
IEE
E P

ro
of

Process Aspects and Social Dynamics
of Contemporary Code Review: Insights

from Open Source Development
as well as Industrial Practice at Microsoft

Amiangshu Bosu,Member, IEEE, Jeffrey C. Carver, Senior Member, IEEE, Christian Bird,Member, IEEE,

Jonathan Orbeck,Member, IEEE, and Christopher Chockley,Member, IEEE

Abstract—Many open source and commercial developers practice contemporary code review, a lightweight, informal, tool-based code

review process. To better understand this process and its benefits, we gathered information about code review practices via surveys of

open source software developers and developers from Microsoft. The results of our analysis suggest that developers spend

approximately 10-15 percent of their time in code reviews, with the amount of effort increasing with experience. Developers consider

code review important, stating that in addition to finding defects, code reviews offer other benefits, including knowledge sharing,

community building, and maintaining code quality. The quality of the code submitted for review helps reviewers form impressions about

their teammates, which can influence future collaborations. We found a large amount of similarity between the Microsoft and OSS

respondents. One interesting difference is that while OSS respondents view code review as an important method of impression

formation, Microsoft respondents found knowledge dissemination to be more important. Finally, we found little difference between

distributed and co-located Microsoft teams. Our findings identify the following key areas that warrant focused research: 1) exploring the

non-technical benefits of code reviews, 2) helping developers in articulating review comments, and 3) assisting reviewers’ program

comprehension during code reviews.

Index Terms—Code review, open source, OSS, survey, peer impressions, commercial projects

Ç

1 INTRODUCTION

IN recent years, many open source software (OSS) and com-
mercial projects have adopted peer code review [2], a prac-

tice where developers subject their code to scrutiny by their
peers. While the underlying concepts of contemporary code
review [45] are similar to the traditional Fagan inspection [22],
there are also marked differences. A Fagan inspection is a
heavyweight process requiring synchronousmeetings among
the participants in multiple phases. Conversely, contemporary
code review is defined as being lightweight, more informal,
asynchronous, and supported by specialized tools [2]. Despite
studies that show Fagan inspections improve software qual-
ity [21], their typically high cost and formality have prevented
widespread adoption [29], [54]. Conversely, contemporary
code review has addressed many shortcomings of Fagan
inspection and has shown increasing adoption in industry
andOSS contexts [3], [38], [45].

Because many OSS projects, e.g., Apache[47], Chromium,1

Mozilla,2 Qt,3 and Android,4 now require peer-review prior
to merging new code into the main project codebase, there
are a large number of developers regularly participating in
code reviews. From the industrial perspective, Google [56]
and Facebook [33] have adopted mandatory code reviews
and approximately 50,000Microsoft developers actively prac-
tice code reviews [14]. Our recent survey of OSS developers
found that they spend approximately six hours per week in
code review [11]. Given the large number of developers who
practice code review, the total time devoted to code review is
quite significant. Therefore, increasing the effectiveness of
contemporary code review can greatly improve software
development productivity.

To improve a process or practice, empirical researchers use
a three-step approach: (1) understand the current process to
identify improvement opportunities; (2) evaluate the current
process and new ideas; and (3) improve the process by incor-
porating suggestions [58]. The high-level goal of this study,
which addresses the first step in this empirical framework, is
to better understand the contemporary code review process and its
benefits. Specifically, the goal of the study is to provide that
understanding by gathering information about 1) the code
reviewprocess, 2) developers’ expectations from code review,

� A. Bosu is with the Department of Computer Science, Southern Illinois
University, Carbondale, IL 62901. E-mail: abosu@cs.siu.edu.

� J. Carver, J. Orbeck, and C. Chockley are with the Department of Computer
Science, University of Alabama, Tuscaloosa, AL 35487.
E-mail: carver@cs.ua.edu, {jdorbeck, cmchockley}@ua.edu.

� C. Bird is with Microsoft Research, Microsoft Corportation, Redmond,
WA 98052-6399. E-mail: cbird@microsoft.com.

Manuscript received 24 June 2015; revised 24 May 2016; accepted 24 May
2016. Date of publication 0 . 0000; date of current version 0 . 0000.
Recommended for acceptance by M. Dwyer.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2016.2576451

1. https://www.chromium.org/developers/contributing-code
2. https://www.mozilla.org/hacking/reviewers.html
3. https://wiki.qt.io/Qt_Contribution_Guidelines
4. https://source.android.com/source/life-of-a-patch.html

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2016 1

0098-5589� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:
mailto:
https://www.chromium.org/developers/contributing-code
https://www.mozilla.org/hacking/reviewers.html
https://wiki.qt.io/Qt_Contribution_Guidelines
https://source.android.com/source/life-of-a-patch.html


IEE
E P

ro
of

and 3) how code review impacts developers’ impressions of
their peers. To gather this information, we rigorously
designed and validated a survey instrument. We sent the sur-
vey to code review participants from 36 popular OSS projects
and received 287 responses. We have already published the
validation of the survey instruments alongwith partial results
of theOSS survey [11].

Prior research has identified differences between the soft-
ware engineering (SE) practices in OSS and commercial con-
texts [34], [42]. Because this prior work did not specifically
address code review, we replicated the survey in a commer-
cial context (i.e., Microsoft) to analyze whether there were
any differences between OSS and a commercial organiza-
tion relative to our study goal. To provide additional insight
into the similarities or differences between OSS and Micro-
soft developers, we specifically recruited two types of sur-
vey participants from Microsoft: those that work on
collocated projects and those that work on distributed proj-
ects. Because code review is an interactive process, we
hypothesized that the Microsoft participants who work on
distributed projects would have similar views about code as
the OSS participants (whose projects are also distributed).
Our Microsoft survey received 416 responses.

The primary contributions of this study are:

� A better understanding of developers’ perception
about contemporary code review;

� A better understanding of why and how developers
collaborate during code reviews;

� Empirical evidence regarding the perceived non-
technical benefits of code reviews;

� A comparison of code review practices between OSS
and Microsoft projects; and

� An illustration of the process of systematically
designing and analyzing a software engineering
survey.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a brief description of contemporary code
review process and prior literature on code reviews. Sec-
tion 3 defines the research questions. Section 4 describes the
research method. Section 5 characterizes the study partici-
pants. Section 6 provides the results. Section 7 discusses the
implications of the results. Section 8 describes the threats to
validity. Finally, Section 9 provides directions for future
work and concludes the paper.

2 BACKGROUND

This section provides a brief background and prior research
on contemporary code review.

2.1 Contemporary Code Review Workflow

One key aspect of contemporary code review is that it is
tool-based. Some popular code review tools include: Gerrit,5

Phabricator,6 and ReviewBoard.7 Fig. 1 provides a simpli-
fied overview of the contemporary code review workflow.
First, the author creates a patch-set (i.e., all files added or
modified in a single revision), along with a description of

the changes, and submits that information to the code
review tool. Then the author (or someone else) selects the
reviewer(s) for the patch-set. The code review tool then noti-
fies the reviewer(s) about the incoming review. During the
review, the tools highlight the changes between revisions in
a side-by-side display. The reviewers and the author can
insert comments into the code. After the review, the author
can address the comments and upload a new patch-set to
initiate a new review iteration. This review cycle repeats
until either the reviewers approve the changes or the author
abandons the change. If the reviewers approve the changes,
then the author commits the patchset or asks a project com-
mitter to commit the patchset to the project repository.

2.2 Overview of Contemporary Code Review
Research

In recent years, there have been several studies on under-
standing contemporary code review practice. Rigby has pub-
lished a series of studies examining informal peer code
reviewpractices inOSS projects [46], [47], [48], and comparing
the review practices between commercial and open source
projects [45]. To characterize the code review practices, Rigby
and German proposed a set of code-review metrics (i.e.,
acceptance rate, reviewer characteristics, top reviewer versus
top committer, review frequency, number of reviewers per
patch, and patch size) [46]. Other researchers calculated simi-
lar metrics for five OSS projects and concluded that code
review practices vary across OSS projects based on age and
culture of the projects [1]. However, these findings were con-
tradicted in a later study, which found that despite large dif-
ferences among five OSS projects and several commercial
projects, their code reviewmetrics were largely similar [45].

After seeing the successful adoption of code review prac-
tices by OSS projects, many commercial organizations have
recently adopted peer code review practices [2], [3], [44],
[53]. Contrary to OSS projects, code review participants at
Microsoft use both synchronous and asynchronous commu-
nication media. They also consider communications during
code reviews essential for understanding code changes and
design rationale. Microsoft developers expressed a need to
retain code review communications for later information
needs [53]. Another study at Microsoft found that although
finding defects is a primary motivation for code reviews,
other benefits (e.g., knowledge dissemination, team aware-
ness, and identifying better solutions) may be more

Fig. 1. Simplified code review workflow.

5. https://www.gerritcodereview.com/
6. http://phabricator.org/
7. https://www.reviewboard.org/

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2016

https://www.gerritcodereview.com/
http://phabricator.org/
https://www.reviewboard.org/


IEE
E P

ro
of

important. The major challenge is understanding the code
changes [2].

While these studies characterized the code reviews in com-
mercial projects, only one study [45], which focused on quan-
titative aspects of code reviews, has compared and contrasted
between the code review practices of OSS and commercial
projects. Since developers’ motivations and project gover-
nance differ between OSS and commercial organizations [32],
[42], code review collaborations may also differ between OSS
and commercial projects. This lack of research was one of the
motivations for gathering information about contemporary
code review from bothOSS and commercial developers.

While most of the earlier exploratory studies focused on
understanding the code review practices, a few recent stud-
ies have focused on understanding the impact of different
factors on code reviews. Code review characteristics such as
review size, component, priority, organization, reviewer
characteristics, and author experience significantly influ-
ence both review completion time and outcome [5]. More-
over, a reviewer’s prior experience in changing or
reviewing the artifact and the reviewer’s project experience
increases the likelihood that s/he will provide useful feed-
back [14]. While these studies focused on technical human
factors and characteristics of the code changes, no studies
have focused on the non-technical human factors (i.e.,
author’s reputation, and relationship between an author
and a reviewer). Because code review facilitates direct col-
laboration between people, a better understanding of the
impacts of various human factors is crucial to improve the
code review practices.

A few recent studies have investigated various techni-
cal benefits of code reviews. Although the primary goal
of code reviews is defect detection, because three-fourths
of the review comments are related to maintainability
issues code review may be more beneficial for projects
which require highly maintainable code [6]. Code reviews
have significant impact on software quality. A recent
study found that both low code review coverage (i.e., the
proportion of changes that have been reviewed) and low
review participation (i.e., the number of reviewers) often
increase the likelihood of post-release defects [38]. While
these studies focused on the technical benefits of code
review, only one study [2] has explored the non-technical
benefits of code reviews. The evidence about the non-
technical benefits (i.e., impressions formation, knowledge
sharing, and mentoring) has been mostly anecdotal.
Empirical evidence regarding various benefits of code
reviews can encourage project managers to adopt code
reviews for their projects.

While this prior work provides several important insights
into contemporary code review, a number of key aspects are
yet unexplored. First, developers who regularly use code
reviews should be able describe scenarios when code
reviews can be helpful or not useful. Second, experienced
reviewers should also be able to describe the best strategies
for code review and help other developers write acceptable
code. Finally, because code reviews involve direct collabora-
tion between participants, various types of social interactions
are crucial for successful code reviews. However, these three
aspects of code review have not received enough attention
from researchers. One of the goals of our work is to provide a
better understanding of these aspects to guide project

managers’ decisions about the usefulness of code review and
help improve code review effectiveness.

2.3 Our Previous Survey

The work in this paper builds on the results of our previous
survey of contemporary code review practices in OSS proj-
ects [11]. In that paper, we developed and validated the sur-
vey instrument described in Section 4. We used that survey to
gather data from 287 OSS developers who had been active in
contemporary code review. That paper reported one of the
primary quantitative results from the survey, specifically that
there is a high level of trust, reliability, perception of expertise,
and friendship between OSS peers who have participated in
contemporary code review for a period of time. In this paper,
we expand these results to include qualitative data from the
first survey as well as to compare the results with those from
the a second survey conductedwith commercial developers.

