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Abstract. The adoption of distributed version control (DVC), such as Git and
Mercurial, in open-source software (OSS) projects has been explosive. Why is this
and how are projects using DVC? This new generation of version control supports
two important new features: distributed repositories and histories that preserve
branches and merges. Through interviews with lead developers in OSS projects
and a quantitative analysis of mined data from the histories of sixty project, we find
that the vast majority of the projects now using DVC continue to use a centralized
model of code sharing, while using branching much more extensively than before
their transition to DVC. We then examine the Linux history in depth in an effort to
understand and evaluate how branches are used and what benefits they provide.
We find that they enable natural collaborative processes: DVC branching allows
developers to collaborate on tasks in highly cohesive branches, while enjoying
reduced interference from developers working on other tasks, even if those tasks
are strongly coupled to theirs.

1 Introduction

Version control (VC) is tool support for concurrent, collaborative software processes.
VC allows developers to create a branch, an isolated workspace, from a particular state
of the source code. They can share this branch and work on their tasks within it without
impacting the rest of the project and later merge (or integrate) their changes back into
the main line of development.

Intuitively, branches should be cohesive (i.e. collect related changes [26]) allowing a
team to work together on a focused task and isolated from the rest of the project so that
rapid and volatile development is not interrupted or impacted by external changes. The
rich history provided by recent VC and their adoption by a number of projects provide a
unique opportunity to address these intuitions and quantitatively measure how cohesive
and isolated branches are in practice.

The evolution of VCs is marked by increasing fidelity of the histories they record. A
commit is the write of a change into VC history. First generation VC, such as RCS, record
the history of individual file commits. This enabled rolling back changes to a single
file and reviewing file-specific changes. Second generation, or centralized VC (CVC),
such as Subversion, stored sets of file changes committed together (i.e., a changeset) in



its history. This allows a related set of changes to be rolled back, and also enables the
conjoint history of a set of related files to be reconstructed.

Mainline

my-branch

Fig. 1: DVC history preserves branches and
merges.

Recently, a new generation of VC, dis-
tributed version control (DVC), has trans-
formed the use of VC and has achieved
widespread adoption. In DVC, every copy
of a project is a repository, with its own
history and the power to exchange source
code changes with other repositories. In
contrast with CVC, DVC is distributed
in the sense that it allows the change of
changesets unmediated by a central repos-
itory. DVC also preserves the history of branches after their promotion into the mainline
of development. Consider Fig. 1 in which circles represent commits to the repository.
Arcs denote the temporal ordering of commits. “Mainline” denotes the main line of
development from which releases are made and to which features, like “my-branch”,
are merged. The dashed edges depict relationships that were untracked, and forgotten
in CVC 6. In DVC, a commit always tracks its immediate predecessor commits, across
both branches and merges; for DVC, the dashed edges are indistinguishable from the
edges along a branch. This branch history allows us to augment developer studies with
quantitative studies of branch cohesion and isolation. We can use this branch history to
crosscheck qualitative results on branch usage. We can also use these measures to shed
light on whether differences in how a project uses branches correlate with defect rates or
schedules delays.

Open-source software (OSS) projects have rapidly adopted DVC. Our first research
question, RQ1, asks “Why did OSS projects rapidly adopt DVC?” We use interviews to
show that developers had previously wanted to make heavier use of branches but were
dissuaded by “merge pain”, the difficulty of resolving conflict that arises during branch
integration, and buttress this observation by showing that branch usage has markedly
increased in those projects that made the transition from CVC to DVC. We also note that
almost all projects making the switch have continued to use a centralized repository, call-
ing into question the conventional wisdom that DVC’s support for distributed workflows
has been the principal cause of the rapid transition to DVC.

Without branches, developers must share a single mainline and deal with the conflicts
that sharing entails. In practice, projects developed workflows to avoid or mitigate
conflict, such as baton passing or the “commit bit”. We can demonstrate the benefit of
branching by simulating a lack of branching. We observe that branched history of a DVC
can be linearized onto a single “mainline” in which the conflicts and interruptions that
branching avoids become manifest. This linearized history overapproximates the actual
conflict and allows us to bound the cohesion and isolation that branches afford.

