
Java Generics Adoption: How New Features are
Introduced, Championed, or Ignored

Chris Parnin
College of Computing

Georgia Institute of
Technology

Atlanta, Georgia
chris.parnin@gatech.edu

Christian Bird
Microsoft Research

Redmond, Washington
cbird@microsoft.com

Emerson Murphy-Hill
Dept. of Computer Science

North Carolina State
University

Raleigh, North Carolina
emerson@csc.ncsu.edu

ABSTRACT
Support for generic programming was added to the Java
language in 2004, representing perhaps the most significant
change to one of the most widely used programming lan-
guages today. Researchers and language designers antici-
pated this addition would relieve many long-standing prob-
lems plaguing developers, but surprisingly, no one has yet
measured whether generics actually provide such relief. In
this paper, we report on the first empirical investigation into
how Java generics have been integrated into open source
software by automatically mining the history of 20 popular
open source Java programs, traversing more than 500 million
lines of code in the process. We evaluate five hypotheses,
each based on assertions made by prior researchers, about
how Java developers use generics. For example, our results
suggest that generics do not significantly reduce the number
of type casts and that generics are usually adopted by a
single champion in a project, rather than all committers.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Data types
and structures; F.3.3 [Studies of Program Constructs]:
Type structure

General Terms
Languages, Experimentation

Keywords
generics, Java, languages, post-mortem analysis

1. INTRODUCTION
Programming languages and tools evolve to match industry

trends, revolutionary shifts, or refined developer tastes. But
not all evolutions are successes; the technology landscape is
pocked with examples of evolutionary dead-ends and dead-
on-arrival concepts.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’11, May 21Ű22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0574-7/11/05 ...$10.00.

Far too often, greatly heralded claims and visions of new
language features fail to hold or persist in practice. Discus-
sions of the costs and benefits of language features can easily
devolve into a religious war with both sides armed with little
more than anecdotes [13]. Empirical evidence about the
adoption and use of past language features should inform
and encourage a more rational discussion when designing
language features and considering how they should be de-
ployed. Collecting this evidence is not just sensible but a
responsibility of our community.

In this paper, we examine the adoption and use of generics,
which were introduced into the Java language in 2004. When
Sun introduced generics, they claimed that the language
feature was “a long-awaited enhancement to the type system”
that “eliminates the drudgery of casting.” Sun recommended
that programmers “should use generics everywhere [they] can.
The extra efforts in generifying code is well worth the gains
in clarity and type safety.”1 But is it?

Here, we take the first look at how features of Java gener-
ics, such as type declarations, type-safe collections, generic
methods, and wildcards, have been introduced and used in
real programs. With the benefit of six years of hindsight,
we investigate how the predictions, assertions, and claims
that were initially made by both research and industry have
played out in the wild. Further, we investigate the course and
timeline of adoption: what happens to old code, who buys in,
how soon are features adopted, and how many projects and
people ignore new features? The results allow us to adjust
our expectations about how developers will adopt future
language features.

We make the following contributions in this paper:

• we enumerate the assumptions and claims made in the
past about Java generics (Section 3);

• we investigate how 20 open source projects have used —
and have not used — Java generics (Section 5 to 7); and

• we discuss the implications of the adoption and usage
patterns of generics (Section 8).

2. AN OVERVIEW OF GENERICS
In this section we briefly describe the motivation and use of
generics. In an effort to maintain consistent terminology, we
present in bold the terms that we use in this paper, drawing
from standard terminology where possible. Readers who are
familiar with Java generics may safely skip this section.

1
http://download.oracle.com/javase/1.5.0/docs/guide/language/

generics.html

1

http://download.oracle.com/javase/1.5.0/docs/guide/language/generics.html
http://download.oracle.com/javase/1.5.0/docs/guide/language/generics.html


2.1 Motivation for Generics
In programming languages such as Java, type systems can
ensure that certain kinds of runtime errors do not occur. For
example, consider the following Java code:

List l = getList() ;
System.out.println( l .get(10)) ;

This code will print the value of the 10th element of the list.
The type system ensures that whatever object getList()
returns, it will understand the get message, and no runtime
type error will occur when invoking that method. In this
way, the type system provides safety guarantees at compile
time so that bugs do not manifest at run time.