3 RESEARCH QUESTIONS

To address the study goal, we explore eight research ques-
tions. The remainder of this section defines each question.

3.1 Importance of Code Review

Code reviews require significant effort. They delay merging
of code to the main branch by 1-2 days [45]. However, recent
studies indicate that only one-fourth of code review com-
ments relate to functional defects [6], [19], which raises
questions whether developers perceive the effort spent in
code review as beneficial. To better understand how devel-
opers view the importance of code review, the first research
question is:

RQ1: Why do developers consider code reviews important (or
not important) for their projects?

3.2 Code Review Process

Because projects often mandate the use of code review,
developers spend a significant amount of time performing
code reviews. To quantify this effort, the second research
question is:

RQ2: How many hours, on average, do developers spend in code
reviews?

In our prior study of code review-based social networks in
OSS projects, we observed the presence of sub-communities
and a higher volume of interactions between some developer
pairs [12]. Subsequently, we found that, in OSS projects,
experienced developers received more timely feedback on
review requests than newcomers [13]. These results suggest
that a history of interactions may influence a reviewer’s
acceptance and prioritization of particular reviews. The next
research question investigates this phenomenon.

RQ3: How do developers decide whether to accept an incoming
code review request?

Reviewers may use different criteria to determine
whether a code change is of high quality. For example,
reviewers may have different opinions on the effects of

BOSU ET AL.: PROCESS ASPECTS AND SOCIAL DYNAMICS OF CONTEMPORARY CODE REVIEW: INSIGHTS FROM OPEN SOURCE... 3



IEE
E P

ro
of

coding style on quality [14]. The next research question
seeks to better understand these factors:

RQ4: Which code characteristics are indicative of low quality
code?

The goal of code review is not only to identify issues in a
code change but also to help the author resolve those issues.
Experienced reviewers can mentor code authors regarding
coding techniques, project design, or API usage. The next
question seeks to better understand this mentoring process:

RQ5: How do reviewers help authors of low quality code improve
it to the level required for inclusion in the project?

3.3 Impact of Code Review on Peer Impressions

The intense interactions during the code review process
allow participants the opportunity to gain a unique insight
into the abilities of their peers. For example, if a reviewer
repeatedly finds the contributions of a particular code
author to be of high quality, the reviewer may consider that
author to be highly competent or intelligent. As a result,
code review collaborations may help the participants form
accurate perceptions of each other. Moreover, a reviewer
may be more likely to trust project-related decisions made
by an author known to be competent. Because some of the
primary benefits of contemporary code review are non-tech-
nical, i.e., beyond defect detection [2], it is important to
understand what those non-technical benefits may be. To
help identify these benefits, we present three research ques-
tions. The first question, on the positive side:

RQ6: How does the use of a high-quality or an outstanding
problem-solving approach affect the reviewers’ perception
of the code author?

Conversely, low-quality code may result in negative
impressions. Therefore, the next question is:

RQ7: How does a poorly written code affect the reviewers’
perception of the code author?

As addressed in previous research questions, code
reviews could have either positive or negative impacts on
the impressions that teammates have of each other. To help
judge the overall value of code reviews, we ask:

RQ8: What is the effect of code review on peer impression?

4 RESEARCH METHOD

We conducted two surveys to answer the research questions
and compare OSS projects to commercial projects. The first
survey targeted OSS developers. The second survey targeted
Microsoft developers. We have published partial results of
the first survey [11]. The remainder of this section describes
the survey design process, participant selection criteria, pilot
tests, data collection, and data analysismethods.

4.1 Survey Design

Because our goal was to measure peer impression con-
structs, we followed well-regarded social and behavioral

research methods to build scales [20], [23]. In this approach,
rather than directly asking the participants about each of
the constructs of interest, the researchers define a number of
scale items that focus on different aspects of the same
underlying construct. Then, during analysis, the researchers
are able to gain a more complete understanding of the con-
struct based on the diverse set of scale items.

To understand peer impression, we identified four key
constructs. For each construct, we defined a set of statements
(scale items). We drew these statements from well-estab-
lished scales in psychology, information science, or organiza-
tional behavior. To ensure they were complete for software
engineering, we added a few additional statements. The four
constructs alongwith the sources for the statements are:

(1) trustworthiness [30], [37], [43], [51],
(2) reliability [30], [43], [49],
(3) perception of expertise [49], and
(4) friendship [16], [49].

Table 1 lists the statements for each construct. For each
statement, the respondents used a 7-point scale to indicate
whether it better described a code review partner8 or a non-
code review partner.9 We defined the scale as follows: 1 =
describes a code-review partner and NOT a non-code review part-
ner, 4 = describes both equally and 7 = describes a non-code-
review partner and NOT a code-review partner. To avoid any
bias, the survey tool presented the statements in a random
order without the name of the corresponding construct.

The survey also contained four multiple choice ques-
tions, fourteen open-ended questions, and one rating-scale
question to address the research questions and gather dem-
ographics. Table 2 lists the those additional questions
(renumbered for the sake of simplicity). In the remainder of
the paper, we will refer to the questions by those numbers.

Note that for both sets of questions, there were some
minor differences between the OSS survey and the Micro-
soft survey. Section 4.4 explains these differences.

4.2 Participant Selection

Developers must have participated in a sufficient number of
contemporary code reviews (as authors or reviewers) before
they can accurately understand the code review process, the
non-technical benefits of code review, and the effects on peer
impression formation. To ensure valid results, we only sur-
veyed developers with sufficient experience. For Survey 1, we
mined the code review repositories of 34 OSS projects that
used either Gerrit, ReviewBoard, or RietVeld, to identify
developers who had participated in at least 30 code review
requests (either as the author or the reviewer) and identified
2,207 developers. Similarly, for Survey 2, we queried Micro-
soft’s CodeFlow analytics platform [8] to select 2,000 develop-
ers who had participated in at least 30 contemporary code
reviews.

One of the study goals was to analyze whether developers
from a commercial organization behaved differently depend-
ing onwhether their project was collocated or distributed.We

8. a person who reviews your code or whose code you review on a
regular basis.

9. a person who has been a peer for some time, but you have rarely
reviewed their code.

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2016



IEE
E P

ro
of

hypothesized that commercial developers who worked on
distributed projects would be more likely to behave like OSS
developers (whose projects are also distributed). To test this
hypothesis across all research questions, we specifically
recruited Microsoft developers from two types of projects: 1)
projects in which most developers are collocated, 2) projects
inwhichmost developers are distributed.

4.3 Pilot Tests

To ensure the comprehensibility and validity of the scale
items (statements) with respect to the constructs, we con-
ducted five pilot tests. First, researchers from Psychology,
Computer Science, and Management Information Systems
reviewed the questions. This review led to several changes,
including: (1) increasing the rating scales from 5- to 7-point,
(2) rewording some questions to remove bias, and (3) adding
questions for a broader perspective of the code review
process.

Second, software engineering graduate students piloted
the survey to identify any difficulties in understanding the
questions and to estimate the time required to complete the
survey.

Third, we sent the survey to 20 OSS code review partici-
pants from two projects in our database. The completion
rate of this version of the survey was low. To address this
problem, we rephrased some questions, reformatted the
behavioral scale questions (Table 1) so they would appear
less daunting, and reordered some questions.

Fourth, we sent the improved survey to 24 OSS code
review participants from another project in our database.
We received enough responses to analyze the internal con-
sistencies of the four peer impression constructs. This anal-
ysis indicated that reliability scale had questionable internal
con-sistency. Therefore, we added two questions to that
construct.

Finally, we sent the survey to 117 OSS code review par-
ticipants from 11 other projects. The completion rate was
near 20 percent and the internal consistency of each con-
struct was sufficient (Cronbach’s a > 0:710). Therefore, we

TABLE 1
Behavioral Scale Questions

Construct Item Question OSS MS

Trust

trust_1 My communication with him/her is more informal (e.g., unofficial,
friendly)

@ @

trust_2 S/he is less likely to intentionally misrepresent my point of view to
others

@ @

trust_3 S/he is less likely to take advantage of me (e.g., exploit or deceive for
personal benefit)

@* @

trust_4 I am more likely to share my personal information (e.g., feelings, opin-
ions, or achievements) with him/her

@ @

trust_5 I am more likely to consider contributing to a new Free/Open Source
project at his/her request

@

Perception of Expertise

expertise_1 It is easier for me to identify whether s/he has the ability to provide
help in a specific project area

@ @

expertise_2 I more easily know if s/he is the best person to contribute to a specific
project area

@ @

expertise_3 It is easier for me to identify if s/he is the right person to fix a given
bug report

@ @

expertise_4 I am more likely to seek his/her help in a project-related area (e.g.,
coding problem, design decision, task assignment, documentation)

@ @

expertise_5 I am more aware of his/her level of work and dedication to the project @* @*

Reliability

reliability_1 I am more comfortable assigning a critical task to him or her @* @
reliability_2 I am more likely to be satisfied with the results of a task assigned to

him or her
@ @*

reliability_3 S/he is more likely to complete a project-related task (not just code
review) s/he accepts even if it requires a large amount of work

@ @

reliability_4 S/he is more likely to follow project coding and design guidelines @ @
reliability_5 I am more willing to accept his/her advice @ @

Friendship

friendship_1 I would feel a stronger sense of loss at his/her departure from the
project

@ @

friendship_2 S/he has a better understanding of me (e.g., aware of my preferences
and feelings)

@ @

friendship_3 S/he is more likely to respond to my mailing list posts @*
friendship_4 I communicate more frequently with him/her @ @
friendship_5 If s/he does something I do not like, I am more likely to talk to him/

her about it.
@

friendship_6 I am more likely to consent working together with him/her on a proj-
ect design task.

@

*– items dropped during analysis of that survey to improve the internal consistencies of scales.

10. Chronbach’s a is widely used to calculate the internal consis-
tency of multiple-item measurements (e.g., the behavioral scale con-
structs). The results of this test are interpreted as follows: a � :9 !
excellent, a � :8 ! good, a � :7 ! acceptable, and a < :7 ! questionable.

BOSU ET AL.: PROCESS ASPECTS AND SOCIAL DYNAMICS OF CONTEMPORARY CODE REVIEW: INSIGHTS FROM OPEN SOURCE... 5



IEE
E P

ro
of

deemed the survey ready for broad distribution. We incor-
porated feedback from the pilots into the final survey.

4.4 Data Collection

There were a few differences in the data collection process
for the two surveys.

4.4.1 OSS Survey

In February 2013, we sent a survey invitation to each of the
2,04611 active contemporary code review participants in our
OSS database. Of those, 231 emails were undeliverable, leav-
ing 1,815 valid invitations. Two weeks later we sent a

reminder email. Approximately two weeks later we closed
the survey after the daily response rate decreased to almost
zero. We received 287 responses (response rate of �16
percent).

4.4.2 Microsoft Survey

Questions Q1 and Q5 on the OSS survey were specific to OSS
developments. For the Microsoft survey, we modified these
questions to fit the commercial development context. Two
scale items (trust_5 and friendship_3) were specific to the
OSS development context and therefore excluded from
theMicrosoft survey. As a result of those excluded items, the
friendship scale had only three remaining scale items. To
ensure that all scales had an adequate number of items, we

TABLE 2
Survey Questions

Q1. (OSS) Which Free/Open Source project are you most actively involved in?
Q1. (MS) What product do you currently work on?
Q2. Howmany years have you worked in software development?
Q3. On average, how many people contribute code or review code in a given month for the project?
Q4. What proportion of the overall code commits in the project undergo peer code review?

� Less than 10%� 11%-25%� 26%-50%� 51%-75%�More than 75%
Q5. (OSS) Do you receive financial compensation for your participation in the project?

