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Abstract—Social network methods are frequently used to ana-
lyze networks derived from Open Source Project communication
and collaboration data. Such studies typically discover patterns
in the information flow between contributors or contributions in
these projects. Social network metrics have also been used to
predict defect occurrence. However, such studies often ignore or
side-step the issue of whether (and in what way) the metrics and
networks of study are influenced by inadequate or missing data.

In previous studies email archives of OSS projects have
provided a useful trace of the communication and co-ordination
activities of the participants. These traces have been used to
construct social networks that are then subject to various types
of analysis. However, during the construction of these networks,
some assumptions are made, that may not always hold; this leads
to incomplete, and sometimes incorrect networks. The question
then becomes, do these errors affect the validity of the ensuing
analysis? In this paper we specifically examine the stability of
network metrics in the presence of inadequate and missing data.
The issues that we study are: 1) the effect of paths with broken
information flow (i.e. consecutive edges which are out of temporal
order) on measures of centrality of nodes in the network, and 2)
the effect of missing links on such measures. We demonstrate on
three different OSS projects that while these issues do change
network topology, the metrics used in the analysis are stable with
respect to such changes.

Index Terms—Open Source, Social Networks, Information
Flow

I. INTRODUCTION

Some Open Source Software (OSS) projects have been
runaway successes, sometimes besting commercial competi-
tors. Their success, and the open availability of OSS project
histories, including communication, development and main-
tenance activities, have made them valuable guinea pigs,
(similar to Caenorhabditis Elegans and Arabidopsis Thaliana,
in Biology) in the search for more effective ways of organizing
distributed teams that collaborate using Internet modalities.
Their email archives are a particularly interesting source of
information concerning task-oriented communication behav-
iors of the OSS project collaborators. Social Network Analysis
(SNA) on these networks, has proven valuable for generating
a “bird’s eye view” of networks of collaborating individuals,
making it a natural setting for studying information flow and
emerging organization in OSS projects by examining the social
and communication networks of developers. Since SNA offers

a quantitative, systemic type of analysis, it is appealing on
multiple levels, especially to the empirical software engineer-
ing discipline which is growing in rigor and maturity.

There has recently been some criticism of this approach,
focusing on data quality issues, the proper application of social
network metrics, their adequacy for studying the problems of
concern, and the interpretation of the results [1].

Of specific interest to this work are the SNA of developer
communication networks constructed from correspondence
mined from online developer mailing lists. These mailing
lists are used for communication and coordination amongst
the project workers, (e.g. to review possible changes to the
source code [2]). One can derive social networks from the on-
line mailing list archives. The nodes are the people sending
messages on the list. If a person A replies to a message from
another person B, then there is an edge connecting the node
representing A to that representing B. Software engineering is
a very knowledge-centric activity, and the mailing lists are the
critical media for information exchange between developers.
Information flow in the social network is naturally a critical
area of study. The majority of what we know about the
information flow in developers social networks is based on
these mailing list interactions1

The email social networks have been analyzed in the past
to determine the mediators of knowledge (hubs in those net-
works) as well as the emergence of community structure [4],
[5].

Here we focus on two concerns about the validity of such
studies due to the effects of inadequate data and metrics on
information flow in email networks.

A. Incorrect Information Flow due to Temporal Aggregation

If developer A posts a message on the discussion groups
(e.g. announcing a new feature that has been added), and
developer B replies to developer A’s message (warning that a
duplication of function may have occurred), and C replies to
B’s message (concurring with B), one can reasonably conclude
that there is information flowing from A to C. Alternatively,

1There has been research on developer communication via IRC [3];
however, this research was interested in the length and attendance of meetings
on IRC rather than actual information flow in a network.
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Fig. 1: The same topology, left, may apply to two different cases based on the order in which the messages were posted. If
t1 < t2, then information can flow from A to C. But if t1 > t2 no information can flow from A to C

consider the situation in which B posts on some topic and
C replies to B. Later A posts on an unrelated topic, and
B replies to A. Unfortunately, many current network mining
techniques consider all messages transmitted during an epoch,
and construct a network of links observed during this epoch.
After the network is constructed, the specific timing of each
message is typically not recorded, and just the edges are
retained. But, if one ignores the temporal ordering of these
emails and focuses purely on the topology of the network, one
might infer a transitive information flow relationship between
A and C. In this scenario the order of events is the problem,
i.e. it matters which of these events took place first. If we
were limited to topological information with no time stamps
on the edges, we might infer information flow through paths
in the graph that in reality did not exist. We call such an
erroneously inferred flow a transitive fault. Figures 1 illustrates
this problem.