Now suppose we want to take the example a step further;
suppose that we know that l contains objects of type File,
and we would like to know whether the tenth file in the List
is a directory. We might naturally (and incorrectly) write:

List l = getList() ;
System.out.println( l .get(10). isDirectory ()) ;

Unfortunately, this leads to a compile-time error, because the
return type of the get method is specified at compile-time
as Object. The type checker gives an error because it does
not know what types of objects are actually in the list.

In early Java, programmers had two ways to solve this
problem, the first is casting, and the second we call home-
grown data structures. If the programmer implements
the casting solution, her code would look like this:

List l = getList() ;
System.out.println((( File) l .get(10)) . isDirectory ()) ;

The cast is the (File) part, which forces the compiler to
recognize that the expression l.get(10) actually evaluates
to the File type. While this solves one problem, it causes
another; suppose that a programmer at some point later
forgets that the list was intended to hold Files, and inadver-
tently puts a String into the List. Then when this code is
executed, a runtime exception will be thrown at the cast. A
related problem is that the code is not as clear as it could be,
because nowhere does the program explicitly specify what
kind of objects the list returned by getList() contains.

If the programmer instead implements the home-grown
data structure solution, the code will look like this:

FileList l = getList() ;
System.out.println( l .get(10). isDirectory ()) ;

Additionally, the programmer would need to create a FileList
class. This solution also introduces new problems. Perhaps
the most significant is the code explosion problem; for each
and every list that contains a different type, the program-
mer will want to create a different special list class, such as
StringList, IntegerList, and NodeList. These classes will
inevitably contain significant duplication, because they all
perform the same functions, differing only by data type.

2.2 Programming with Generics
These problems were solved with the introduction of gener-

ics to Java in 2004. Generics allow programmers to create
their own generic type declarations [4] (we call these
generic types, for short). For example, a programmer can
create a user-defined generic declaration for a list like
so:

class MyList<T>{
List internal ;

public T get(int index){
return (T)internal.get(index);
} ...

In this code, the T is called the formal type parameter.
The programmer can use her MyList class by instantiating
the formal type parameter by using a type argument [4],
such as Integer or File in the following examples:

MyList<Integer> intList = new MyList<Integer>();
MyList<File> fileList = new MyList<File>();

Each place where a generic type declaration is invoked (in
this example, there are four) is known as a parameterized
type [5]. On the first line, the programmer has declared
the type of the intList object so that the compiler knows
that it contains objects of type Integer, and thus that the
expression intList.get(10) will be of type Integer. The
result is that the client code is both type safe and clearly
expresses the programmer’s intent. The programmer can
also use generic type declarations without taking advantage
of generics by using them as raw types, such as MyList ob-
jectList, in which case the expression objectList.get(10)
will be of type Object.

In addition to creating their own generic type declara-
tions, programmers can use generic type declarations from
libraries. For example, software developers at Sun gener-
ified [5], or migrated to use generics, the Java collections
classes. For instance, the List class was parameterized, so
that the previous problem could also be solved like so:

List<File> l = getList();
System.out.println( l .get(10). isDirectory ()) ;

In addition to using generics in type declarations, generics
can also be applied to individual methods to create generic
methods, like so:

<A> A bigHead(List<A> as1, List<A> as2){
return as1.get(0) > as2.get(0) ? as1.get(0) : as2.get(0) ;
}

In this code, the programmer can pass to the bigHead method
two generic lists containing any type, and the type checker
will assure that those two types are the same.

3. RELATED WORK
In this section, we discuss previous claims about and studies
of generics.

3.1 Claims Regarding Generics
There have been a number of papers and books that have
extolled the benefits of using generics in several contexts. We
list here a sample of such claims.

In Effective Java, Bloch [3] asserts that when a programmer
uses non-generic collections, she will not discover errors until
run time. Even worse, the error is manifest as a ClassCas-
tException when taking an item out of a collection, yet to
correct the error, she must time-consumingly identify which
object was wrongly inserted into the collection. By using
generics, the type system shows the developer exactly where
she inserted the incorrect object, reducing the time to fix the
problem.

