglomerative method,
similarities are calculated by one method or another between
vertex pairs, and edges are then added to an initially empty

FIG. 1. A small network with community structure of the type

considered in this paper. In this case there are three communities,

denoted by the dashed circles, which have dense internal links but

between which there is only a lower density of external links.

PHYSICAL REVIEW E 69, 026113 !2004"

1063-651X/2004/69!2"/026113!15"/$22.50 ©2004 The American Physical Society69 026113-1

Figure 3: An example of community structure within an email
social network.

structure in complex networks [16], we extracted and studied
latent subcommunities from the email social network of several
projects: Apache HTTPD, Python, PostgresSQL, Perl, and
Apache ANT [17]. We then validated them with software
development activity history.

We found clear subcommunities (teams) in all of the projects
studied. These became even more clearly delineated when
constraining the communication that we used in our analysis to
messages directly mentioning product topics, viz., emails that
specifically name actual code artifacts. These communications
require more technical expertise and are separate from messages
that discuss more broadly accessible topics such as release
schedules and project-wide policies (we term these “process”
messages).

In four of the five projects, developers worked together on
the same file with people in their own subcommunity much
more often than people in others on average. This indicates
that the communication behavior is tied to their collaborative
development activities.

We also examined the development and communication
activities of people in the groups identified to see if they
were in fact working together on common tasks. Due to the
sheer number of groups identified over the life of all five
projects, a comprehensive manual inspection was not possible.
However, we randomly sampled and found that the groups’
activities reflected focused efforts towards specific goals. We
refer the reader to our original study for details on these case
studies [12].

IV. RELATIONSHIP WITH QUALITY

A. Can social and technical relationships help identify failure
prone components?

Studies have shown that social factors in development orga-
nizations have a dramatic effect on software quality [18], [19],
[20]. Separately, program dependency information has also
been used successfully to predict which software components
are more fault prone. Interestingly, the influence of these two
phenomena have only been studied in isolation.

Intuition and practical experience suggests, however, that
task assignment (i.e. who worked on which components and
how much) and dependency structure (which components have
dependencies on others) together interact to influence the
quality of the resulting software. We argue that these forms of

A

B

C

Fred Ram

D

E

F

G

Figure 4: An example sociotechnical network. Circles are com-
ponents and solid lines, dependency relationships. Rectangles
are developers and dashed lines represent contributions made.

information should be used together. The intuition behind our
approach is that software components may be related through
important but different types of relationships. By aggregating
these relationships our ability to predict failures will increase.
We do this in two ways.

We studied the influence of combined socio-technical
software networks on the fault-proneness of individual software
components within a system [21]. An example of an socio-
technical network is shown in Figure 4. The network properties
of a software component in this combined network were able to
predict if an entity is failure prone with greater accuracy than
prior methods which use dependency or contribution informa-
tion in isolation. We evaluated our approach in different settings
by logistic regression defect prediction models on Windows
Vista and across six releases of the ECLIPSE development
environment including using models built from one release
to predict failure prone components in the next release. We
compared this to previous work. Results of our empirical study
showed a strong correlation between the centrality of software
components and the number of post-release failures. In every
case, our method performed as well or better and was able to
more accurately identify those software components that have
more post-release

B. What is the affect of distributed development on software
quality?

Existing literature on distributed development in software
engineering, and other fields discuss various challenges, in-
cluding cultural barriers, expertise transfer difficulties, and
communication and coordination overhead [22], [23], [24],
[25], [26]. Conventional wisdom, in fact, holds that distributed
software development is riskier and more challenging than
collocated development. While there are studies that have
examined the delay associated with distributed development
and the direct causes for them [27], there has been much
less attention (See e.g., [28]) to the effect of distributed
development on software quality in terms of post-release
failures. We evaluate this belief, empirically studying the overall
development of Windows Vista [29] as well as FIREFOX
and ECLIPSE [30] comparing the post-release failures of
components that were developed in a distributed fashion with
those that were developed by collocated teams.



In Vista, we found a negligible difference in failures [29].
This difference becomes even less significant when controlling
for the number of developers working on a binary. Furthermore,
we also found that component characteristics (such as code
churn, complexity, dependency information, and test code
coverage) differ very little between distributed and collocated
components. Based on discussions with stakeholders, and the
software process used during the Vista development cycle, we
enumerated certain practices in place that may have mitigated
some of the difficulties of distributed development.