� Yes�No
Q5. (MS) Do most of the code change reviews that you are asked to participate in come from authors who are at your site or from

a distributed site (a site that is in another time zone or more than 100 miles away)?
�Most come from people that are at a different site than myself
�Most come from people in the same site as myself
� Approximately half from people in same site and half from distributed sites

Q6. Do you think peer code review is important in your project?
� Yes�No

Q7. Why do you think peer code review is important (or not important) for your project?
Q8. On the project, how many hours per week, on average, do you spend reviewing other contributors code?
Q9. From approximately how many different contributors do you review code each week for the project?
Q10. What proportion of your code commits do you submit for peer code review?

� Less than 10%� 11%-25%� 26%-50%� 51%-75%�More than 75%
Q11. Is the identity of the contributor relevant to you when you decide whether to review a code contribution?

� Yes�No
Q12. Please explain why the identity of the contributor is relevant to you when you decide whether to review a code contri-

bution.
Q13. When you review poorly written code, does it affect your perception of the code author?

� Yes�No
Q14. Please explain how does poorly written code affect your perception of the code author.
Q15. When you see poorly written code, how do you help the code reach the level required to be included in the project

(if at all)?
Q16. Please rate the following factors on a 6-point scale based on how strongly each indicates that code your are reviewing is

poorly written. (5 - Most important, 4 - Second most important, 3 - Third most important, 2 - Forth most important,
1 - Fifth most important, 0 - Not in top five)

— Poor readability

— Lack of comments

— Does not maintain application integrity

— Poor performance

— Unnecessary complexity

— Lack of modularity (large functions / classes)

— Does not follow coding convention of the project

— Inadequate exception handling

— Duplicated code (Identical or similar code exists in more than one location)

— A large parameter list to a function
Q17. When you review code of high quality or that has an outstanding approach to solve a problem, does it affect your per-

ception of the code author?
� Yes�No

Q18. Please explain how does high quality or an outstanding approach to solve a problem affect your perception of the code
author.

11. 2,207 total less the 161 used in the pilots.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2016



IEE
E P

ro
ofadded two items to the friendship scale. The last two col-

umns of Table 1 indicate exactly which items were included
in each survey. In September 2013, we sent an invitation to
the revised survey to 2,000 Microsoft developers who had
participated in contemporary code review. After one week,
we closed the survey. We received 416 responses (response
rate of�21 percent).

4.5 Data Processing and Analysis

The following sections describe the data processing and
analysis steps for the behavioral scale questions and the five
open-ended questions.

4.5.1 Behavioral Scale Questions

We analyzed three forms of validity for the survey. First, we
used expert researchers from Psychology, Management, and
Computer Science to review the survey question for face
validity [36]. Second, we carefully chose appropriate items
from prior validated scales to ensure content validity [36].
Finally, we performed a principal components analysis with
VARIMAX rotation to measure the construct validity [36] of
the scale items. Table 3 reports the a coefficients measures for
the scales and their interpretations based on the two surveys.

This approach ensured high reliability and validity of the
behavioral scales used in this study. In a prior article, we
have detailed the reliability and validity measures of the
survey instruments [11]. We also validated the reliability
and validity of the four modified scales used in the Micro-
soft survey using a similar process.

4.5.2 Open-Ended Questions

For the open-ended questions, we followed a systematic
qualitative data analysis process. First, two analysts
(Research Experience for Undergraduates (REU) students)
extracted the general theme from each response to the OSS
survey. Next, the first two authors worked with those ana-
lysts to develop an agreed-upon coding scheme for each
question. Using these coding schemes, the two analysts

independently coded the responses. After coding, they
examined their results to identify any discrepancies. They
discussed and resolved those discrepancies. For the Micro-
soft survey, the last two authors used the same process to
analyze the qualitative data. For the five open-ended ques-
tions in the two surveys, we coded a total of 2,626 responses.

5 DEMOGRAPHICS

To provide proper context for the results, this section
describes the demographics of the projects represented by
the respondents and of the respondents themselves.

5.1 Projects Represented

Table 4 provides the results to Question Q1 (Table 2) about
respondents’ primary projects. The number in parenthesis
represents the number of respondents who listed that proj-
ect. As an indication of the frequency of code review in these
projects, approximately 83 percent of the OSS respondents
and 90 percent Microsoft respondents indicated that more
than 75 percent of the code changes in their projects undergo
code review. Furthermore, almost two-thirds of the respond-
ents in both surveys indicated that they submit every code
change for code reviews. Therefore, the survey respondents
are actively using contemporary code review.

5.2 Respondent Demographics

Table 5 shows the results from survey questions 2, 8 and 9.
In each case, we grouped the responses into four categories
by analyzing the frequency distributions of the responses.
We then checked these categories to ensure they also made
logical sense.

For the OSS survey, 60 percent of the respondents were
paid to work on the project and 40 percent were volunteers
(Q5). The percentage of paid participants is not surprising
because the list of projects we drew from included some large
sponsored projects (e.g., Android, Chromium OS, Qt project,
and OpenStack), in which most of the participants are
employees of the sponsoring companies. This distribution is
slightly higher, but in the same range as previousOSS surveys
that had 40-50 percent paidOSS participants [10], [31].

For the Microsoft survey, approximately 69 percent of the
respondents indicated that most of the code review requests
come from developers at the same site, 13 percent come
from a different site, and the remainder are equally split.

6 RESULTS

The following sections describe the results of the two sur-
veys. For each of the eight research questions introduced in

TABLE 3
Coefficient Alpha (Cronbach’s a) of the Scales

Construct OSS Microsoft

a Interpretation a Interpretation

Trust .756 Acceptable .798 Acceptable
Perception of Expertise .811 Good .839 Good
Reliability .810 Good .736 Acceptable
Friendship .700 Acceptable .758 Acceptable

TABLE 4
Respondents’ Primary Projects

Open Source Projects Microsoft Projects
Qt Project (36) OpenStack (32) CyanogenMod (28) Bing (54) Windows (48) Office (43)
TYPO3 (20) Android (19) MediaWiki (17) Azure (24) Visual Studio (22) XBox (13)
oVirt (17) Linux kernel (16) Chromium OS (14) Ad Center (11) Exchange (10) Dynamic AX (12)
Eclipse (9) Gromacs (9) ITK (9) Windows Phone (10) IE (6) SQL Server (6)
LibreOffice (8) OpenAFS (6) Scilab (5) Dynamic CRM (4) Sharepoint (4) Skype (3)
VTK (5) Gerrit (4) AOKP (2) Halo (3) TFS (3) HPC (3)
Couchbase (2) Debian (2) Others (24) Autopilot (3) Lync (3) Others (131)

BOSU ET AL.: PROCESS ASPECTS AND SOCIAL DYNAMICS OF CONTEMPORARY CODE REVIEW: INSIGHTS FROM OPEN SOURCE... 7



IEE
E P

ro
of

Section 3, we compare the results from the OSS survey with
the results from the Microsoft survey. To help clarify the
results, we also include excerpts from the qualitative
responses to the open-ended questions. In this section, we
identify each of the respondents using a unique identifier,
with OSS-XXX and MS-XXX indicating respondents from
the OSS Survey and the Microsoft Survey, respectively.
Unless explicitly stated, the opinions of the OSS and Micro-
soft respondents were similar. Therefore, the chosen quota-
tions best represent the set of responses from both samples
(OSS and Microsoft).

As a result of the coding process (Section 4.5.2), each of
the open-ended questions had a large number of detailed
categories. For this presentation of the results, we abstracted
the detailed categories into a smaller number of high-level
categories. Further analysis of the data using the more
detailed categories can be found on a supplemental web-
site.12 In a qualitative analysis, each open-ended response
could match multiple codes. Therefore, the sum of the per-
centages can be greater than 100 percent.

For each question, we tested the normality of the answer
distribution using the Shapiro-Wilk test [52]. In cases where
the distribution was non-normal, we used non-parametric
statistics.

6.1 RQ1: Why Are Code Reviews Important?

In response to Q6, 98.6 percent of the OSS respondents and
100 percent of the Microsoft respondents considered code
reviews to be important for their project. Fig. 2 shows the
reasons why the respondents found code reviews to be
important for code quality (Q7). Although the relative order
of the responses was the same in the both surveys, the dis-
tribution of answers was significantly different between the
OSS respondents and the Microsoft respondents (x2 ¼
21:38; df ¼ 5; p < :001).

The OSS respondents emphasized maintainability slightly
more than theMicrosoft respondents did. Because OSS partic-
ipants come from diverse locations, backgrounds and exper-
tise levels, the quality of submitted code can vary greatly.

Therefore, OSS reviewers have to focus more on maintaining
consistent code quality. Conversely, there is less quality varia-
tion in code from Microsoft developers. Therefore, Microsoft
respondents are able to focus more on finding defects and
improving project awareness during code reviews.

Microsoft developers told us that knowledge sharing is
one of the primary purposes of code review. Newcomers to
a team often are included on reviews so they can learn more
about the codebase and how code reviews are conducted. In
some cases, there is an explicit mentor-mentee relationship
between an expert and a less experienced developer that is
manifested in code reviews. We are unaware of a similar
use for code reviews in OSS projects.

Interestingly, eliminating functional defects was only the
third most important reason for code reviews in both sur-
veys. This result is consistent with earlier findings that the
other benefits of contemporary code review, i.e., knowledge
transfer and identifying better solutions, may be more
important than defect detection [2]. Prior research on soft-
ware inspection also reported the following benefits pro-
vided by software inspections: defect identification [27], [50],
knowledge sharing [15], [50], [57], increased project aware-
ness [15], [50], and reduced development costs [26], [40].
Moreover, our prior work found that approximately half of
code review comments relate to maintainability issues, with
less than a quarter related to functional defects [14]. The fol-
lowing sections provide details on the reasons why develop-
ers consider code reviews important for their projects.

TABLE 5
Demographics of the Respondents

Question Mean Median Category description % of Respondents

OSS Microsoft OSS Microsoft OSS Microsoft

Q2. Experience in
software develop-
ment

7 years 10.7 years 5 years 9 years
Low: Less than 2 years 20% 8%
Medium: 3 to 5 years 33% 19%
High: 6 to 10 years 26% 33%
Veteran: More than 10 years 21% 40%

Q8. Average
number of hours
per week spent in
reviewing other
contributors’
code

6.4 hours 4.7 hours 5 hours 4 hours

Low: Less than 2 hours 30% 26%
Medium: 3 to 5 hours 32% 48%
High: 6 to 10 hours 26% 21%
Very High: More than 10 hours 12% 5%

Q9. Number of
contributors’
code reviewed
each week

6.3 peers 5.5 peers 5 peers 5 peers
Small: Less than 2 peers 20% 12%
Medium: 3 to 5 peers 45% 58%
High: 6 to 10 peers 27% 25%
Very High: More than 10 peers 8% 5%

Fig. 2. Importance of code reviews.12. http://carver.cs.ua.edu/Data/Journals/CodeReviewSurvey/

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2016

http://carver.cs.ua.edu/Data/Journals/CodeReviewSurvey/


IEE
E P

ro
of

6.1.1 Improve Maintainability

The majority of respondents from each survey (OSS: 71 per-
cent, Microsoft: 61 percent) indicated that code review
improves project maintainability in terms of efficiency as
well as other maintainability attributes, i.e., legibility, testa-
bility, adherence to style guidelines, adherence to applica-
tion integrity, and conformance to project requirements. In
general, developers are more cautious when they know that
changes are subject to peer review.

If you know someone is going to look at you, you dress
better. When you know someone is going to question you
for certain decisions, either you don’t make them or you
are prepared to defend it. So, in general, it improves qual-
ity and makes you better developer by forcing you to look
at your code the way others look. [MS-50]

In addition to code quality, reviewers evaluate the code’s
conformance to project requirements. This conformance is
especially important in OSS projects where contributors can
have different personal goals.