Ideally, when a task is identified, developers create a branch to work on the task
together. But does this occur in practice? Is work performed in a branch more cohesive
than all changes across the repository during the same time period? Thus, RQ2 is “How

6 This limitation was addressed in Subversion 1.5.
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cohesive are branches?” To investigate this question, we use directory distance of the
files modified in a branch to measure its cohesion. Then we compare actual branches in
the Linux history against the baseline, background cohesion of linearized sequences of
commits. If actual branches are no more cohesive than these commit sequences, then
branches are either unlikely to be cohesive or directory distance is a poor proxy for
branch cohesion. To form these commit sequences, we picked a random starting point
on the linearized branch history. In §4.2, we found that actual, observed branches are
significantly more cohesive than background commit sequences.

RQ3 asks “How successfully do DVC branches protect developers from interruption?”
VC is good about flagging syntactic conflict; semantic conflict occurs when mainline has
changed in such a way as to invalidate assumptions made during the development of a
branch. Cross branch coupling causes semantic conflict. To merge a feature branch into
mainline is to promote that branch. When promoting a branch, programmers must review
mainline to try to find semantic conflict. To measure semantic conflict, we measure the
number of commits in a branch being considered for promotion that modified a file that
has also been modified in mainline, since the branch forked from mainline. Against a
linearized DVC history, we measure and bound how often the semantic conflict would
interrupt a developer in the absence of branching or procedures to ameliorate it.

We make three principal contributions in this paper: 1) We present compelling
evidence from study of sixty projects (RQ1) that branching and not distribution has
driven the rapid adoption of DVC; 2) We define two new measures: branch cohesion
and distracted commits, a type of task interruption that occurs when integration work
intrudes into development; and 3) We apply these measures to the Linux history and
(RQ2) quantify the cohesiveness of branches and (RQ3) the effective isolation they
provide against the interruptions intrinsic to concurrent development.

2 Theory

In April, 2005, development simultaneously began on two open source DVC systems,
Git and Mercurial. Their popularity has exploded, and by 2011, a large portion of
open source projects have already migrated to a DVC. According to Debian (a Linux
distribution), of the 55% of projects that report their VC (9,132 projects), 44% (3994
projects) use DVC [33], indicating that it has achieved widespread acceptance and
adoption7. VC has a profound effect on workflow, and adoption of a new VC is not a
trifling matter [12], as evidenced by the amount of discussion surrounding decisions
to change, the work required to move from one to another, and the change in project
workflows, all of which we have observed in OSS projects. For examples see GNOME’s
move to Git [25], Python’s move to mercurial [7], and the project that KDE created
solely to evaluate and eventually create tools for a migration to Git [13].

7 The data we report here comes from the repository that contains the Debian packaging scripts.
In practice, we observe that for the majority of projects, this repository is indistinguishable
from the upstream repository.
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Research Question 1: Why did OSS projects rapidly adopt DVC?

In §4.1, we present compelling evidence that DVC support for branching drove the
transition to DVC. Our interviews show that the impetus is cohesion and isolation. But
how cohesive are branches and how well do they isolate developers?

Cohesion If developers use branches to isolate tasks, we expect to find that branches
are cohesive and encapsulate related changes. Two reasons to expect developers to work
with cohesive branches is that their histories are easier to understand when faced with
maintenance tasks and they are easier to revert if the branch has a problem. On the other
hand, developers could be using branches merely to isolate their development work,
without separating that work into cohesive tasks.

Research Question 2: How cohesive are branches?