We identified the top contributors that made 95% of the
changes over multiple major releases of FIREFOX and ECLIPSE
and determined their geographic locations and organizational
affiliations [30] We found that FIREFOX is both organizationally
and geographically distributed with over a third of its compo-
nents receiving major contributions from developers on different
continents. Although over half of contributions come from the
California bay area (San Francisco and surrounding region),
these come from a myriad of commercial organizations such
as Google, Intel, and Red Hat. Interestingly, components that
are highly distributed have no more defects than those that are
not. In contrast, We found that ECLIPSE does not fit the typical
open source project profile. ECLIPSE is directed and developed
largely by one company; with IBM making 96% of the total
commits (49% coming from one lab in Ottawa, Canada). It
is also not largely distributed as 85% of the plugins can trace
3
4 of the commits to one development site. Further, software
components in ECLIPSE that are geographically distributed
have far more post-release bugs than those whose changes
originate primarily at one site.

Although we have only studied three projects in depth
(Vista, FIREFOX, and ECLIPSE), based on our findings and
also discussions with managers and developers involved in
geographically distributed development, we have developed a
theory regarding quality:

Software projects which have many distributed components
will put measures in place to deal with the associated difficulties
of distribution, thus mitigating the effect of such barriers on
quality. In contrast, projects which are largely collocated lack
such processes and policies, and the few distributed components
will suffer greatly in terms of quality

C. Does ownership and expertise affect software quality?

Ownership is a key aspect of large-scale software de-
velopment. We examined the relationship between different
ownership measures and software faults/failures in three
large software projects drawn from different process domains:
Windows Vista, Windows 7, the ECLIPSE Java IDE, and the
FIREFOX Web Browser. We found that in all cases, different
measures of ownership such as the number of low-expertise
developers, and the proportion of ownership for the top owner
have a relationship with both pre-release faults and post-
release failures [31]. However, we find that the strength of the
effects is related to the development process used. Vista shows
the strongest relationship with ownership level, followed by
ECLIPSE, and then Firefox, suggesting that the more that a
project uses an open source style process, the more that team

sizes rather than ownership levels affect to failures.
We evaluated three measures of ownership by examining

their effects when controlling for code metrics known to have a
relationship with failures: size, complexity, and churn. We use
ownership as a proxy for expertise as followed by others [32],
[33], [34] and evaluate the hypothesis that more changes by
those with low expertise leads to more failures [35].

For each component we count the number of contributions
and divide the proportion of total contributions down by
contributing developer. Thus if foo.dll had 100 changes
made and Clara made 40 of those changes, Clara’s ownership
of foo.dll is 40%

Ownership: The ownership of the top contributing developer for
a particular software component is considered the ownership
of the component. Higher ownership means that more commits
were made by a developer with expertise.

Minor Contributor: A developer who has made changes to a
component, but who made less than 5% of the commits to a
particular component has low expertise. 1.

Major Contributor: A developer who has made changes to a
component and whose ownership is at or above 5% is a major
contributor to the component and has a non-trivial amount of
experience with the component.

After accounting for size, complexity, and code churn, there
was a clear trend of ownership having a stronger relationship
to failures in Vista and 7 than in ECLIPSE and stronger in
ECLIPSE than FIREFOX. More minor contributors means more
failures and a higher level of component ownership leads to
fewer failures in all cases. In addition, across all projects, the
effect of major contributors on quality was weak and often not
statistically significant, indicating that the number of higher-
expertise contributors has little effect on quality. In the context
of Windows, where formal ownership policies are in place, the
violation or adherence to such policies had a strong effect on
software quality. In the two projects without such policies, we
see an effect, but it is clearly not as strong.

In a deeper investigation into Windows, the project where the
effect was the strongest, we found that 52% of the components
had minor contributors who were major contributors to other
components that the original had a dependency with. Thus,
one common reason that a developer is a minor contributor to
a component is that he is a major contributor to a depending
component.

The major benefit of these findings is that this is an
actionable result. For organizations where ownership has a
strong relationship with defects (which should be easy to
identify by replicating our lightweight analysis), we present
the following recommendations. These are currently being
evaluated at Microsoft.