By requiring approval from core maintainers, it also helps
to keep undesirable code out. [OSS-48]

Code reviews and the subsequent discussions also help
maintaining project design constraints and result in better
designs.

It allows experts on particular areas of the (vast) codebase
to detect issues with changes early, helps generate
improved design ideas. [OSS-118]

Similarly,

..reconsidered crucial design decisions and ended up
thinking “wow, the way I was doing it is stupid for a lot
of reasons.” [MS-80]

Another benefit of code review is the production of more
readable code. To help reviewers understand the code eas-
ily, developers use documentation, comments, and appro-
priate indentation to make code more readable.

Code review helps to see if “my code” is read and inter-
preted the way it should be. [MS-25]

Readable code also helps long-term maintainability,
especially for large-scale and long-lived projects.

The code is ourmost valuable asset as well as our biggest lia-
bility. But we rarely have the time to re-invest in features
done, so it is vital that whatever we checkin is of the right
quality. You can test so-and-so much, but you really cannot
test maintainability and how easy a codebase is to debug. So
to avoid bug-farms you really have to review. [MS-312]

Code review also helps enforce a common coding style,
which is one of key characteristics of maintainable code.

Code style is even important because code is written once
but read so many times more. In fact, code can be main-
tained by other devs so it’s important it follows guidelines.
We have strict coding guidelines published. [MS-290]

6.1.2 Facilitate Knowledge Sharing

Code review facilitates multiple types of knowledge shar-
ing. Code review interactions help both authors and

reviewers learn how to solve problems using new
approaches. Reviewers often not only identify issues but
also explain why the author’s approach could lead to poten-
tial problems. Reviews also help socialize project details,
e.g., architecture, common APIs, and existing libraries.

... spread information to more people so all knowledge of a
system is not lost if someone is out sick, on vacation, or
leaves the team, assist in sharing knowledge of helpful
utilities so that we do not end up with duplicate systems
doing the same things. [MS-196]

Code reviews increase project awareness among the proj-
ect members by ensuring that at least one or two reviewers
are also aware of code changes.

... it helps to ensure that more than one member of a group
is familiar with any changes, it makes sure that all
changes are (at least somewhat) sane, and it helps to foster
feedback from people who will be affected by a change
before the change actually happens. [OSS-194]

Code reviews also allow senior project members to men-
tor newcomers.

... code reviews are often one of the primary methods of
knowledge transfer and brainstorming about software
between developers. They’re part of the critical path to
ramp-up new developers on both the project and technolo-
gies, and they’re often where experienced developers share
tricks-of-the-trade and knowledge in context. [MS-190]

In addition to newcomers, more experienced project
members can also learn through code reviews.

... allows us to leverage the lessons learned by each person
in the code base that not everyone will encounter.
[MS-355]

6.1.3 Eliminate Functional Defects

Reviewers often find logical errors, corner cases, security
issues, or general incompatibility problems that the author
may have overlooked.

Code review dramatically reduces bug count, in my expe-
rience. It is very rare for a change to be accepted without
some suggested improvements or notations of deficiencies
by reviewers. [OSS-145]

Experienced security reviewers are often able to identify
critical security flaws during code reviews.

More people see more, you can not let anyone from the
community to merge anything to your code (security
risk). [OSS-105]

Finally, code reviews help to inform a wider audience
about agreed upon changes and thus help avoiding incom-
patibility issues (i.e., a broken build).

... makes sure the feature/bug fixing can integrate into
other parts of project, done by other developers. [MS-241]

6.1.4 Encourage Community Building/Collaboration

By fostering direct collaboration between developers and
reviewers, code reviews encourage community building
and collaborations. While community building was

BOSU ET AL.: PROCESS ASPECTS AND SOCIAL DYNAMICS OF CONTEMPORARY CODE REVIEW: INSIGHTS FROM OPEN SOURCE... 9



IEE
E P

ro
ofmentioned by both Microsoft respondents and OSS

respondents, it was seen as very important in OSS projects.

.. helps the developer feel part of the F/OSS community. It
also provides a framework for participation, and allows
people to voice opinions on submitted changes and feel
involved. [OSS-39]

In addition, the inclusion of various stakeholders in the
review process fosters collaboration among the team
members.

It enables collaborative contributions to the implementa-
tion of the system. Everyone on the team has a say on
every part of the system. [MS-100]

Finally, code reviews also help developers gain a better
perception of each others’ expertise and build relationships.

Gives a sense of collaboration and camaraderie among engi-
neers who would not typically work together (employees of
competing companies, for instance). [OSS-37]

6.1.5 Identify Minor Errors, Typos

Developers often do not notice their own minor errors and
typos. Without code reviews, identifying those minor issues
may be time-consuming. In addition, developers may forget
to keep comments updated, which is crucial for long term
maintainability of the project. In most cases, the majority of
theminor errors or typos are identified during code reviews.

It helps catch human errors/typos. Two pairs of eyes are
always better than one. [MS-182]

6.2 RQ2: How Much Time Is Spent in Code
Reviews?

According to Q8, the median time spent in code review each
week is five hours for OSS developers and four hours for
Microsoft developers. Considering 40 work-hours per
week, this result indicates that developers spend 10-15 percent
of their time in code reviews. Moreover, OSS developers spend
significantly (Mann-Whitney U, p=0.05) more time in code
review than Microsoft developers.

Because a less experienced developer would be more
likely to invite an experienced teammate to perform a code
review, we hypothesize that experienced developers would
spend more time performing code reviews. Fig. 3 shows
development experience versus median hours spent in code
review. Since the distribution of review hours per week sig-
nificantly differs from a normal distribution, we used non-
parametric ANOVA (i.e., Kruskal Wallis H), which indi-
cates that those differences are statistically significant (OSS:

x2 ¼ 8:16; p ¼ 0:043, Microsoft: x2 ¼ 8:43; p ¼ 0:038).

For the OSS respondents, the paid contributors spend sig-
nificantly more time in code review than volunteer partici-
pants, median of five hours versus three hours (Mann-
Whitney U, p < :001). This results makes sense because paid
contributors often act as gatekeepers tomaintain the integrity
of the software by preventing buggy, unwanted, ormalicious
code. As a gatekeeper, the paid participant will therefore
review code frommany different peers and spendmore time
in code reviews. To support this observations, the results of
Q9 indicate that paid contributors review code from signifi-
cantly more peers each week than volunteers do, median of
five peers versus four peers (Mann-Whitney U, p=.009).

6.3 RQ3: How Do Developers Decide Whether
to Accept Review Request?

More than half of the OSS respondents and two-thirds of the
Microsoft respondents indicated that the identity of the
author was important in accepting a code review request
(Q11). Fig. 4 shows the reasons why respondents found the
code author’s identity important (Q7). Although the factors
identified were common between the two surveys, the distri-
bution of responses was significantly different (x2 ¼ 24:09;
df ¼ 4; p < :001). For example, the OSS respondents empha-
sized the non-technical factors (i.e., reputation and relation-
ship), while the Microsoft respondents emphasized the
technical factors (i.e., time/effort and expertise). This result
reinforces the emphasis that OSS developer place on reputa-
tion and relationships found in other research [32], [41].

Conversely, the areas of expertise of the contributor and
time / effort required for the reviewwere the priority consid-
erations for the Microsoft respondents. Discussions with
developers shed some light on the reasons for this result.
With respect to expertise, an experienced Microsoft devel-
oper often receives a large number of review requests. There-
fore, to minimize review time, s/he is more likely to accept
reviews for which s/he has expertise. In addition, since
Microsoft developers must manage competing demands for
their time and products have tight timelines, developers
must frequently make decisions based on the time required
to complete a task. Thus, the choice to participate in a code
review depends heavily on the estimated time required. The
following sections provide details on each factor.

6.3.1 Relationship with the Author

A reviewer’s relationship and history of interaction with the
code author often affects the decision of whether to accept a
review request. Relationship with the code author was very
important particularly for the OSS developers who were

Fig. 3. Hours spent in code reviews versus Experience.

Fig. 4. Why the identity of a code author is relevant.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2016



IEE
E P

ro
of

almost twice more likely than the MS developers to consider
their relationship with the code authors when accepting
code reviews.

We know each other. We know each others strengths and
weaknesses and we can change the way we review to meet
to needs of the specific developer. It is an optimization
that humans naturally perform. Is it a net positive? I
think so. [OSS-60]

Furthermore, to optimize the time spent reviewing code,
a reviewer often chooses to review code from authors who
have already reviewed his/her code.

It feels like a “quid pro quo” - if the contributor has
reviewed my code in the past in a thorough/timely fash-
ion, I like to return the favor. [OSS-20]

Next, because code changes from a trustworthy author
are more likely to require less reviewing effort, the level of
trust between the reviewer and the author is important.

If you review code from someone you already know and
trust very well, you can only focus more on detecting
careless mistakes and less on overall design of the code
change. [OSS-276]

Finally, reviewers prioritize requests from their team-
mates or co-workers over others.

... there are other programmers at my company that also
work on the project, and if they’ve submitted something
that is time-sensitive, I’m likely to prioritize that review
to keep things moving. First-time contributors tend to get
down-prioritized a bit. [OSS-227]

6.3.2 Reputation of the Author

Depending upon their goals or project roles, some reviewers
may seek out authors with positive reputations, while other
may focus on those with poorer reputations. To leverage the
time spent in code reviews, some reviewers favor review
requests from authors they consider to be capable of pro-
ducing high-quality code.

Often time to do reviews is limited. I prefer changes from
contributors where I know that they are proposing good
changes (high code quality, good commit message, small
scope, focused on one thing), because I know that I can
finish the review quickly. I also prefer changes from con-
tributors that themselves give feedback by doing code
review on changes of others. [OSS-106]

Conversely, some reviewers are gatekeepers that focus
on code changes from new or troublesome authors.

I am more likely to review changes by developers new to
the team, as well as developers who have a history of poor
adherence to coding standards or lots of significant com-
ments on their reviews. [MS-90]

Sometime the experience of the code author also influen-
ces the decision to accept or reject a review request. Devel-
opers will often accept review requests from experienced
contributors expecting to learn about outstanding techni-
ques or designs. Conversely, experts and/or code owners
may be more likely to review code coming from inexperi-
enced developers in an effort to maintain high code quality.

Some people do stellar work, and I want to learn from
them, so I review their CR to see what they did, even
though I almost never find problems. [MS-319]

6.3.3 Area of Expertise

Many reviewers prefer reviewing code changes that are
closely related to their areas of work or expertise. The iden-
tity of the code author can often help them to determine
whether the change is relevant. The area of expertise is a
very important factor especially for the Microsoft develop-
ers to prioritize incoming reviews.

I get a lot of code review requests from multiple teams. I
only review things that are in my area, and author of
change often helps to determine if changes are relevant to
me. [MS-325]

Some reviewers even decline code reviews that are not
related to their areas of expertise.

Area ownership and expertise matters. If I’m unfamiliar
with an area and depending on the complexity, I’ll decline
or partially review it. [MS-12]

6.3.4 Anticipated Time/Effort to Review

Based on the author’s identity, reviewers can often antici-
pate the amount of effort required. To maximize the utility
of time spent in code reviews, some reviewers focus on
areas that require the most attention.

My time is inherently limited, so I choose to prioritize
code review for less experienced developers. For code from
people that I know have a history of quality contributions,
I’m less likely to spend time reviewing. [OSS-176]

Conversely, to reduce their effort, some reviewers prefer
to avoid changes from known poor coders.