Coupling and Interruption Developing a new feature often requires making changes
to modules that are coupled to other modules. If different features, under simultaneous
construction by different developers, affect coupled modules, the tasks may require
coordination, as one developer’s work can cause other developers’ code to become
unstable. Ideally, uninvolved developers should be isolated from these changes until the
feature has achieved some degree of stability. At the same time, a developer working
on a new feature should still have access to VC to commit incremental changes, and
rollback, as necessary. Berczuk [2] makes this point in his discussion of configuration
management patterns, where he argues that developers should checkpoint changes at
frequent intervals to a location separate from the “team version control,” and that only
tested and stable code should be integrated. When the feature is ready, its integration
must not be too difficult or the productivity gained from working on an isolated branch is
lost. Indeed, Perry et al. [24] claim that tool support for integration is important because
“integration too often is painful and distracting” and because development lines diverge
when parallel development goes on too long.

When branches are not used, all changes occur on the mainline and a developer may
need to merge and integrate changes that are unstable and transitory or only tangentially
related to her work. The attendant interruptions can slow development. The use of
branches allows a developer to control and minimize the frequency of such interruptions.

Integration interruptions are a form of task interruption. Prior literature has shown that
task interruptions seriously impact developer productivity. Recovering from interruptions
can be difficult and time-consuming: developers must mentally juggle goals, decisions,
hypotheses, and interpretations related to their task, or risk inserting bugs. In a study at
Microsoft [16], 62% of developers said that recovering from interruptions is a substantial
problem. Van Solingen [28] found that interruptions are most problematic when a
developer is checking in changes or updating their working code base. DeMarco observed
that resuming after an interrupt often takes at least 15 minutes [10]. Parnin et al. [22]
instrumented Visual Studio and Eclipse to observe the time taken to resume development

4



tasks. While they found some strategies for mitigating the effects, developers began
editing within a minute of restarting a task only 10% of the time and took over 30
minutes in 30% of the cases. While these papers consider the effect of interruptions in
broader terms, they do support the claim that task interruptions diminish productivity.

Research Question 3: How successfully do DVC branches protect developers from
interruption?

3 Methodology

We used a mixed method research strategy [9] in our study of branches in DVC. We began
with interviews of developers (the qualitative phase) to help develop hypotheses regarding
the motivations for DVC adoption and then empirically evaluated these hypotheses by
gathering data and performing statistical analyses (the quantitative phase). For us, the
advantage of a mixed method approach is that the qualitative investigation allowed us
to collect answers to fundamental questions related to the “how” and “why” of DVC
adoption. The answers then provided insight and added meaning to our quantitative
results that might otherwise have been missed in a purely quantitative study. This
increased our confidence in the findings and provided a richer context that can aid in
understanding whether our results generalize.

In an effort to understand what has motivated the rapid transition to DVC from
an operational point of view, we observed the development activities in projects that
switched to DVC and interviewed a number of lead developers from these projects
regarding their switch. We sent personalized requests for fifteen minute interviews to
the three most active developers in a number of large and mature projects that had used
CVC for multiple years and had recently moved or decided to move to DVC. Following
these interviews, we gathered data from the development history of these projects and
quantitatively evaluated hypotheses based on their responses.

Interviewing project leaders was critical in understanding why people switched to
DVC, the perceived benefits and drawbacks of the switch, and (in cases where the projects
have used DVC for some time) how it has affected the policy and development process
of the projects. The data mining of the VC history and developer mailing lists allowed
us to provide quantitative evidence of the effects of DVC. We interleave quotations
from interviews and numerical findings from data mining to triangulate and provide a
balanced perspective.

We conducted semi-structured interviews of four projects and six people. Semi-
structured interviews make use of an interview guide that contains general groupings of
topics and questions rather than a pre-determined exact set and order of questions [17].
Semi-structured interviews are often used in an exploratory context when there are clear
research questions [17,31]. The responses from these interviews help develop hypotheses
and focus quantitative analysis. We extracted themes from the interviews using a modified
version of Creswell’s guidelines [9] for coding. The interview guide that we used
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Fig. 2: Branches projected onto D, a single timeline by date. The merge change M that
joins the two branches falls out since the work to merge each change occurs, piecemeal,
as each change is recorded.

can be found at http://www.cabird.com/public/vcinterviewquestions.pdf8.
We minimally copy-edited the quotes for readability. We eliminated false starts and
superfluous crutch words; we used standard notation, delimiting clarifying comments
with brackets and marking the suppression of unnecessary phrases with an ellipsis [17].