Many metrics used in SNA such as degree centrality,
betweenness centrality, assortativity, etc. [6], disregard all but
the topological information in the networks. If used without
careful consideration, these metrics could yield misleading
results. At the core, this is a temporal aggregation issue, i.e.
transitive faults would not occur if the time interval under con-
sideration is small enough. The effects of temporal aggregation
on SNA results and the perils of ignoring them have been
adequately addressed elsewhere [7]. However, certain amount
of aggregation can never be eliminated, both because of the
discreetness of the data but also because aggregated analysis
is often the very intent of the studies. So then, we ask:

RQ1: How much temporal data aggregation can be tolerated
before SNA results become unreliable?

B. Information Flow in the presence of Inadequate or Missing
Data

Typically, social networks are derived from mailing list
archives, using the “reply-to” field in messages. This practice
is based on the observation that the “reply-to” field in a

message is an indication of information flow. Thus, we say
that there is information flowing from A to B if B replies to a
message that A has posted on a thread: presumably B replies
after s/he has digested the information content of A’s message.
One problem that arises from this formulation is that we can
only observe information flow if a participant actually posts
a message. If B read’s a message posted by A, but does not
reply, then there is information flowing from A to B, but there
is no way for us to know that. Put simply, the existence of a
reply from A to B indicates information flow from B to A,
but the lack of a reply does not imply that no information
flow occurred. This situation is due to the inadequacy or
missing data in the email “reply-to” network. Depending on
the topology of the observable network, the value of computed
SNA metrics could potentially be affected seriously by the
unobserved edges. When one uses SNA metrics node centrality
to determine important people, or the clustering coefficient to
determine local community structure on such networks, the
results may not reflect reality. We therefore ask:

RQ2: To what extent does missing data influence SNA metrics?

There are surely other critiques of the extraction of social
networks, and the use of SNA metrics; for now, we focus on
the above two issues.

C. Our Contribution

In this work we seek to quantitatively ascertain the effect of
the above two presented concerns on typical SNA analyses on
email networks of three OSS projects: Apache [8], Perl [9],
and MySQL [10]. We begin with RQ1, viz., the frequency
with which we might not have information flow between de-
velopers due to transitive fault in the email network topology.
Specifically, we address two questions. First, we ask: How
frequent are transitive faults? If transitive faults are relatively
rare (say a fraction of a percent of the time) then we could
probably just ignore them. The second question arises if these
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Fig. 2: Observed communication (solid edges) is evidence of
information flow from B to A. However, C may read B’s
message and B may have read A’s response, which indicates
unobserved information flow (dashed edges).

faults are not rare: to what extent do transitive faults effect
SNA analysis? We find that while transitive faults can be as
frequent as 50%, their frequency is highly dependent on the
time interval of aggregation, and that even when very frequent,
they do not change results from SNA analysis critically.

We approach RQ2 by specifically focusing on the question:
How much do missing links affect downstream SNA anal-
ysis, when missing links are modeled under three different
attachment scenarios? We find that the calculated betweenness
centrality and clustering coefficient are stable in the presence
of a large number of missing links.

Our contributions are thus:
1) We find that all social metrics that we have examined

are robust to the transitive faults that occur when social
network data is aggregated at intervals of one hour to
one year.

2) We observe that all social metrics studied are robust
to missing links as modeled by standard social network
growth models.

3) We present a set of techniques which can by used by
other researchers that utilize social network analysis
metrics so that they can either show that their own
metrics are robust or select different metrics which are.