Sometimes you want to quickly review code from contrib-
utors whose work you trust greatly. Other times you
might choose to ignore work from a known contributor
who typically produces poor work. [OSS-114]

6.4 RQ4: Which Characteristics Indicate Low
Quality Code?

From our previous work [10] and common code smells (any
symptom in the source code that usually corresponds to a
deeper problem in the system) [25], we identified ten char-
acteristics of low-quality code. We asked the respondents to
rank order those characteristics based on their importance
during code reviews. Due to the limitations of the survey
tools, in the Microsoft survey, respondents rated each char-
acteristic on a 6-point scale rather than rank ordering them
(i.e., they could rate multiple characteristics as most impor-
tant instead of only one). As a result, the total for most impor-
tant is greater than 100 percent for the Microsoft survey.
However, we believe that this may not be an issue, since we
are interested only in comparing the ranks of the character-
istics between the two surveys. For the two surveys, we sep-
arately calculated the ranks of the characteristics using the
number of top two ratings (i.e., Most important, and Second
most important). Fig. 5 summarizes how the respondents
rated the relative importance of each characteristic (Q17),

BOSU ET AL.: PROCESS ASPECTS AND SOCIAL DYNAMICS OF CONTEMPORARY CODE REVIEW: INSIGHTS FROM OPEN SOURCE... 11



IEE
E P

ro
ofwhere the characteristics are sorted based on their ranks in

the OSS survey.
The fact that unnecessary complexity and poor readability

were among the top three characteristics in each survey,
suggests that code which is simple (not complex) and read-
able is easier to review. It is interesting to note that lack of
comments ranked very low (OSS: 8th and Microsoft: 9th) in
both of the surveys. The combinations of these results sug-
gest that reviewers expect code to be straightforward and
self-documenting rather than requiring extensive comments
to explain it. Because a reviewer has to understand the code
to properly review it, a complex approach, even if well-com-
mented, will likely take longer to review.

Does not maintain application integrity was also among the
top three characteristics in both surveys. For long-term proj-
ect maintaining a consistent design is very important. A fea-
ture that violates project design not only adds burden for
future maintenance but also opens bugs or even vulnerabil-
ities. Such code generally indicates either the author lacks
knowledge about the project design, or the author lacks care
/ dedication for the project. Therefore, authors should be
careful that submitted code changes maintain application
design constraints.

The ranking of eight of the nine characteristics was simi-
lar for both surveys (with a difference of no more than two
ranks). The exception was the characteristic: does not follow
coding convention of the project (fourth in OSS and eighth in
Microsoft). There are two possible explanations for this
result. First, while Microsoft respondents may consider cod-
ing convention issues important, they may not judge code
quality based those problems because they are easier to fix.
Second, because Microsoft developers often use automated
tools to identify and fix coding convention issues, they may
focus less on these issues during code review.

6.5 RQ5: How Do Developers Help Improve Low
Quality Code?

Fig. 6 lists the approaches the respondents used to help
poorly written code reach the level of quality required for
inclusion in the project (Q15). The distribution of responses
was significantly different between the OSS respondents
and the Microsoft respondents (x2 ¼ 93:29; df ¼ 6; p <
:001). This difference was largely due to two factors.

First, the Microsoft respondents are more likely to com-
municate with the author using other channels (i.e., face-to-
face, Skype, instant messenger, or email). They found those

communications helpful in quickly resolving any misunder-
standings. Conversely, face-to-face communication may not
be an option in an OSS project. Interestingly, OSS develop-
ers could use some of the tools (e.g., Skype or other voice/
video over internet technologies), but they do not.

Second, when other methods are unsuccessful, the OSS
respondents are more likely to rewrite the code themselves.
Because OSS participants may not be obliged to follow up,
they may not make the changes required to make the code
acceptable. If a code change is important, then the reviewer
may choose to just fix the problem rather than waiting on
the original author. Conversely, the Microsoft respondents
rarely rewrite poor code themselves, for two primary rea-
sons: 1) Microsoft developers are required to follow up, and
2) reviewers know that they have to mentor authors of low
quality code to help them learn how to write better code.

6.5.1 Provide Comments

More than 80 percent of the respondents from each survey
provide comments through the code review tool to help
authors improve poorly-written code. The reviewers typi-
cally indicate specific shortcomings of the code and ask the
author to fix those issues.

For issues specific to the patch in question, or small cod-
ing style/convention issues, I’ll reply to the patch with
point-by-point feedback and suggestions. For major sys-
temic issues, such as pervasive use of incorrect coding
style/conventions, or fundamental architectural issues,
I’ll reply to the first instance of such an issue with a sum-
mary of the problems and an indication that many more
exist that I didn’t quote or comment on. [OSS-46]

Many reviewers provide hints or suggestions to refactor
the code to make it more readable.

I try and give syntax tips or suggest improvements (like
rewriting a function to reduce complexity, pointing out
where we have duplicate code and how it might be shared
and suggesting to split a large function into smaller
ones). [MS-403]

A few respondents also mentioned the importance of
constructive criticism to avoid hurting the feelings of the
code author.

Critique the code, not the author. Describe better appr-
oaches, don’t just denigrate the chosen one. Ask questions
about why an approach was chosen, don’t attack the

Fig. 5. Characteristics indicating poor code (sorted based on the ranks in
the OSS survey). Fig. 6. How reviewers assist to fix poor code.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2016



IEE
E P

ro
of

choice. Point out possible edge cases where they are over-
looked. Refer directly to the coding standard where appro-
priate. [MS-73]

6.5.2 Rewrite/Fix the Code

In projects where authors are not required to respond to
reviews, i.e., some OSS projects, some reviewers find it
quicker to just fix the low-quality code rather than provid-
ing comments.

... in some circumstances I massage the code change
myself and explain to the submitter why I have made the
follow-up change. [OSS-276]

The reviewers do acknowledge that this practice may not
be the best approach.

Usually it boils down to rejecting it or fixing it by writing
it myself. I am aware that this is not a good practice, but
we’re all volunteers. [OSS-154]

6.5.3 Provide Mentoring

In cases where the author of low-quality code lacks project
or programming knowledge, mentoring may be the best
approach to improve code quality.

I try to provide design guidance to the contributor when I
think it will benefit the project. I may also provide some
language-specific mentoring or at least refer the contribu-
tor to relevant documentation I believe to be helpful.
[OSS-71]

Another type of mentoring is to ask questions to help the
author understand potential code problems.

Ask questions such as what happens in scenarios to guide
him through this understanding. If this is due to lack of
understanding of fundamental technology then give
pointers to bring up the knowledge. [MS-126]

6.5.4 Provide Examples

Some reviewers prefer providing example code or directing
an author to other well-written code in the project.

I will usually point the original author towards existing
examples of code in the project to look at for reference.
[OSS-58]

6.5.5 Reject Until Good

Some reviewers prefer to reject code changes until they
meet the project quality standards.

I do not sign off until I am convinced that the code change
meets the team criteria for quality. If the author does not
understand or agree with my feedback, I typically will sit
down with them to discuss in detail. [MS-132]

6.5.6 Communicate with the Author

Over a quarter of the Microsoft respondents preferred dis-
cussing code changes via email or instant messenger rather
than inside the code review tool. They found this type of
communication helpful for avoiding long discussions in the
code review tool and embarrassment of the author. This
percentage was much higher than for the OSS respondents.

Sometimes, for more difficult issues, I create an email
thread on the side to have a better back-and-forth discus-
sion about the change as a whole instead of a discussion
about one small part indicated in the review. If I consider
the change very poorly written, I tend to keep the side-
conversation more private to avoid embarrassing the
author. [MS-145]

If feasible, some Microsoft reviewers also prefer to meet
the author face-to-face and discuss the issue to resolve
potential misunderstandings.

Usually the best option is to go to their office and see
where they are coming from and whether they made over-
sights or were missing information. [MS-34]

6.6 RQ6: What Is the Impact of High Quality Code?

More than 85 percent of the respondents from each survey
indicated that high quality code or use of an outstanding
approach to solve a problem affects their perception of the
code author (Q17). As shown in Fig. 7, the aspects of peer
perceptions that are influenced by high quality code (Q18)
differ significantly between OSS respondents and the Micro-
soft respondents (x2 ¼ 25:81; df ¼ 3; p < :001).

For the OSS respondents, the largest impact of high qual-
ity code is increase in positive impressions about the per-
sonal characteristics of the code author. Because of the lack
of physical interaction among OSS participants, socio-tech-
nical interactions (e.g., via code reviews) become more
influential in the formation of impressions about the per-
sonal characteristics of teammates [10]. The lower impor-
tance of this factor for Microsoft respondents may be
because developers in industrial organizations have other
methods of observing and assessing the characteristics of
their peers, e.g., participating in face-to-face meetings,
working in close proximity, communicating frequently, and
participating in non-work social activities like lunch.

Conversely, the Microsoft respondents indicated that
the largest impact of high quality code is stronger relation-
ships and future collaborations with the code authors.
Because approximately 75 percent of the code reviews at
Microsoft are performed by teammates of the code
author [14], the reviewers are likely already aware of the
personal characteristics of an author. Instead, code reviews
help the reviewers judge the intellect and coding skill of
the code author. High quality code can lead to increased
respect, admiration and trust.

Fig. 7. Impact of high quality code.

BOSU ET AL.: PROCESS ASPECTS AND SOCIAL DYNAMICS OF CONTEMPORARY CODE REVIEW: INSIGHTS FROM OPEN SOURCE... 13



IEE
E P

ro
of

6.6.1 Creates Positive Perceptions about Personal

Characteristics

Approximately 60 percent of the OSS respondents and 36
percent of the Microsoft respondents indicated that high
quality code or an outstanding problem solving approach
were evidences of the personal characteristics of the code
author. First, high quality code can indicate that the author
is competent, an expert in the area, high performing, and
posses professional skills.

I will assume that the author is experienced or skilled in a
particular area if I see good work in that area. If the author
tends to produce clean, well structured code that complies
with the coding style guide, I will assume that he/she
works in well organized and thorough manner. [MS-68]

Second, high quality code can be a sign of the contrib-
utor’s ability.

It’s my opinion that you can infer the quality of a devel-
oper by the quality of their changes. Changes that are not
well thought out indicate sloppy thinking, but changes
that are neat and tight indicate an accuracy of thought
that I appreciate. [MS-216]

Third, the quality of code changes can indicate the level
of the dedication of the code author.

High quality code shows that the author cares about the
project and has considered the ramifications of their
changes. High quality code also can elevate the project as
new ideas are injected into the community. [OSS-31]

Finally, high quality code can be a sign that the author
has a good understanding of the project.

This means the author has spent a large amount of time
working hard to understand the problem at hand and has
come up with a great solution. [OSS-220]

6.6.2 Helps Build Relationships

Approximately 37 percent of the OSS respondents and 47
percent of the Microsoft respondents indicated their desire
to build relationships with outstanding code authors. They
believed that authors of good code are trustworthy and
should have additional tasks and privileges. Trust is very
important in OSS projects, because gaining the trust of the
core members is the only way a contributor can earn com-
mit privileges.

.. “outstanding approaches” are rare, but well written,
well-documented code indicates that the author can be
trusted. He/She may get approver rights or become main-
tainer of a module. [OSS-167]

In addition, respondents reported an increase in respect
and admiration for authors of high quality code.

High quality code speaks about its author. I see software
development more as an art than an actual engineering
discipline. From this perspective, a person writing high
quality code is someone that deserves respect and recogni-
tion, as he combines his knowledge/experience with his
intellect to create unique solutions. [OSS-180]

Finally, authoring high quality code can also lead the
author to earning a better reputation within the community.

Impressed by ability to solve the problem, this is really
just meritocracy at work. People who put in the time and
solve problems with outstanding approaches build a
strong reputation. [OSS-144]

6.6.3 Encourages Future Collaborations

Approximately 36 percent of the OSS respondents and 48
percent of the Microsoft respondents indicated their desire
for future collaborations with authors of high quality code
because they viewed those authors as expert contributors
from whom they could learn.

If someone writes some code with an “Outstanding
approach” such that it impresses me, I’ll probably read all
of their code reviews after that, in order to learn more.
[MS-103]

Some developers often volunteer to review code changes
submitted by these authors primarily to learn.