For the quantitative mined data, we developed measures and modified existing ones
to best examine the impact of DVC in the context of our dimensions. The data used, the
definition of the measure, and attendant threats to validity are discussed in §4. We chose
to examine 60 projects that had transitioned to DVC. These projects were drawn from
lists of projects using DVC on Wikipedia and GitWiki and include such notable projects
as Wine, Samba, Perl, Ruby on Rails, and the Glasgow Haskell Compiler. These projects
vary in age from 21 years (in the case of Perl) to 6 months (pthreads-stubs in X.Org) with
a median of 4.5 years. The number of contributors as recorded by the repositories ranges
from 1462 (Wine) to 1 (dri2proto in X.Org). The commits to these projects number from
139,187 (Samba) to just 6 (pthread-stubs in X.Org). As such, our selection of projects for
analysis spans a broad spectrum of OSS projects in terms of size, age, and development
activity. All projects have used DVC for at least 5 months at the time of this study; the
majority of them for over one year.

We use Linux to evaluate hypotheses and questions regarding advanced DVC usage
because the Linux kernel project has never used a CVC and its developers are generally
very experienced with history-preserving branching. Linux started using Git in 2005; we
have 3.5 years of Linux VC data and the corresponding data from Linux kernel Mailing
List (LKML). Over this period, there were 4K developers, 118K commits, and 443K
mail messages for Linux.

4 Evaluation

In this section, we answer each of our research questions. To begin, we introduce our
branch linearization technique on which much of our analysis rests. To linearize a
branched DVC history, we project the concurrent sequence of changes in a DVC history
onto the single timeline D, as shown in Fig. 2. The commits along this timeline represent
concurrent work that actually occurred across branches. Conflict or interruption, that

8 At the request of the participants, the interviews in their entirety are confidential.
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occurs along this timeline, bounds the work needed to avoid conflict or recover from
interruption. This work was previously largely unobservable (apart from mutterings
in mailing lists/interviews/change-log messages), handled by policies and procedures
such as baton passing and patch rework on a project’s mailing list [32]. To measure the
cohesion (§4.2) and isolation (§4.3) of branches, we compare the cohesion and isolation
of their within branch changes against that of across branch changes, in the form of
simulated branches drawn from D.

4.1 Rapid DVC Adoption

Pundits claim that support for distributed (changeset flows unmediated by a central
repository), as opposed to centralized, development is the root cause of this rapid
transition [23,8]. We have observed something different. The vast majority of these
projects do not appear to be making use of distribution. Of the sixty projects whose VC
use we examined, all but Linux continue to use a centralized model organized around
a single public repository, except the xemacs and gnome projects which publish two
repositories. Although these projects continue to use a centralized style of development,
we have observed a dramatic shift in their use of branches.

Lead developers from prominent open source projects (§3) indicated that, prior to
using DVC, branches were “painful and difficult” to integrate:

“ The biggest complaint associated with Subversion is associated with branching
and merging. The one feature that Git has that our users would really like is a
really fast and simple merge. ”

Richards, CEO WANdisco [14]

In some cases, two branches would grow so far apart, they had to abandon one of them
altogether. Prior to DVC, branches were typically created only for releases and not
new features. For instance, Koziarski from Ruby on Rails states: “We had branches for
versions [releases]. Feature branches were very rare for us”[20]. A preliminary empirical
investigation showed that few branches were created pre-DVC. Of the examined 60
projects that switched to DVC, 1.54 branches were created on average per month per
project before using DVC; after switching to DVC, the average rose to 3.67. A Wilcoxon
rank sum test shows that the two populations are statistically different9(p � 0.01)

Without easy branch and merging facilities, our interviewees reported that developers
would “pass around large patch sets” or “brain dump” a mega-patch that was almost
impossible to review. These large patch sets contained multiple, sometimes unrelated
changes, and it was impossible to “consider each on their own merits without having
to swallow the whole thing” (Turnbull, XEmacs [27]). This problem was compounded
for new developers who did not have commit access and so could not work and commit
incremental work in the course of making large changes. Under CVC, developers without
commit privileges, as well as core developers who refused to use “painful” (Sperber,
XEmacs [21]) feature branches were effectively reduced to working in a time before
version control.