II. RELATED WORK

The empirical software engineering community in recent
years has been deeply concerned with human aspects of
software engineering. Many papers in main line software
engineering conferences and venues, such as ICSE ([11], [12],
[13]), FSE ([14], [5], [15]), ASE ([16], [17]), and MSR ([18],
[19], [20]) have addressed this issue. In fact, a number of
workshops such as Cooperative and Human Aspects of Soft-
ware Engineering (CHASE) and Socio-Technical Congruence

(STC) have arisen that focus specifically on this issue and
have had numerous papers discussing the implications of
human communication and co-ordination activities on software
quality and developer productivity. In this line of work, mining
of social networks from email archives has attracted quite
a bit of interest. Social network metrics have long been
used in sociology to analyze on-line communities [21] and
are still [22]. A recent special issue of Information Systems
Research [23] was devoted to analysis of on-line communities
using such methods. In our own earlier work, we have shown
that centrality of an individual as measured by social network
metrics [4] in the email network is a powerful indicator of the
technical activity and importance of an individual. Pohl and
Diehl [24] more recently showed how networks could be used
to determine roles of developers. We also found that (rather
than being disorganized “bazaars”) the email social networks
of OSS projects show a very strong social structure [5] and
are organized in ways that reflect the underlying collaborations
between individuals [25]. Measures of importance such as
betweenness [6] are used in many of these studies.

However, there are quite a few important assumptions, many
previously unstated in published work, that are made in the
construction of social networks from on-line email archives.
Recently, Howison, Wiggins & Crowston [1] have presented a
careful, thoughtful analysis of these assumptions, and argued
that they should be considered as threats to validity of the
results that use social network analysis over email archives. In
addition to the temporal aggregation and information problems
discussed earlier, they discuss other difficulties, such as the
possibility of unrecorded back-channels of communication and
modeling the intensity of communications. Temporal issues
have also been addressed by Habiba [26], wherein the authors
propose a new notion of betweenness that takes times of
interactions into account. Braha and Bar-Yam [25] find that in
dynamically changing networks, the “hub” roles of individuals
actually change quite a bit from day to day, suggesting
that efforts to disrupt social networks (e.g., of criminals) by
targeting key individuals, would require constantly shifting
their sights.

III. THE EMAIL ARCHIVES DATA AND NETWORKS

A mailing list in an OSS project is a public forum. Anyone
can post messages to the list. Posted messages are visible to all
the mailing list subscribers. Posters to developer mailing lists
include developers, bug-reporters, contributors (who submit
patches, but don’t have commit privileges) and ordinary users.
Mailing lists can be quite active; for example, on the Apache
developer mailing list, there were about 4996 messages in the
year 2004 and 2340 in 2005. For Perl, these numbers were
10019 and 9606. For the time period studied, 2549 distinct
individuals participated on the Apache developer list.

We have mined archival records of developer mailing lists to
generate reply-to social networks for the three OSS projects:
Apache, MySQL, and Perl. Because we are only interested in



Project # of People # of Messages # of Edges Timespan

Apache 1573 101250 11227 1995 – 2005
Perl 2411 112514 16026 1999 – 2007
MySQL 804 33678 1989 2000 – 2006

TABLE I: Original data details.

information flow, we only include messages that have received
replies, since we have no evidence that a message without a
reply was actually read by anyone (it clearly did not contain
information worthy of a reply). One of the problems with email
data is that one person may use multiple email addresses to
send messages on a mailing list. We therefore use a semi-
automatic alias resolution algorithm so that all messages are
ascribed to the correct people. We refer the reader to previous
work for details of the process [4]. Table I contains summary
statistics for all of the projects.

For each of these projects, we construct an information flow
network based on messages that are sent as replies to previous
messages. When someone replies to a message on a mailing
list, the id of the message being replied to is contained in
the header of the message that is the reply. If message B is
sent as a reply to message A, then there is information flow
from the person that posted message A to the person that
posted message B. There may also be information flow from
the poster of B to the poster of A, but we have no way of
knowing that the poster of A actually read the reply (unless
of course the poster of A sends a second message in reply to
B, in which case the methodology described here will create
an edge of information flow). We use this methodology on all
mined data to create a network of mailing list participants.