1. Changes made by minor contributors should be reviewed
with more scrutiny.

2. Potential minor contributors should communicate desired
changes to developers experienced with the respective binary.

1 A sensitivity analysis with threshold values ranging from 2% to 10%
yielded similar results.



3. Components with low ownership should be given priority
by QA resources.

V. CONCLUSION

These results have begun to shed light on how large,
successful open source projects are able to coordinate their
work. In some cases, we have been able to compare projects
from open source and commercial domains. However, like all
research, these findings raise additional questions.

How well do these results generalize? What tools or
processes can enhance coordination and communication in these
projects? As the lines between open source and commercial
projects blur (e.g. consider how much open source code ships
on Cisco routers these days), what additional coordination
mechanisms will be needed and how will OSS projects, or
the consumers of OSS projects cope? Clearly, as the software
process landscape changes, so do the pertinent questions that
need to be addressed.

ACKNOWLEDGMENT

I would like to thank and acknowledge my advisor, Prem Devanbu,
for his constant insight, advice, support, motivation, patience, and
pretty much everything else during my graduate career.

I would also like to acknowledge those who I was lucky enough
to work with during my Ph.d.

• Harald Gall, Abraham Bernstein, and Adrian Bachmann at the
University of Zurich

• Nachiappan Nagappan, Brendan Murphy, Tom Zimmermann,
and Andy Begel during two internships at Microsoftt Research

• Clay Williams, Patrick Wagstrom, Peri Tarr, and Tim Klinger
during an internship at IBM Research

• Peter Rigby and Daniel German at the University of Victoria
• Prem Devanbu, Zhendong Su, Vladimir Filkov, Raissa D’Souza,

Anand Swaminathan, Greta Hsu, Earl Barr, Daryl Posnett, Eirik
Aune, Patrick Duffy, Alex Gourley, Zach Saul, David Pattison,
Foyzur Rahman, and Roozbeh Nia at the University of California,
Davis

REFERENCES

[1] T. DeMarco and T. Lister, Peopleware: productive projects and teams.
Dorset House Publishing Co., Inc. New York, NY, USA, 1987.

[2] M. Conway, “How do committees invent,” Datamation, vol. 14, no. 4,
pp. 28–31, 1968.

[3] J. Berkus, “The 5 types of open source projects,” 2007, march 20, 2007
http://www.powerpostgresql.com/5 types.

[4] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” Software Engineering, IEEE
Transactions on, vol. 31, no. 6, pp. 429–445, 2005.

[5] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in ICSM ’03:
Proceedings of the International Conference on Software Maintenance.
Washington, DC, USA: IEEE Computer Society, 2003, p. 23.

[6] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” in The workshop on Mining Software Repositories, 2005.

[7] E. S. Raymond, The Cathedral and the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. Sebastopol, California:
O’Reilly and Associates, 1999.

[8] K. Kuwabara, “Linux: A bazaar at the edge of chaos,” First
Monday, vol. 5, no. 3, March 2000. [Online]. Available: http:
//www.firstmonday.org/issues/issue5 3/kuwabara/index.html

[9] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Mining
email social networks,” in Proceedings of the 3rd International Workshop
on Mining Software Repositories, 2006.

[10] S. Wasserman and K. Faust, Social network analysis: Methods and
applications. Cambridge University Press, 1994.

[11] C. Bird, A. Gourley, and P. Devanbu, “Detecting Patch Submission and
Acceptance in OSS Projects,” in Proc. of the 4th International Workshop
on Mining Software Repositories, 2007.

[12] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and G. Hsu, “Open
borders? immigration in open source projects,” in MSR ’07: Proceedings
of the Fourth International Workshop on Mining Software Repositories.
Washington, DC, USA: IEEE Computer Society, 2007, p. 6.

[13] A. Capiluppi, P. Lago, M. Morisio, and D. e Informatica, “Characteristics
of open source projects,” Software Maintenance and Reengineering, 2003.
Proceedings. Seventh European Conference on, pp. 317–327, 2003.

[14] K. Crowston and J. Howison, “The social structure of free and open
source software development,” First Monday, vol. 10, no. 2, 2005.

[15] N. Ducheneaut, “Socialization in an Open Source Software Community:
A Socio-Technical Analysis,” Computer Supported Cooperative Work
(CSCW), vol. 14, no. 4, pp. 323–368, 2005.