9 A Wilcoxon test was used rather than the standard t test due to the heavily skewed distribution
of branches.
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Fig. 3: Depiction of the selection of branches for the Monte Carlo simulation.
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(b) Observed branches compared to simulated
branches over D from 1,000 simulations.

Fig. 4: Linux branch lengths: observed and simulated.

“ Because we’d have these large changes that would go in all at once, it would be
really difficult to find the source of problems. For example, if you wanted to find
a change that was responsible for certain problems, you would often go back
[in history] . . . and pretty soon you’d find one of these ‘mega’ patches . . . that
would essentially change every file in the system and would lump together sets
of unrelated changes ... [these mega changes made it] really, really difficult to
track down what change was responsible for a given problem, it makes software
maintenance really difficult. ”

Sperber, XEmacs [21]

In summary, projects continue to use a centralized repository and project maintainers
have stated that the DVC branch and merging facilities was a principal motivation, so
we find that the answer to RQ1 is branching, not distribution.

4.2 Cohesion

Large systems, like the Linux kernel, structure their files in a modular manner. Files that
perform similar or related functions are close in the directory hierarchy [5], thus the
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directory structure loosely mirrors the system architecture. To determine how “cohesive”
a set of changes is, we measure how far source files are from each other in the directory
tree. Two files in the same directory have a distance of zero (i.e. the highest level of
cohesion), while the distance for files in different directories is the number of directories
between the two files in the hierarchy. We only include ‘.c’ source files as Bowman [5]
found that header files for the entire system often are located in one directory.

Let d : F ×F → N0 denote the directory distance of two files. Each commit defines
a set of modified files, or changeset. When F is the set of files in a source code repository
and C is the set of commits, fm : C → (2F − ∅) returns the changeset of a commit; fm
cannot return the empty set because a changeset cannot be empty. The cohesion of a
single commit is the multiset of directory distances formed from the files in its changeset.
A branch is a “straight line” sequence of commits, B = c1, · · · , cn, where c1 is not a
merge commit and cn is either a leaf (i.e. HEAD) or the parent of a merge commit. Thus,
one branch includes and continues through a branch commit, while each child of a merge
commit starts a new branch, rather than continuing one of the merged branches. For the
branch B, let Bd be the multiset of directory distances formed over the union of all its
changesets:

Bd = {d(f, f �) : f, f � ∈
�

c∈B

fm(c)}, for f �= f �. (1)

Definition 4.1 (Branch Cohesion) The branch cohesion of B is the average of the
directory distances in Bd:

Bc =
�

d∈Bd

d

|Bd|
.