IV. METHODOLOGY

A. Networks and Transitive faults

We generated reply-to networks from the discussion groups
for each project as described in the data section. We construct
these networks by aggregating all the messages over a given
time interval, and constructing the social networks for this
interval. In the following studies we experimented with differ-
ent aggregation time intervals, δt, from 1 hour up to the total
lifespan of the project. Once a start time and an interval δt
were chosen, we divide the messages into partitions, based on
which interval they fall into (e.g. messages sent in first month
of activity, messages in second month, etc.). Finally, a network
was generated for each time interval, comprising all reply-to
relationships in the time interval (ti, ti + δt). Each edge is
directed and labeled with the time the message was sent. Using
this timing information, we gauge the extent to which a given
network actually may give rise to spurious information flow.

We now define a transitive fault as a directed path of length
exactly two where the time label on the first edge is later
than the time label on the second edge along the path, i.e. a
directed 2-path with decreasing edge time stamps. The node
transitive fault rate is the fraction of transitive faults over all

2-paths through that node. The network transitive fault rate
is the sum of the node transitive fault rates over all nodes,
divided by the number of nodes in the network. Clearly, these
fault rates depend on topology, and we intend to investigate
the fault rates in OSS email social networks.

B. Network Measures

In this paper we use the following SNA measures.
• Number of 2-paths (2P) — The number of 2-paths

through a node is a measure of local social status as
defined previously [27].

• Betweenness Centrality (BW) — The betweenness cen-
trality of a node is a function of the how many commu-
nication paths a node lies on and is often used a measure
of global social status [28].

• Clustering Coefficient (CC) – The clustering coefficient
measures the local connectivity density, or local structure
in the graphs [29].

We now formally define these measures. Let a graph g be
defined as a set of vertices V and edges E : V × V . Let
gij be the number of shortest paths from i ∈ V to j ∈ V 2,
and let givj be the number of shortest paths from i to j that
pass through node v. For some node v ∈ V in graph g, the
betweenness centrality, BW is defined as follows:

BW (v) =
∑

i,j,i 6=j,i 6=v,j 6=v

givj

gij
(1)

This is a measure of the global importance, or centrality,
of a node. The closer the betweenness of a person is to 1,
the harder it is for others to communicate efficiently without
information flowing through this person.

For a node v in a graph g, the clustering coefficient
quantifies the density of the neighborhood of v with values
ranging from 0, which indicates a star topology around v, to
1, indicating that the network formed by v and all immediate
neighbors forms a clique.

Cv =
|{ejk}|

kv(kv − 1)
: vj , vk ∈ Nv, ejk ∈ E. (2)

where Nv is the neighborhood of v, defined as:

Ni = {u : evu ∈ E ∧ euv ∈ E} (3)

evu is an edge, connecting v to u and kv is the degree of a node
defined as the number of vertices, |Nv|, in its neighborhood
Ni. The clustering coefficient of a person in a social network
is a measure of the connectedness of that person’s neighbors
among each other, and thus is indicative of the local clique
strength that a person is in. (In undirected graphs, for any
node this is just the number of triangles in which that node

2Note that there may be more than one shortest path between two nodes if
multiple paths are of the same length.



is a vertex, divided by the number of all possible pairs made
from that vertex’s neighbors).

The total number of 2-paths has been used to charac-
terize networks in SNA, particularly when modeling node
importance, or centrality, in random graph models [27], [30].
Indeed, the ranking of nodes based on the number of 2-
paths going through a node correlates very strongly (using
the non-parametric Spearman rank correlation [31] due to
the power-law distribution of such metrics []) with the node
ranking based on node degree (unpublished), and also with
betweenness centrality [32]. In our studies, this is a natural
measure of centrality since it has a direct connection to the
number of transitive faults associated with a node.