In their paper on automatically converting Java programs
to use generic libraries, Donavan et al. [6] assert:

• In pre-generic Java, programmers thought of some classes
in pseudo-generic terms and tried to use them in such a
way. However, without a generic type system, they would

2



make inadvertent errors that would show up at runtime.
The addition of generics to the type system moves these
runtime errors to compile time type errors.

• The type system represents an explicit specification, and
generics strengthen this specification. This is better for
developers because they can use this strong specification
to reason about the program better and are less likely to
make mistakes. In addition, the compiler can enforce the
specification.

• Prior to generics, programmers that wanted type safe
containers would write their own home-grown data struc-
tures, increasing the amount of work and likelihood of
error, compared to using data structures in libraries. Such
structures also “introduce nonstandard and sometimes
inconsistent abstractions that require extra effort for pro-
grammers to understand.”

In his book on C++ templates, Vandevoorde [19] asserts
that when the same operations need to be performed on
different types, the programmer can implement the same
behavior repeatedly for each type. However, if in doing so
she writes and maintains many copies of similar code, she
will make mistakes and tend to avoid complicated but better
algorithms because they are more error prone. She must also
deal with all of the difficulties associated with code clones
such as making orchestrated changes to coupled clones [10]
and perform maintenance more frequently [15].

Naftalin and Wadler [16] claim that generics work “syner-
gistically” with other features of Java such as for-each for
loops and autoboxing. They also claim that there are now
fewer details for the programmer to remember. They also
claim that generics can make design patterns more flexible
by presenting an example of a visitor pattern that works on
a tree with generic elements.

In summary, the claims made by previous authors are:

• Generics move runtime errors to compile time errors.

• Programmers no longer have to manually cast elements
from pseudo-generic data structures or methods.

• Typed data collections such as FileList, create non-
standard and sometimes inconsistent abstractions.

• Generics prevent code duplication and errors resulting
from maintaining multiple typed data collections.

• Generics enhance readability and specification.

• Generics lower cognitive load by requiring the program-
mer to remember fewer details.

3.2 Empirical Studies
There have been few empirical studies related to the use of
generics in Java or parameterized types in object oriented
languages in general. Here we discuss the few that exist.

In 2005, Basit et al. [1] performed two case studies examin-
ing how well generics in Java and templates in C++ allowed
what they termed “clone unification.” They found that 68%
of the code in the Java Buffer library is duplicate and tried
to reduce these clones through generification. About 40% of
the duplicate code could be removed. They observed that
type variation triggered many other non-type parametric
differences among similar classes, hindering applications of
generics. They also observed heavy cloning in the C++
Standard Template Library as well.

Fuhrer et al. [9] implemented refactoring tools that would
replace raw references to standard library classes with pa-

rameterized types. In evaluating the refactoring tools on
several Java programs, they were able to remove 48.6% of
the casts and 91.2% of the compiler warnings.

We are not the first to examine how well features intended
to aid programmers live up to their claims. Pankratius et
al. performed an empirical study aimed at determining if
transactional memory actually helped programmers write
concurrent code [18]. He found some evidence that transac-
tional memory (TM) did help; students using TM completed
their programs much faster. However, they also spent a large
amount of time tuning performance since TM performance
was hard to predict.

These studies differ from our study in that they investi-
gated generics or another language feature in an artificial or
laboratory context, whereas we investigate generics in several
natural contexts: open source software. As a result, these
studies investigate the ideal impact of generics, while our
study investigates their real impact.

4. INVESTIGATION
Our investigation begins with understanding how develop-

ers use generics in programs. Are some features of generics
widely used and others never touched? Next, we examine
claims made about generics and see if the purported benefits
of generics are realized in practice. Finally, how does adop-
tion play out — how soon does it occur, what happens to the
old code, who buys in?

We start with a data characterization by measuring how
widespread generics are among our selected projects and
their developers. Then, we examine in detail how that usage
varies across the features of generics.