I will be more likely to consult this person in the future as
they are a proven performer in code matters. I may pay
more attention to future work by them by signing up for
code reviews, but more to understand their work than to
pick apart code line by line. [MS-333]

Apart from learning, developers also seek assistance
from outstanding code authors when having difficulty solv-
ing a problem.

I know that this is a guy to go to when faced with difficult
problems, and that he can be counted on to give proper
reviews and suggest improvements to my code. [OSS-109]

Consistently submitting high quality code can improve
the trustworthiness of the author as respondents stated that,
if busy, they would spend less time reviewing code from
these authors.

.. if this person sends another code review on a day that
I’m really busy, I won’t worry about looking it because I
trust that they also “did the right thing” in this new code
review. [MS-128]

Finally, authoring high quality code changes resulted in
an increased perception of reliability and the assignment of
more complex or critical tasks.

Seeing well written code increases my confidence in the
author and I know I will be able to rely on that author
for future tasks of high complexity or high importance.
[MS-341]

6.7 RQ7: What Is the Impact of Low Quality Code?

More than three-quarters of the respondents fromeach survey
indicated that poorly written code negatively influences their
perceptions of the code author (Q13). As shown in Fig. 8, the
aspects of peer perception that are influenced by poorly writ-
ten code (Q14) differ significantly between OSS respondents
and Microsoft respondents (x2 ¼ 52:79; df ¼ 3; p < :001).
The OSS respondents were more likely to form negative
impressions about the experience and personal work habits
of authors of poorly written code. The reasons for forming
negative impressions are largely the same as those for forming
positive impressions (RQ6). In addition, the Microsoft
respondents considered authors of low quality code to be

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2016



IEE
E P

ro
ofincompetent. They were less likely to collaborate with those

authors in the future due to the expected increase in time and
effort such collaborationswould require.

6.7.1 Creates Negative Perceptions about the Work

Habits

Approximately 62 percent of the OSS respondents and 38
percent of the Microsoft respondents indicated that low
quality code negatively affects their perceptions about the
work habits of the author. As before, Microsoft respondents
were likely to find this factor less important than OSS
respondents because of the many other ways that develop-
ers interact and are able to assess each other’s characteristics
and work habits. More specifically, reviewers consider the
submission of low quality code to be a sign of the author’s
carelessness or lack of respect for his/her peers.

Code that is poorly written, does not follow guidelines etc.
makes a bad impression, it gives a sloppy impression, like
the person writing the code does not take the time to pro-
vide the code with proper quality, yet expect it to be
reviewed. Providing sloppy code is in my opinion a sign
of lack of respect. [OSS-260]

Second, reviewers think that authors of low quality code
were lazy or lacking dedication to the project.

Author either didn’t put enough time to investigate the
task he is solving or does not have understanding of the
system he is building. Either case he should have spent
more time to understand what is he doing. [MS-41]

While low quality code does affect perception, reviewers
realize that people do make mistakes, so they are likely to
excuse the first few mistakes and begin forming a negative
impression when the author is unable or unwilling to learn
from previous mistakes.

For occasionally poor code, not much effect-people have off
days, or may just misunderstand the particular area of
code they are modifying. But if the author continues to
makes similar mistakes, then that strongly degrades my
opinion of their competence. [OSS-176]

Furthermore, not all the mistakes have the same impact.
Reviewers are more accepting of mistakes due to lack of
knowledge or understandings than they are to easily avoid-
able mistakes.

It’s ok if the code contains bugs and I will not think the
author is careless. However if the code contains coding
style, readability, duplicated code and other easily avoid-
able problems, I will think the author is careless and is
not dedicated to the project. [OSS-197]

6.7.2 Suggests Inexperience

Approximately 51 percent of the OSS respondents and 24
percent of the Microsoft respondents indicated that low
quality code suggests that the author is inexperienced in
either the project or in programming.

It can mean that they haven’t yet reached understanding
of the how the code they are modifying works, and thus
any contributions from them may need to be reviewed
extremely carefully. [OSS-196]

Reviewers also think that the authors of low quality code
may be incompetent or lacking intelligence.

No matter what level of experience a programmer is at
they can write clear, readable, robust code. Surprisingly
people can go a long ways without learning to do this. It
makes me question their native intelligence and dedica-
tion to the project. [OSS-25]

6.7.3 Impacts Future Collaborations

Approximately 62 percent of the Microsoft respondents and
27 percent of the OSS respondents indicated that the
impressions formed about the authors of poorly written
code affected their future collaborations. Many of the
respondents doubted a the abilities of the authors of poor
code.

Poorly written code usually indicates to me that the
author is lacking coding experience or technical skill,
which (negatively) affects how I perceive the author’s gen-
eral performance at work. [MS-45]

Loss of respect is another factor hampering future
collaboration.

Depending on the ‘severity’ of the bad code, I can feel that
I lose respect for the person and their intelligence as a
code author in extreme cases. For example thinking ‘did
they even try to build it/test it’, or ‘why did they think
this is the right approach. It should be much simpler but
they are to clueless to know’. [OSS-78]

In the extreme case, reviewers can lose trust in the author
of low quality code and carefully examine future changes
from that author.

I trust the developer less, and know that I’ll have to code
review future changes in even greater detail. [MS-349]

Finally, because poorly written code takes longer to
review, some reviewers are less likely to accept review
requests from these authors.

Poorly written changes also require more review time, so I
feel that a person who consistently makes poorly written
changes will waste a lot of people’s time in the long run. I
also end up expecting that person’s changes to be poorly
written and do not look forward to the prospect of review-
ing the changes. [MS-166]

Fig. 8. Impact of poor quality code.

BOSU ET AL.: PROCESS ASPECTS AND SOCIAL DYNAMICS OF CONTEMPORARY CODE REVIEW: INSIGHTS FROM OPEN SOURCE... 15



IEE
E P

ro
of6.8 RQ8: What Is Code Review’s Effect on Peer

Impressions?

Using behavioral scales, we focused on understanding the
impact of code reviews on four aspects of peer impression
formation: trust, reliability, perception of expertise, and
friendship. To ease analysis and presentation of results, we
recoded the scale to make the effect of the scale items on
impression formation more evident. The recoded scale is:
-3: describes a non-code review partner, NOT a code review part-
ner, 0: describes both equally, and 3: describes a code review part-
ner, NOT a non-code review partner. To avoid biasing the
results with negative scale values, we did not use this scale
during data collection.

As an example, Fig. 9 shows that for the four perception
of expertise scale items, most of the respondents (approxi-
mately 70 to 80 percent) thought they had a better percep-
tion of the expertise of their code review partners than their
non-code review partners. All four scales exhibited a similar
trend.

Table 6 shows the item means for the four behavioral
scale items for the two surveys. The scale means were posi-
tive and significantly higher13 than the mid-point of the
scale (0 - Both Equally) in all cases. We did not observe any
significant differences between the results of the two sur-
veys for the behavioral scale questions. We also estimated
effect size using Cohen’s d (rightmost two columns of
Table 6). In seven out of the eight cases there were large
effects. Only the trust scale in OSS survey showed medium
effect size. The results suggest that code review had overall
large positive impact on building four types of peer impres-
sions (i.e., trust, perception of expertise, friendship, and reli-
ability) between code review participants in both OSS and
MS projects.

These results provide some insight into the results from
RQ6 (impact of high quality code) and RQ7 (impact of poor
code), which show that code reviews can have both positive
and negative impacts on impression formation. This analy-
sis shows that 1) code reviews have a large positive impact
on impressions formation, and 2) the majority of the
respondents had better perceptions of their code review
partners than their non-code review partners.

7 DISCUSSION

This section provides further discussion on the detailed
analysis of the survey results described in Section 6. In par-
ticular, this section highlights seven themes that emerged
from the results.

7.1 Differences between OSS and Microsoft

The OSS respondents differ significantly from the Microsoft
respondents in the aspects of code review emphasized as
most important. The focus for OSS reviewers is on building
relationships with core team members. When forming
impressions of their teammates through code reviews, the
OSS respondents indicated that the personal characteristics
and work habits of the code author were most important.
This emphasis makes sense because members of OSS teams
may not have the opportunity to form impressions of their
teammates through themore traditional types of interactions
(i.e., face-to-face work and social interactions) that members
of a commercial organization, likeMicrosoft, would have. As
a result, code reviews become evenmore important for form-
ing impressions of teammates. Conversely, the Microsoft
respondents consider the knowledge dissemination aspects
more important. Code reviews work as a medium to mentor
new teammates about the project design, coding conven-
tions, and available API or libraries.

Similarly, when deciding whether to accept a code review
request, the most important factors for OSS respondents are
their relationship with the code author and the reputation of
the code author. This focus is driven by the desire tomaintain
current relationships and to improve relationships with
reputed developers. Conversely, for Microsoft respondents,
when deciding whether to accept a review, the most impor-
tant factors were the expertise of the code author (i.e., if a
developer writes good code that s/he can learn) and the
effort required to review the change. When deciding who to
invite to review their code, the most important factor was the
expertise of the reviewer (i.e., whether s/he has expertise to
review that code andwill be able to provide useful feedback).

Other than the differences mentioned here, the results
were similar for the OSS and Microsoft developers. Sections
7.2-7.5 describe results that were similar across the OSS
respondents and the Microsoft respondents.

7.2 Benefits of Code Review

While there is empirical evidence that code review improves
software quality [18], [57], the benefits of code review are
much broader. Evidence about these other benefits has been
mostly anecdotal. The results of these surveys begin to pro-
vide more evidence for these benefits. Nearly all survey
respondents in both surveys found code reviews important
for their projects for reasons including: knowledge dissemi-
nation, relationship building, better designs, and ensuring
maintainable code. For large-scale and long term projects,
those benefits may be very important and hard to achieve

Fig. 9. Distribution of ratings for the scale items: Perception of expertise.

TABLE 6
Behavioral Scale Means and Effects

Construct Scale Mean Effect Size
(Cohen’sd*)

OSS Microsoft OSS Microsoft

Trust 0.699 0.843 0.76 0.93
Perception of Expertise 1.526 1.467 1.72 1.53
Reliability 1.023 1.088 1.11 1.04
Friendship 1.473 1.115 1.53 1.33

*Cohen’s d interpretation: d � :8 indicating large effect, d � :5 indicating
medium effect, and d � :2 indicating small effect [17]

13. one sample t-test, p < 0:001 in all cases.

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2016



IEE
E P

ro
of

through other means. Therefore, even projects with highly-
skilled developers who rarely commit low-quality changes
can still benefit from the practice of code review.

7.3 Peer Impression Formation

One of the key non-technical benefits of code review for both
OSS and MS participants is its role in impression formation,
that is how developers form opinions of teammates. The
results of the surveys show that the most important social
factor of code reviews is in obtaining an accurate perception
of the expertise of teammates. The quality of the code sub-
mitted for review is an important aspect of the formation of
teammate perceptions. For example a code change that is
simple, easy to understand, self documenting and requires
minimum review time is highly appreciated by the reviewers
andmay lead to improved social status.Whether a developer
is positive or negative towards a teammate may influence
future code reviews. For example, respondents indicated
that they perform more thorough reviews of code submitted
by teammates who are untrustworthy than of code submit-
ted by teammates they view as experts. In addition, the
impressions formed during code review could also affect
future collaborations, relationships, and work practices.
Therefore, code review is a critical practice not only for
ensuring the quality of code changes but also for forming the
social underpinning of successful projects.

7.4 Effects on Future Collaborations

More than three-fourth of the code review participants from
the both surveys had strong positive impressions about their
peers, suggesting that code reviewsmay influence future col-
laborations. When a reviewer finds high quality code from
an author it can increase collaborations in two ways. First,
s/he is more likely to sign up to review the author’s future
changes in order to learn from them. Second, s/he considers
the author an expert who is able to provide suggestions to
improve his/her code and add the author as a reviewer for
his/her changes. On the contrary, poorly written code often
takes more effort to review and a reviewer may not accept
future review requests from the author of poor code. More-
over, uncertainty about their level of expertise may lead a
developer to avoid asking the author of poor code to review
his/her code. Combining these two scenarios, a developer’s
code review partners are more likely those peers who s/he
considers as good authors as well as experts. Conversely, the
peers who s/he judged as poor code authors will become
non-code review partners due to infrequent interactions.