To determine if developers use branches to isolate cohesive changes, we need a
baseline to compare the cohesion of branches because we have no a priori notion of what
the range of good and branch cohesion values may be. Thus, we need to establish the
background distribution of cohesion, as a baseline for comparison. To do so, we measure
the cohesion of branches over D, the linearized history of a project (Fig. 2), which
captures concurrency work as a free-for-all on a single, shared mainline. Specifically, we
compare the cohesion of observed branches in the history of the Linux kernel against the
cohesion of simulated branches of equivalent length over the linearized history, D, using
Monte Carlo simulation. Fig. 3 depicts this simulation. We first measure the length of
each branch in the observed Linux kernel history (Fig. 3 left) and extract their multiset of
branch lengths (Fig. 3 middle). We then randomly tile these branch lengths (which do not
contain merge commits and sum to precisely the length of D) onto D to form simulated
branches (Fig. 3 right). Thus, the distribution of branch lengths is exactly the same
as the observed distribution of branch lengths in the Linux kernel history; specifically,
this is the distribution shown in Fig. 4(a). We then compute the branch cohesion for
each simulated branch. If developers generally work together on cohesive sets of files
in branches then the branch cohesion for branches of length n in the observed DVC
history will be higher than the cohesion for sequences of commits with length n in D.
We generated 1000 tilings in our simulation.
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Fig. 4(a) is a boxplot of the lengths of observed branches in the history of the Linux
kernel. As Fig. 4(a) makes evident, the distribution is positively-skewed. Since 90% of
the Linux kernel branches have length less than 35 commits, we truncated Fig. 4(b) at 35.
Branches longer than 35 commits had fewer than 25 instances, giving too small a sample
to produce meaningful results. Fig. 4(b) plots the mean branch cohesion of observed
Linux kernel branches (black diamonds) against the mean of the means of the cohesion
of the simulated branches (black circles). We report the mean of the means at each
branch length for the 1000 tilings and provide a 95% confidence interval (the vertical
lines). With the exception of branch length 34, which is not statistically significant (red
square), the observed branches are more cohesive than the simulated branches at each
length with p < 0.05.

Examining the magnitude of the differences in cohesion, we see that at branch length
two (the minimum), pairs of files committed on observed branches are 0.12 directories
closer together on average than pairs of files along D, the linearized history, while the
difference is 1.5 directories at branch length 32 (the maximum). These differences may
appear small, but note that a difference of 1 means that for each pair of files the distance
between them is at least one directory further apart in the code base on a simulated
branch than on the observed branch. This effect looms larger when one recognizes that
most branches modify tens to hundreds of files.

This point is further underscored by correlating this difference to the branch length.
As can be seen from Fig. 4(b), as branches become longer, the observed branches become
increasingly more cohesive relative to the simulated branches (Spearman correlation:
r = .69, p � .001). It is clear that developers group related changes on branches and
that this grouping increases with the number of changes.

Our interviews are consonant with this result: branches are not created only for
releases. In projects that have moved to DVC, branches comprise non-trivial, cohesive
changes such as features or localized bug fixes and maintenance efforts. Three of our
interviewees indicated that previously, such non-trivial changes would either have been
avoided or created “off-line” and then committed to the VC in a single, disruptive
mega-commit. Thus, we find that the answer to RQ2 is that branches are highly cohesive.

4.3 Coupling and Interruptions

Using data mined from the Linux kernel, we construct its linearized history D, as defined
in Fig. 2, and quantitatively establish an upperbound on the number of integration
interruptions that a developer avoids through the use of branching. By analogy to
numeric intervals, D(x, y) denotes the subsequence of commits between x and y in D.
For the commit c, let a denote its most recent non-merge ancestor.

Consider a developer working on a new feature on a branch. When she promotes a
feature branch to master, she must not only resolve any syntactic conflict that arise, but,
more generally, look for potential semantic conflicts, conflicts that occur when mainline
changes in a way that violates the assumptions on which a feature branch rests. For
instance, her branch may rely on a global variable whose range of allowed values has
changed in master, because her branch is coupled to other branches promoted since her
branch began. Such verification can be subtle and time-consuming. This work is inherent
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Fi ∩ fm(c)

Fi

a c

fm(c)Fi ∩ fm(c)}

fm(c)
D(a, c)

D

Fig. 5: Depiction of the formalisms described: The straight line indicates D, the linearized
sequence of commits (ovals). The stacked colored rectangles above a commit represent
its changeset. Here, c is a commit whose nearest, non-merge ancestor in DVC is a.
D(a, c) are the commits made by other developers in the intervening time. Fm(c) is the
set of files modified in c and Fi is the set of files modified in the commits in D(a, c).
The ratio of files in the intersection to files changed in c is the index of similarity δ that
we vary in our definition of distraction.

to concurrent development, but previously handled out-of-band by policy and procedure.
To upperbound this work, we consider the work to search for semantic conflict that
would occur along D where the distraction of integration work potentially intrudes into
feature development work at each commit. This measures how often the integration
work, ideally deferred to merge time, would instead intrude into feature development in
the absence of an isolation mechanism, such as that provided by DVC.