C. Studies

We quantitatively evaluate RQ1 with two studies. First, we
gradually increase the aggregation epochs, stepping from hours
through days, months, years through to project life times. We
measure if, and by how much, transitive faults in the networks
change as the epoch size increases. We also take a look more
precisely at how the faults change at finer temporal resolutions
for each of the three projects. Then, we assess what effect
varying amounts of transitive faults have on the ranking of
nodes according to the number of 2-paths, for each project.
Because there could be multiple edges between the same
people in the network, the same topology could be annotated
with multiple time stamps on the edges, as the epoch size
changes. Thus, some two-paths could be transitive faults for
some epochs and not in others.

Because we often observe multiple messages being sent in
both directions between the same two people, it is difficult to
tell if a particular pair of edges that form a 2-path represent
a transitive fault. For instance, if we see an edge, B → C,
prior to an edge A → B, we may decide that the 2-path
A → B → C is a transitive fault because the order of
edges is incorrect temporally. However, if within the same
time interval we observe a later occurrence of B → C, then
there are two possibilities. If the second B → C corresponds
to a message which contains information that was originally
sent in the message that created the edge A → B, then the
2-path does represent a valid flow of information temporally.
Since we don’t know if actual information is being exchanged
in each pair of edges that represents a 2-path, we model
an optimistic and pessimistic model. Our optimistic model
represents a lower bound on the transitive fault rate. In this
case, whenever we see B → C following A→ B, we indicate
no transitive faults for the 2-path A→ B → C, regardless of if
there is an edge B → C prior to the edge A→ B (which in
isolation would represent a transitive fault). Our pessimistic
model represents an upper bound on the fault rate. Here,
whenever we see an edge A→ B after an edge B → C, we
label the 2-path A→ B → C as a transitive fault regardless of
what other edges between A, B, and C exist in the same time
interval. The true transitive fault rate lies somewhere in the

Time Interval Apache MySQL Perl

Hourly 0.48 – 0.55 0.38 – 0.43 0.45 – 0.52
Daily 0.43 – 0.55 0.41 – 0.53 0.44 – 0.55
Monthly 0.21 – 0.50 0.38 – 0.51 0.27 – 0.51
Yearly 0.11 – 0.49 0.37 – 0.50 0.17 – 0.50
Lifespan 0.15 – 0.50 0.41 – 0.51 0.17 – 0.51

TABLE II: Upper and lower bounds on network transitive fault
rates for varying time intervals

middle of these two values. We calculate the upper and lower
bounds for all three projects using intervals ranging from 1
hour to 10,000 hours (just over one year).

Turning to RQ2, we note that the concern here is the
potential impact of the missing edges on the stability of the
network measures. In other words, are the measures affected
by missing edges? We evaluate this by adding edges to the
measures, and gaugeing the effect on the measures. We use
three different models for adding edges to the observed graph.
These models are based on prior, validated theories of real-
world social network dynamics, and represent how dynamic
social networks grow over time. When we artificially insert
additional edges into the networks, as predicted by these
models, we hope to realistically simulate the “missing links”
of information flow that occur in developer networks; the links
are “missing” in the sense that they are not observable in
message traffic. In the first model of “missing links”, which
we call the Time Window (TW) model, we assume that people
read all postings within a time interval (e.g. the last 30 days)
before posting a reply. This model assumes that all message
posters are reading all the messages in the given interval
before their post, and thus information in these message has
flowed into them. In the second and third models, we assume
that links are missing randomly based on two different well-
known random graph models, the Erdős-Rényi (ER) [33] and
Preferential Attachment (PA) [34] models, respectively. The
results from the 3 models are simulated using a Monte-Carlo
approach, and compared. We used a biased coin approach so
that total number of edges added in the latter 2 models were
close to the number of links added in the TW model. Once
we augment the networks with these links, we calculate the
betweenness centrality and clustering coefficient for each node
and correlate the metrics for the nodes in the new graph with
the corresponding metrics in the original graph.

If the measures in the simulated graphs produce substan-
tially different centrality results, there is a strong indication
the measures are not stable in the presence of missing links,
and therefore should be viewed with some suspicion.