7.5 Effects of Perceived Expertise

A reviewer’s perception of the expertise of the code author
not only influence the acceptance or rejection of code review
requests but also influences the level of scrutiny for the code.
First, in terms of accepting incoming code reviews (See Sec-
tion 6.3), perceived expertise has mixed influence. Some
respondents preferred to review code from experts to learn
and to minimize time spent in reviews. Other respondents
prioritized reviews from newcomers or focused on areas
requiring the most attention. Both of these approaches may
be correct, depending upon the expertise of the reviewer.

Second, in terms of the level of scrutiny given to the code,
if a reviewer is uncertain about a particular design choice,

s/he ismore likely to trust the design choice of experts and to
question the rationale of non-experts. In addition, if a
reviewer does not have adequate time to perform a thorough
review of code from an expert author, s/he will approve that
code after only a cursory review, based upon an assumption
that the expert author implemented correctly, as usual. How-
ever, an author only receives this expert status after consis-
tently submitting high-quality code changes.

7.6 Effects of Distributed versus Collocated Teams

One of the goals of replicating the survey with Microsoft
developers was to investigate how much the distributed
nature of OSS projects factored in to the understanding and
practice of code review. To investigate this effect, we sur-
veyed members of distributed teams and members of collo-
cated teams within Microsoft. We anticipated that members
of distributed teams would emphasize the human relation-
ship aspects of code review due to their limited ability to
form these relationships in person (as members of collocated
teams have). Interestingly, when analyzing the data from the
Microsoft survey we found very little difference between the
responses of developers from collocated teams and the
responses of developers fromdistributed teams. For example,
Fig. 10 shows how the three groups of Microsoft respondents
considered code reviews to be important for their projects. In
fact, thereweremuch larger differences between respondents
to theOSS survey and respondents to theMicrosoft survey, in
general (regardless of whether the respondent was on collo-
cated team or a distributed team), as discussed in Section 7.1.
Therefore, our initial hypothesis that respondents from dis-
tributed teams at Microsoft would respond similarly to
respondents fromOSS teams is not supported.

This surprising result suggests two possible explana-
tions: 1) some types of impressions that are impacted by
code reviews (e.g., coding ability) may not depend on face-
to-face interactions, and 2) the code review process (e.g.,
review acceptance and future collaborations) may depend
more on project culture (i.e., OSS projects have a different
culture than commercial projects [28]) than on the physical
location of the developers.

7.7 Paid versus Volunteer OSS Developers

The motivation of OSS participants may be affected by
whether or not they receive financial compensation for their
contributions. In addition, paid OSS participants may have
different goals than volunteer OSS participants. Prior research

Fig. 10. Importance of code reviews (grouped by three types of Microsoft
respondents).

BOSU ET AL.: PROCESS ASPECTS AND SOCIAL DYNAMICS OF CONTEMPORARY CODE REVIEW: INSIGHTS FROM OPEN SOURCE... 17



IEE
E P

ro
of

has identified several differences between paid and volunteer
participants in terms of impressions formation (i.e., paid par-
ticipantsweremore likely to form impressions based onmeet-
ing in person) and perceived experiences (i.e., volunteers
were more likely to perceive negative experiences working
with peers) [10].

In response to RQ2, we found that paid OSS participants
collaborate with significantly more peers and spend signifi-
cantly more time in code reviews than volunteer OSS partic-
ipants. This observation may indicate that paid OSS
participants serve as the gatekeepers for the OSS projects.

For the remaining research questions, which dealt with
the importance of code review, the code review process,
and the impact of code reviews, the results did not show
any differences between the paid OSS participants and the
volunteer OSS participants. Therefore, whether an OSS par-
ticipant is paid or is a volunteer does not seem to impact the
key aspects of the code review process or how code reviews
impact peer impression formation.

8 THREATS TO VALIDITY

This section discusses the addressed and unaddressed
threats to validity. It is organized around the four common
types of validity threats.

8.1 Internal Validity

Participant selection is the primary threat to internal validity.
The subject population consisted of reviewers who had par-
ticipated in at least 30 code reviews (either as the author or
reviewer). It is possible that using a different threshold
would have produced different results, but we have no evi-
dence to suggest this situation. Because seven of the eight
research questions (RQ2-8) are related to the code review
process (i.e., accepting review request, judging poor code,
improving poor code, impact of good/bad codes), we
strongly believe that without having adequate code review
experiences, a developer cannot provide appropriate ans-
wers to these questions.

In addition, there is the threat that only those subjects
who had positive experiences with code review took time to
respond to the survey. There is no evidence to suggest that
this self-selection occurred. But, even if it did, because the
goal of the survey was to gather information about various
aspects of code review, those who had positive experiences
could likely provide the best feedback.

8.2 Construct Validity

The survey design process specifically focused on reducing
construct validity threats. This process took approximately
eight months and included both expert reviews and multi-
ple pilot tests. The design process included the following
bias-reducing practices:

� placing the questions about the topics of interest after
the other survey questions to prevent hypothesis-
guessing,

� presenting the scale questions in random order,
� providing clear definitions of code review partner and

non-code review partner on all relevant pages, and
� carefully wording questions in an unbiased manner.

Third, we conducted multiple reliability and validity
tests, with widely-used and highly recommended measures,
to ensure construct validity.

8.3 External Validity

Due to the wide diversity within the OSS community, it is
possible that the results may not be representative of all
OSS projects. In fact, as most respondents came from well-
known, successful OSS projects, they may have been among
the higher skilled and more motivated OSS developers. The
impacts of code review on software quality and on the social
fabric of the team may differ in other types of OSS projects.

In terms of the Microsoft developers, they may not be
representative of all commercial organizations. To reduce
this potential threat, the respondents came from teams that
differ in development process (e.g., waterfall versus agile),
hardware platform (e.g., mobile, desktop, server, and data
center software), deployment method (boxed products versus
web services), operating system (iOS, Windows, Windows
Phone, and Linux), location (U.S., Europe, and Asia), and
workflow (e.g., some teams require two reviews on all sign-
offs, others are more lax; some want review prior to checkin
and test, others do review afterwards; some include testers
and development leads on reviews and some do not). The
software development processes, project management, and
release cycles across different projects in Microsoft are quite
varied. Interestingly, in a prior study of code review, Rigby
and Bird investigated code review practices and metrics in
multiple commercial organizations and open source proj-
ects [45]. Surprisingly, they found little difference between
the different systems studied in terms of code review, sup-
porting the notion that findings about code review at one
company may be relevant for other organizations.

In addition, the code reviewworkflowatMicrosoft is simi-
lar to that used by other large commercial organizations such
as Facebook [33], Google [56], VMWare [3], Cisco [18], and
Oracle [55] that have adoptedmandatory code review practi-
ces. In those organizations, code review has become an
important software quality assurance practice similar to test-
ing, tracking/fixing bugs, and automated build systems,
which all are aspects ofmature software engineering projects.

A common misconception about industrial research at
large companies such as Microsoft is that software projects
at Microsoft are not representative of other software proj-
ects. While projects might be larger in size, most develop-
ment practices at Microsoft are adapted from the general
software engineering community and also used outside
Microsoft. Another frequent misconception is that empirical
research within one company or one project is not good
enough, provides little value for the academic community,
and does not contribute to scientific development. Historical
evidence shows otherwise. Flyvbjerg provides several
examples of individual cases that contributed to discovery
in physics, economics, and social science [24]. Again, W.I.
Beveridge observed for social sciences: “More discoveries
have arisen from intense observation than from statistics applied
to large groups” [7]. Even in SE domain, prior case studies at
large commercial companies such as: Microsoft [9], [39],
Google [35], and Cisco [18] have provided useful insights.
Please note that this argument should not be interpreted as
a criticism of research that focuses on large samples or

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2016



IEE
E P

ro
of

entire populations. For the development of an empirical
body of knowledge as championed by Basili [4], both types
of research are essential.

8.4 Conclusion Validity

The number of responses to each survey was sufficiently
large to mitigate any threats arising from small sample
sizes. In addition, the Chi-square test (used most frequently
in this analysis) does not assume normality in the data. For
variables that were not normally distributed (according to
the Shapiro-Wilk test), we used non-parametric tests.

9 CONCLUSION

This paper describes the results of two surveys to better
understand the practice and motivation for performing
code reviews. These results have several implications for
researchers and for practitioners. First, although only one-
fourth of the code review comments are about functional
defects, practitioners should not be discouraged to practice
code reviews. Code review offers several other benefits (i.e.,
knowledge dissemination, relationship building, better
designs, and ensuring maintainable code) that are crucial
for large scale or long term projects. Interestingly, most
code review research focuses on defect detection. These
other aspects of code review that are considered more
important by the developers have not received much atten-
tion. Therefore, these other aspects of code reviews (i.e.,
relationship building, knowledge sharing, achieving better
designs) warrant additional focused research.

Second, the results of these surveys indicate that code
reviews have a large impact on relationship building and
future collaborations. Carelessness in wording a review
comment can lead to negative feelings from the code author
and hinder future collaborations. For example, an author is
more likely to make the required changes if the reviewer
provides constructive criticism and is more likely to argue
with the reviewer if the reviewer comments are viewed as
an attack. Therefore, reviewers should carefully consider
how their review comments will be heard by the code
author. This finding warrants further research in two direc-
tions: 1) empirical validation of how the expression of senti-
ment (i.e., positive or negative) in code review comments
influences the code review outcomes and long term collabo-
rations, and 2) how to assist reviewers in articulating appro-
priate comments during code reviews.

Finally, effective code reviews require a significant amount
of effort from the reviewers to thoroughly understand the
code. The results of this study suggest that reviewers prefer to
review code changes that are simple, self-documenting and
easy to comprehend. Authors should keep those code charac-
teristics in mind when submitting code changes for review.
This result could also be of interest to program comprehen-
sion researchers. The large amount of time devoted to under-
standing code changes could be improved with appropriate
program comprehension techniques.

ACKNOWLEDGMENTS

This research is partially supported by the US National
Science Foundation Grant No. 1322276, 1156563. Any

opinions expressed in this material are those of the authors
and do not necessarily reflect the views of the National Sci-
ence Foundation. We would also like to thank Brook Bowers
and Luis Aguiar for assistance in data analysis.

REFERENCES

[1] J. Asundi and R. Jayant, “Patch review processes in open source
software development communities: A comparative case study,”
in Proc. 40th Annu. Hawaii Int. Conf. Syst. Sci., 2007, pp. 166c–166c.

[2] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proc. 2013 Int. Conf. Softw. Eng., 2013,
pp. 712–721.

[3] V. Balachandran, “Reducing human effort and improving quality
in peer code reviews using automatic static analysis and reviewer
recommendation,” in Proc. 2013 Int. Conf. Softw. Eng., 2013,
pp. 931–940.

[4] V. R. Basili, F. Shull, and F. Lanubile, “Building knowledge
through families of experiments,” IEEE Trans. Softw. Eng., vol. 25,
no. 4, pp. 456–473, Jul./Aug. 1999.

[5] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey, “The
influence of non-technical factors on code review,” in Proc. 20th
Work. Conf. Reverse Eng., 2013, pp. 122–131.

[6] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern
code reviews in open-source projects: Which problems do they
fix?” in Proc. 11th Work. Conf. Min. Softw. Repositories, 2014,
pp. 202–211.

[7] W. I. B. Beveridge, et al., “The art of scientific investigation,” Art
Sci. Investigation, 1950.

[8] C. Bird, T. Carnahan, and M. Greiler, “Lessons learned from
building and deploying a code review analytics platform,” in
Proc. 12th Int. Conf. Min. Softw. Repositories, 2015, pp. 191–201.