Fig. 5 illustrates the formalisms we introduce to measure the integration interruptions
that occur along D. The line at the left represents D, the linearized history. Ovals on D
represent commits. Each commit c defines a changeset, a set of files that it modifies. In
the figure, these modified files are the rectangles stacked above each commit. Specifically,
c is a commit whose nearest, non-merge ancestor in the original DVC history is a, and
D(a, c) represents the commits, not including a or c, that developers made to other
branches in that history in the intervening time. Definition 4.2 formalizes the set of files
changed in a sequence of commits.

Definition 4.2 (Intervening Files) The files modified in D(a, c) “intervene” between c
and a, its nearest, non-merge ancestor in D. These files therefore change the state of the
project into which c is written. The set of intervening files is

Fi =
�

w∈D(a,c)

fm(w).

If c modifies f ∈ Fi, a syntactic or semantic conflict could occur. Semantic conflicts
can be more distracting than syntactic conflicts as c’s author must review each file in
fm(c) ∩ Fi to ensure their absence, since VC catches syntactic conflicts. For instance,
one of the commits in D(x, c) could have changed the semantics of a function used
in c. Intuitively, the commit c is distracted if commits fall between it and its nearest,
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non-merge branch ancestor on D and one of those intervening commits changed a file
that c also modified. In Fig. 2, all the commits except commits 1 and 5 are potentially
distracted, depending on the set of files each commit changes. Definition 4.3 captures
this intuition.

Definition 4.3 (Distraction) The commit c ∈ D is distracted if

|Fi ∩ fm(c)|
|fm(c)| > δ, for δ ∈ [0..1].

We cannot know how often files changed in both c and D(a, c) will actually cause a
conflict or require the developer committing c to understand a change that occurred in
D(a, c). We capture this uncertainty in the threshold δ, an index of similarity, or fraction
of the size of the intersection of c’s changeset and the changesets in D(a, c) over the
size of c’s changeset. Each setting of δ represents a different assumption about how
likely concurrent changes are to generate integration work in order to write the current
changeset and form the commit c. At the right of Fig. 5, the fraction of the number of
files in the intersection divided by the number of files in c pictorially depicts this index
of similarity that we use to measure integration interruptions.
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Fig. 6: Commits that require integration work as δ varies
when the Linux kernel history is linearized.

In Fig. 6, we plot the
proportion of commits in
the linearized history of the
Linux kernel that are dis-
tracted as δ varies. At zero,
we print the percentage of
the time there are interven-
ing files (Fi �= ∅), regardless
of whether they intersect
with c’s changeset. Even at
δ = 1, i.e. when we require
fm(c) ⊆ Fi, 2.8% commits
are distracted, i.e. may en-
counter conflict or require
review to ensure that no
semantic assumption have
been violated. After calculat-
ing the 95% confidence in-
tervals, we find that a com-
mit c modifies a file that intervenes between c and its ancestor a on D with a confidence
interval of 4.47% to 4.69% of the time. This corresponds to the point in Fig. 6 with an
index of similarity of 0.1. All of the files in the changeset of a commit c are distracted
(index of similarity 1.0) with a confidence interval of 2.47% to 2.93%. Thus, a non-empty
overlap occurs approximately once every 22 commits and a complete overlap every 35
commits.