V. RESULTS AND DISCUSSION

A. Fault Rates

The range of fault rates for different aggregation time
intervals (epochs) are given in Table II, in terms of a lower-
bound upper-bound range. While the worst case scenario is



always around 50%, it is apparent that as the aggregation
intervals get longer the best case scenario shows fewer faults.

In Fig. 3 we show the more precise relationship between
the fault rate change (both upper- and lower-bounds) and the
aggregation time, for Apache, MySQL, and Perl (respectively).
The difference between the lower bound curves for Apache
and Perl on one hand and MySQL on the other probably tell
us that the “back-and-forth” debates on issues are significantly
shorter on the MySQL discussion boards vs the other two
projects. It is also notable that the reply-to MySQL email
networks, at the same temporal granularity, were much sparser
than those of Apache and Perl, Cf. I.

Finally, and most tellingly, Table III shows the rank cor-
relations (using Spearman rank correlation) between order-
ing of nodes that includes the transitive faults vs ordering
of nodes excluding the transitive faults going through the
respective nodes. The ordering of nodes is based on the
centrality measure of number of 2-paths through the node.
The higher the value the better the relative ordering of nodes is
preserved. The overall high values for the correlation indicate
that the orderings are largely preserved, and except for the
very lowest values (for MySQL, where the sparseness of the
communication networks are the likely cause, e.g. there were
very few 2-paths in any 1 hour interval) the probabilities of
observing them by chance (i.e. the p-values) are very small.
Still, we note that the time interval is a factor here, especially
for smaller projects with low communication activity levels.
We conclude that if the time interval is chosen to be not too
small, the results will be largely unaffected by even large rates
of transitive faults.

B. Missing Links

Table IV show the number of missing links added to the
graphs using each of the three models. In most cases a
very significant number of edges (several times more than
the number of original edges) get added to the original
data, so one might expect that the measures would yield
substantially different results. For each of the projects we
chose for comparison the top 10% of people who have the
highest value for the betweenness or clustering coefficient in
the original network, and the networks that we generated by
simulations, and compare their rank correlations (again, using
Spearman rank correlation). The highly-skewed Pareto nature
of the distribution of activity in open-source projects [35],

Time Interval Apache (p-val) MySQL (p-val) Perl (p-val)

1 day 0.67 (0.01) 0.52 (0.22) 0.74 (0.01)
5 days 0.71 (0.01) 0.63 (0.01) 0.77 (0.0001)
1 year 0.82 (0.0001) 0.73 (0.0001) 0.86 (0.0001)

TABLE III: Stability of rankings based on number of 2-paths.
The values are rank correlations (Spearman) of 2-path rankings
with vs without transitive faults. In parenthesis are the p-values
(1-significance) of the tests.

[4] is well known. This essentially means that most of the
activity in these social networks arise from a few participants.
Thus it’s sufficient to look at at the 10% people. More than
half of the people have betweenness centrality or clustering
coefficient of 0. Tables V and VI show that the ranking of
the betweenness and clustering coefficient of the original data
set compared with the three new data sets that we created
are highly correlated. The significance of these correlations is
greater than or equal to 99% for all of the comparison. For
each of the randomly generated graphs based on the original
graph (i.e. ER and PA), we generated 100 different random
graphs, and averaged the rank correlation over these 100 runs.
Although we add a significant number of edges (several times
more than the number of edges in the original graph) we see
that the people who had the highest betweenness and clustering
coefficient in the original data are still amongst the top people
in the newly generated data. Moreover the overall ranking
stays stable. Thus, missing links behaving according to our
three models do not have a considerable effect on the structure
of our social networks in OSS projects. This shows that the
methodology is reliable and robust.

VI. THREATS TO VALIDITY

While not a real threat to the validity of this work, we feel
obliged to accent strongly the following. What we show in this
work is that one can expect the behavior of some important
SNA measures to not be affected significantly in the presence
of 1) missing data, due to inherent limitations of the data
sources, and 2) incorrect information flow inferences, due to
temporal network aggregation. What we do not demonstrate in
this work is the utility of any such measures for any particular
goal; that has been the topic of many prior works. In other
words, these techniques may be inadequate for some particular
task so the results will not mean anything, but they will still
be stable in the presence of the above data challenges. The
stability is not to be confused with utility.