[16] M. E. J. Newman, “Finding community structure in networks using the
eigenvectors of matrices,” Physical Review E, vol. 74, no. 3, p. 36104,
2006.

[17] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu, “Latent social
structure in open source projects,” in SIGSOFT ’08/FSE-16: Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of
software engineering. New York, NY, USA: ACM, 2008, pp. 24–35.

[18] M. Pinzger, N. Nagappan, and B. Murphy, “Can developer-module
networks predict failures?” in SIGSOFT ’08/FSE-16: Proceedings of
the 16th ACM SIGSOFT International Symposium on Foundations of
software engineering. New York, NY, USA: ACM, 2008, pp. 2–12.

[19] T. Zimmermann and N. Nagappan, “Predicting subsystem failures using
dependency graph complexities,” in Proceedings of the The 18th IEEE
International Symposium on Software Reliability, 2007.

[20] ——, “Predicting defects using social network analysis on dependency
graphs,” in Proc. of the International Conference on Software Engineering,
2008.

[21] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy, “Putting it
All Together: Using Socio-Technical Networks to Predict Failures,” in
Proceedings of the 17th International Symposium on Software Reliability
Engineering, 2009.

[22] E. Carmel, Global Software Teams: Collaborating Across Borders and
Time Zones. Prentice Hall, 1999.

[23] R. D. Battin, R. Crocker, J. Kreidler, and K. Subramanian, “Leveraging
resources in global software development,” IEEE Software, vol. 18, no. 2,
pp. 70–77, March/April 2001.

[24] G. M. Olson and J. S. Olson, “Distance matters,” Human-Computer
Interaction, vol. 15, no. 2/3, pp. 139–178, 2000.

[25] E. Carmel and R. Agarwal, “Tactical approaches for alleviating distance
in global software development,” IEEE Software, vol. 2, no. 18, pp.
22–29, March/April 2001.

[26] J. Herbsleb and R. Grinter, “Architectures, coordination, and distance:
Conway’s law and beyond,” IEEE Software, 1999.

[27] J. Herbsleb and A. Mockus, “An empirical study of speed and communi-
cation in globally distributed software development,” IEEE Transactions
on Software Engineering, 2003.

[28] N. Rammasubbu and R. Balan, “Globally Distributed Software Devel-
opment Project Performance: an Empirical Analysis,” in Proceedings
SIGSOFT symposium on the foundations of software engineering, 2007.

[29] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy, “Does
distributed development affect software quality?: an empirical case study
of windows vista,” Communications of the ACM, vol. 52, no. 8, pp.
85–93, 2009.

[30] C. Bird and N. Nagappan, “Who? What? Where? Investigating Distributed
Development in Open Source Software,” Microsoft Research, Tech. Rep.,
2011.

[31] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t Touch
My Code! Examining the Effects of Ownership on Software Quality,”
in Proceedings of the the eighth joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering. ACM, 2011.

[32] A. Mockus and J. D. Herbsleb, “Expertise browser: a quantitative ap-
proach to identifying expertise,” in Proceedings of the 24th International
Conference on Software Engineering, 2002.

[33] D. W. McDonald and M. S. Ackerman, “Expertise recommender: a
flexible recommendation system and architecture,” in Proceedings of the
ACM conference on Computer supported cooperative work, 2000.

[34] T. Fritz, G. Murphy, and E. Hill, “Does a programmer’s activity indicate
knowledge of code?” in Proc. of the ACM SIGSOFT symposium on The
foundations of software engineering. ACM, 2007, p. 350.

[35] A. Mockus and D. Weiss, “Predicting risk of software changes,” Bell
Labs Technical Journal, vol. 5, no. 2, pp. 169–180, 2000.

http://www.powerpostgresql.com/5_types
http://www.firstmonday.org/issues/issue5_3/kuwabara/index.html
http://www.firstmonday.org/issues/issue5_3/kuwabara/index.html

	Introduction
	Mining Open Source Data
	Mining Email Social Networks
	Mining Work Contributions

	Sociotechnical Dynamics
	How are social interaction and development behavior related?
	How does a project newcomer become a core developer?
	Are OSS communities haphazard and ``bazaar'' like or are they more organized?

	Relationship with Quality
	Can social and technical relationships help identify failure prone components?
	What is the affect of distributed development on software quality?
	Does ownership and expertise affect software quality?

	Conclusion
	References