Clearly, using a branch reduces distractions by delaying the need to resolve conflicts
until merging the branch back into its parent. But how often does the use of branching ac-
tually avoid potential distractions in practice? Quantifying exactly how much distraction
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is avoided depends on how likely it is for concurrent changes to a single file to generate
integration work. First, there is the rate, reported above, of non-empty intersection. That
is, how often concurrent edits on different branches touch the same file. Second, there is
the cardinality of that intersection; how many files are edited concurrently by different
branches. Finally, there is the probability that the concurrent changes to a file in different
branches actually generate integration work, at the very least in the form of confirming
the changes made to the file are semantically noninterfering. We have established that on
average, non-empty intersections occur once in every 22 commits. To be conservative,
we assume that these intersections contain only a single file and that 90% of the time
the programmer must examine the out-of-branch change made to it. To answer RQ3, we
therefore conclude that working on branches protects a programmer from unexpected,
unwanted semantic conflicts once in every 24.4̄ commits on average, across all branches
that a developer works on.

4.4 Threats to Validity

The main threat to the external validity of our cohesion and distractions results is their
dependence on Linux Git history, which may not be representative. Further, Git history
can be perfected via “rebasing”, an operation that allows the history to be rewritten to
merge, split or reorder commits [3]. Repositories hosted locally by developers are also
not observable until branches are merged elsewhere.

Many projects we surveyed did not have a long enough DVC history (i.e. sample-
size) to produce statistically significant results in all of our measures. Developers are
still adjusting to DVC and may not have adopted history-preserving branching to break
apart larger commits. As well, many contributions, even to DVC-using projects, are still
submitted as large patches to the mailing-list, diluting, at least in the short term, the
impact of DVC adoption.

D, the linearization of a DVC history that projects all branches onto a single, shared
mainline overapproximates the integration interruptions faced by a developer, but we
do not know by how much. Our use of directory distance as a cohesion measure does
not capture the cohesion of a cross-cutting change; however, the fact that we found a
significant difference in spite of understating the history-preserving nature of lightweight
branching strengthens our result. Our analysis assumes that all integration interruptions
waste time, which may not always be the case.

5 Related Work

Version control systems have a long and storied past. In this paper, our concern is
primarily the introduction of history-preserving branching and merging, and the resulting
rich histories. The importance of preserving histories, including branches, has been
well recognized [11]. The usefulness of detailed histories for comprehension [1] and for
automated debugging [34] are by now well accepted. Some have even advocated very fine-
grained version histories [18] for improved understanding and maintenance. Automating
the acquisition of information, such as static relationships or why some code was
commited, from accurate and rich VC history might improve developer productivity [15].
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Branching in VCs have received a fair bit of attention [11]. Some have recommended
“patterns” of workflows for disciplined use of branching [29]. Others advocate ways of
branching and merging approaches [6] that mitigate the difficulties experienced with the
branch and merge operations of earlier version control systems. Merging is a complex
and difficult problem [19], which, if anything, will become more acute as a result of the
transition to DVC and the corresponding surge in the use of branching we have shown.
Bird et al. [4] developed a theory of the relationship between the goals embodied by the
work going on in branches and the “virtual” teams that work on such branches.

Perry et al. [24] study parallel changes during large-scale software development.
They find surprising parallelism and conclude “current tool, process and project manage-
ment support for this level of parallelism is inadequate”. Their conclusion anticipates the
rapid transition to DVC that we chronicle in this paper.

The influential work of Viégas et al [30] uses a visualization methodology to study
the historical record of edits in Wikipedia, and report interesting patterns of work (such
as “edit wars”). To our knowledge, our paper is the first detailed study of the impact of
DVC and its history-preserving branching and merging operations on the practice of
large-scale, collaborative software engineering.

6 Conclusion and Future Work

Contrary to conventional wisdom, branching, not distribution, has driven the adoption
of DVC: most projects still use a centralized repository, while branching has exploded
(RQ1). These branches are used to undertake cohesive development tasks (RQ2) and are
strongly coupled (RQ3). In the course of investigating these questions, we have defined
two new measures: branch cohesion and distracted commits, a type of task interruption
that occurs when integration work intrudes into development.

We intend to investigate how projects select branches to merge. The isolation that
branches afford carries the risk that the work done on that branch may be wasted if the
upstream branch evolves too quickly. We intend to investigate the impact of history-
preserving branching on the use of named stable bases [2].
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