[9] C. Bird and T. Zimmermann, “Assessing the value of branches
with what-if analysis,” in Proc. ACM SIGSOFT 20th Int. Symp.
Found. Softw. Eng., 2012, Art. no. 45.

[10] A. Bosu, J. Carver, R. Guadagno, B. Bassett, D. McCallum, and
L. Hochstein, “Peer impressions in open source organizations: A
survey,”J. Syst. Softw., vol. 94, pp. 4–15, 2014.

[11] A. Bosu and J. C. Carver, “Impact of peer code review on peer
impression formation: A survey,” in Proc. 2013 ACM / IEEE Int.
Symp. Empir. Softw. Eng. Meas., 2013, pp. 133–142.

[12] A. Bosu and J. C. Carver, “How do social interaction networks
influence peer impressions formation? A case study,” in Open
Source Software: Mobile Open Source Technologies, L. Corral,
A. Sillitti, G. Succi, J. Vlasenko, and A. Wasserman, Eds. Berlin,
Germany: Springer, 2014, pp. 31–40, 427.

[13] A. Bosu and J. C. Carver, “Impact of developer reputation on code
review outcomes in OSS projects: An empirical investigation,” in
Proc. 8th ACM/IEEE Int. Symp. Empir. Soft. Eng. Meas., 2014,
pp. 33:1–33:10.

[14] A. Bosu, M. Greiler, and C. Bird, “Characteristics of useful code
reviews: An empirical study,” in Proc. 12th Work. Conf. Min. Soft.
Repositories, 2015, pp. 146–156.

[15] L. C. Briand, B. Freimut, and F. Vollei, “Using multiple adaptive
regression splines to support decision making in code
inspections,” J. Syst. Softw., vol. 73, no. 2, pp. 205–217, 2004.

[16] W. M. Bukowski, B. Hoza, and M. Boivin, “Measuring friendship
quality during pre- and early adolescence: The development and
psychometric properties of the friendship qualities scale,” J. Soc.
Pers. Relationships, vol. 11, no. 3, pp. 471–484, 1994.

[17] J. Cohen, Statistical Power Analysis for the Behavioral Sciences. NJ,
USA: Lawrence Erlbaum, 1988.

[18] J. Cohen, E. Brown, B. DuRette, and S. Teleki, Best Kept Secrets of
Peer Code Review. Beverly, MA, USA: SmartBear Software, 2006.

[19] J. Czerwonka, M. Greiler, and J. Tilford, “Code reviews do not
find bugs. How the current code review best practice slows us
down,” in Proc. Int. Conf. Softw. Eng.-Companion, May, 2015,
pp. 27–28.

[20] R. F. DeVellis, Scale Development: Theory and Applications, vol. 26.
Thousand Oaks, CA, USA: Sage Publications, 2011.

[21] M. Fagan, “A history of software inspections,” Softw. Pioneers,
pp. 562–573, 2002.

[22] M. E. Fagan, “Design and code inspections to reduce errors in pro-
gram development,” IBM Syst. J., vol. 15, no. 3, pp. 182–211, 1976.

[23] A. Fink, The Survey Handbook, vol. 1. Thousand Oaks, CA, USA:
Sage Publications, 2003.

BOSU ET AL.: PROCESS ASPECTS AND SOCIAL DYNAMICS OF CONTEMPORARY CODE REVIEW: INSIGHTS FROM OPEN SOURCE... 19



IEE
E P

ro
of

[24] B. Flyvbjerg, “Five misunderstandings about case-study
research,”Qualitative Inquiry, vol. 12, no. 2, pp. 219–245, 2006.

[25] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley Professional, 1999.

[26] T. Gilb, D. Graham, and S. Finzi, Software Inspection. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1993.

[27] L. Harjumaa, I. Tervonen, and A. Huttunen, “Peer reviews in real
life-motivators and demotivators,” in Proc. 5th Int. Conf. Quality
Softw., 2005, pp. 29–36.

[28] E. v. Hippel and G. v. Krogh, “Open source software and the
“private-collective” innovation model: Issues for organization
science,” Organ. sci., vol. 14, no. 2, pp. 209–223, 2003.

[29] P. M. Johnson, “Reengineering inspection,” Commun. ACM,
vol. 41, no. 2, pp. 49–52, 1998.

[30] C. Johnson-George and W. C. Swap, “Measurement of specific
interpersonal trust: Construction and validation of a scale to
assess trust in a specific other,” J. Personality Soc. Psychol., vol. 43,
no. 6, pp. 1306–1317, 1982.

[31] K. Lakhani, B. Wolf, J. Bates, and C. DiBona, The Boston Consult-
ing Group Hacker Survey. Boston, MA, USA: The Boston Consult-
ing Group, 2002.

[32] K. Lakhani and R. G. Wolf, “Why hackers do what they do:
Understanding motivation and effort in free/open source soft-
ware projects,” MIT, Cambridge, Massachusetts, MA, USA, MIT
Sloan Work. Paper, 2003, Paper no. 4425-03.

[33] Y. Lee,HowFacebook ships code, 2011. [Online].Available: https://fra-
methink.wordpress.com/2011/01/17/how-facebook-ships-code/

[34] J. Lerner and J. Tirole, “Some simple economics of open source,”
J. Ind. Econ., vol. 50, no. 2, pp. 197–234, 2002.

[35] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. Whitehead,
“Does bug prediction support human developers? Findings from
a Google case study,” in Proc. 2013 Int. Conf. Softw. Eng., 2013,
pp. 372–381.

[36] M. S. Litwin, How to Measure Survey Reliability and Validity, vol. 7.
Thousand Oaks, CA, USA: Sage Publications, 1995.

[37] D. J. McAllister, “Affect- and cognition-based trust as foundations
for interpersonal cooperation in organizations,” Acad. Manage. J.,
vol. 38, no. 1, pp. pp. 24–59, 1995.

[38] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact
of code review coverage and code review participation on soft-
ware quality: A case study of the qt, VTK, and ITK projects,” in
Proc. 11th Work. Conf. Min. Softw. Repositories, 2014, pp. 192–201.

[39] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan, “The
design space of bug fixes and how developers navigate it,” IEEE
Trans. Softw. Eng., vol. 41, no. 1, pp. 65–81, Jan. 2015.

[40] A. Porter, L. G. Votta Jr, V. R. Basili, “Comparing detection methods
for software requirements inspections: A replicated experiment,”
IEEE Trans. Softw. Eng., vol. 21, no. 6, pp. 563–575, Jun. 1995.

[41] E. Raymond, “The cathedral and the bazaar,” Knowl. Technol.
Policy, vol. 12, no. 3, pp. 23–49, 1999.

[42] E. S. Raymond, “Homesteading the noosphere, vol. 3, no. 10, 1998.
[43] J. K. Rempel, J. G. Holmes, and M. P. Zanna, “Trust in

close relationships,” J. Personality Soc. Psychol., vol. 49, no. 1,
pp. 95–112, 1985.

[44] P. Rigby, B. Cleary, F. Painchaud, M.-A. Storey, and D. German,
“Contemporary peer review in action: Lessons from open source
development,” IEEE Softw., vol. 29, no. 6, pp. 56–61, Nov./Dec. 2012.

[45] P. C. Rigby and C. Bird, “Convergent contemporary software peer
review practices,” in Proc. 2013 9th Joint Meet. Found. Softw. Eng.,
2013, pp. 202–212.

[46] P. C. Rigby and D. M. German, “A preliminary examination of
code review processes in open source projects,” Univ. Victoria,
Victoria BC V8P 5C2, Canada, Tech. Rep. DCS-305-IR, Jan. 2006.

[47] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source soft-
ware peer review practices: A case study of the apache server,” in
Proc. 30th Int. Conf. on Softw. Eng., 2008, pp. 541–550.

[48] P. C. Rigby andM.-A. Storey, “Understanding broadcast based peer
review on open source software projects,” in, 2011, pp. 541–550.

[49] J. Robinson, L. Wrightsman, and F. Andrews,Measures of Personal-
ity and Social Psychological Attitudes, vol. 1. Cambridge, USA: Aca-
demic Press, 1991.

[50] D. Rombach, M. Ciolkowski, R. Jeffery, O. Laitenberger,
F. McGarry, and F. Shull, “Impact of research on practice in the
field of inspections, reviews and walkthroughs: Learning from
successful industrial uses,” ACM SIGSOFT Softw. Eng. Notes, vol.
33, no. 6, pp. 26–35, 2008.

[51] J. B. Rotter, “A new scale for the measurement of interpersonal
trust1,” J. Personality, vol. 35, no. 4, pp. 651–665, 1967.

[52] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for nor-
mality (complete samples),” Biometrika, vol. 52, pp. 591–611, 1965.

[53] A. Sutherland and G. Venolia, “Can peer code reviews be
exploited for later information needs?” in Proc. 31st Int. Conf.
Softw. Eng.-Companion, 2009, pp. 259–262.

[54] L. G. Votta, Jr., “Does every inspection need a meeting?” in Proc.
1st ACM SIGSOFT Symp. Found. Softw. Eng., 1993, pp. 107–114.

[55] J. Waldo, Code reviews, 2009. [Online]. Available: https://blogs.
oracle.com/scalinggames/entry/code_reviews

[56] M. Welsh, My love affair with code reviews, 2012. [Online]. Avail-
able: http://matt-welsh.blogspot.com/2012/02/my-love-affair-
with-code-reviews.html

[57] K. E. Wiegers, Peer Reviews in Software: A Practical Guide. Boston,
MA, USA: Addison-Wesley, 2002.

[58] C. Wohlin, M. H€ost, and K. Henningsson, “Empirical research
methods in software engineering,” in Empirical Methods and Stud-
ies in Software Engineering, ser. Lecture Notes in Computer Science, R.
Conradi and A. Wang, Eds. Berlin, Germany: Springer, 2003,
pp. 7–23, 2765.

Amiangshu Bosu received the PhD degree in
computer science from the University of Alabama
in 2015 with a thesis identifying the characteris-
tics and benefits of contemporary code review
practices. He is an assistant professor in the
department of Computer Science, Southern Illi-
nois University, Carbondale. His research inter-
ests lie in the areas of empirical software
engineering, peer code review, software security,
android security, malware detection, cybersecur-
ity, mining software repositories, empirical soft-

ware engineering, and social network analysis. He is a member of the
IEEE and ACM.

Jeffrey C. Carver received the PhD degree in
computer science from the University of Maryland
in 2003. He is an associate professor in the
Department of Computer Science, University of
Alabama. His main research interests include
empirical software engineering, peer code
review, human factors in software engineering,
software quality, software engineering for sci-
ence, and software process improvement. He is
a Senior Member of the IEEE Computer Society
and the ACM. Contact him at carver@cs.ua.edu.

Christian Bird received the bachelor’s degree
from Brigham Young University and the PhD
degree from U.C. Davis. He is a researcher in the
Empirical Software Engineering group at Micro-
soft Research. He focuses on using qualitative
and quantitative methods to both understand and
help software teams.

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. X, XX 2016



IEE
E P

ro
of

Jonathan Orbeck received the bachelor’s degree in computer sci-
ence from the University of Alabama in 2016. He participated in the
NSF-sponsored Research Experience for Undergraduates project
focused on Empirical Software Engineering at the University of Ala-
bama. He is currently employed at Lockheed Martin. He is a member
of the IEEE.

Christopher Chockley received the bachelor’s
degree in computer science from the University
of Alabama in 2015. He participated in the NSF-
sponsored Research Experience for Undergradu-
ates project focused on Empirical Software Engi-
neering at the University of Alabama. He is
currently employed at Duke Energy. He is a
member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BOSU ET AL.: PROCESS ASPECTS AND SOCIAL DYNAMICS OF CONTEMPORARY CODE REVIEW: INSIGHTS FROM OPEN SOURCE... 21