SNA analysis comprises many techniques and measures.
Here, we recognize that showing a few measures (i.e. centrality
and clusteredness) are stable in the presence of missing and
inadequate data does not give a clean bill of health nor a
license for future practice to the whole approach of SNA
analysis. However, we point out that the information flow
issues as well as the measures we used are fairly general,
important enough, and widely assumed to be pretty safe. Thus,
had they not passed the test that we subjected them to, many

Project Apache MySQL Perl

# of edges in ER 26555 4917 40350
# of edges in PA 28326 4752 40122
# of edges in TW 29032 5362 37910

TABLE IV: Number of missing links added back to the graphs
for all three models; TW=Time Window, ER=Erdős-Rényi,
PA=Preferential Attachment
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Fig. 3: The upper and lower bounds on transitive fault rates for Apache (a), Perl (b), and MySQL (c) as the time interval
increases from 1 hour to 10,000 hours (just over one year).

Project Apache MySQL Perl

ER 0.78 0.98 0.65
PA 0.80 0.63 0.76
TW 0.62 0.67 0.62

TABLE V: Rank correlation (Spearman) of the top 10% of
nodes, with vs. without transitive faults. The nodes were
ranked based on their Clustering Coefficient. TW=Time Win-
dow, ER=Erdős-Rényi, PA=Preferential Attachment.

previous studies would have been challenged. Surely, studying
the stability of many other local and global network measures
is necessary before SNA analyses methods and techniques
deserve the confidence people often place in them. Further,
there are other properties of SNA metrics that are important to
investigate. For example performance analysis is also critical.

On a technical note, while we found that some measures
are fairly stable in the presence of challenging data, we did
so by using measures that matched well and were easy to test
in our specific application (e.g. using the number of 2-paths
as a centrality measure). Ideally, one would need algorithms
and evaluation techniques that can calculate existing measures
with and without network paths that cannot carry information.
Instead, most of the existing algorithmic work in this area aim
to either develop new measures or faster ways to calculate old
ones. Also, typically, existing algorithms assume a static graph
and suffer from the effects of transitive faults. This work and
the work of Howison et al. [1] illustrate the problem, which
clearly presents an avenue for future research.

VII. CONCLUSION

We have shown that a set of measures of social network
analysis are robust to noise in network data. Specifically, we
have shown that:

Project Apache MySQL Perl

ER 0.88 0.90 0.72
PA 0.72 0.77 0.80
TW 0.89 0.77 0.86

TABLE VI: Rank correlation (Spearman) of the top 10%
of nodes, with vs. without transitive faults. The nodes were
ranked based on their Betweenness Centrality. TW=Time
Window, ER=Erdős-Rényi, PA=Preferential Attachment.

1) The clustering coefficient and the 2-path counts are both
robust to data aggregation across large intervals (over
one year) even though such aggregation may lead to
transitive faults.

2) The clustering coefficient and betweenness social net-
work analysis metrics on a network with missing links
are highly correlated with network that contain aug-
mented networks with links added, indicating that they
are also robust to some information loss.

These findings are good news in that they lend support to
prior research in light of the concerns raised by Howison
et al. [1]. In addition, further research that rely on social
networks that suffer from transitive faults or missing links may
continue to use these measures with confidence.

Our study has examined a limited set of SNA metrics.
However, software engineering research from noted researches
such as Pinzger, Zimmermann, and Nagappan [15], [36],
Williams and Meneeley [37], [38], Wolf et al. [39], [40] and
others have used these and other measures. In our study we
have presented techniques that other researchers can use to
test for robustness of additional metrics to missing links and
transitive faults. When the metrics used are found to be robust,
this increases confidence in the findings of a study. When
metrics are found to be susceptible to transitive faults or
missing links, other metrics may be chosen which are more



robust.
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