4.1 Investigated Claims
Many claims have been made by language designers and

researchers. One claim was that generics reduce the number
of runtime exceptions [3]. Ideally, we would like to know how
many runtime exceptions each version of a program could
throw, but computing this is infeasible due to the state space
explosion problem, compounded by the thousands of different
versions of many open source projects. Instead, we restate
the problem as how the number of casts in a program changes,
reasoning that each cast represents a certain probability that
a runtime exception will occur:

Hypothesis 1 - When generics are introduced into a code-
base, the number of type casts in that codebase will be
reduced.

We also investigated the claim of code reduction:

Hypothesis 2 - Introduction of user-defined generics classes
reduce code-duplication.

4.2 Adoption Research Questions
Although a wealth of prior literature has examined how

open source software (OSS) projects make decisions, assign
and accomplish tasks, and organize themselves (e.g. [17, 14,
8]), the nature of adoption of new language features such as
Java generics is not clear.

Our first research question centers around how project
members embrace new language features such as Java gener-
ics. Do they do it together, or do some members still hold
out? Even though “benevolent dictatorships” exist in OSS,
nearly every open source project’s decision-making process

3



is governed in at least a semi-democratic fashion. Since the
decision to use generics has implications directly on the code-
base itself (e.g., it may require using a newer JDK or modify
popular method signatures impacting all call sites), we ex-
pect that there will be project-wide acceptance of generics
rather than acceptance by individual members:

Research Question 1 - Will project members broadly use
generics after introduction into the project?

In addition to a broad consensus for use of generics, a sec-
ond research question investigates if there will be a concerted
effort to replace old code to use the new features. Are the
new features compelling enough to fix old code that may
contain problems that would be fixed by generics or at least
to maintain consistency?

Research Question 2 - Will there be large-scale efforts to
convert old code using raw types to use generics?

Finally, Java integrated development environments (IDEs)
such as Eclipse, Netbeans, and IntelliJ IDEA all support
features such as syntax highlighting and semantic analysis to
provide auto completion and identify type errors interactively.
These tools enable developers to be more productive, but not
all IDEs supported generics when they were first introduced.
We expect that the choice to use new language features such
as generics will in part depend on the tool support available
for those features.

Research Question 3 - Does generics support in the IDE
influence adoption?

4.3 Projects Studied
To test the hypotheses regarding generics, we automati-

cally analyzed 20 open source software projects. We analyzed
the top “most used” projects according to ohloh.net, includ-
ing only projects with significant amounts of Java code. We
chose to select projects from ohloh.net because the site
contains the most comprehensive list of open source projects
of which we are aware. The 20 selected projects were Ant,
Azureus, CheckStyle, Commons Collections, Free-
Mind, FindBugs, Jetty, JEdit, JDT, JUnit, Eclipse-cs,
Hibernate, Log4j, Lucene, Maven, the Spring Frame-
work, Squirrel-SQL, Subclipse, Weka, and Xerces. In
mining the full version histories of these 20 projects, we
analyzed the full content of each version of each Java source
file, a total of 548,982,841 lines.

Throughout this paper, we will focus our discussion on
three of the 20 projects: JEdit, Eclipse-cs, and Squirrel-
SQL. We chose these specific projects because they are a
fairly representative cross section of the 20 projects. JEdit,
a text editor for programming, began development in 2000
and is the largest and most mature project of the three.
Eclipse-cs, which integrates the Checkstyle static analysis
tool into the Eclipse Integrated Development Environment,
began development in 2003 and is the smallest program of
the three. Squirrel-SQL, a graphical user interface for
exploring databases, began development in 2001.

Although we focus on these three projects throughout this
paper, we also relate these results to the other 17 projects.

4.4 Methodology
To analyze the 20 projects in terms of our hypotheses, we

chose an automated approach. Our approach involves several
linked tools to perform the analysis on each project.

The first step in our analysis was to copy each project
from a remote repository to a local machine. We did this to
conserve network bandwidth and speed up the second step.
We used rsync to copy projects stored in CVS and SVN,
and git-clone for Git repositories.

The second step of our analysis was to check out every
version of every file from the project’s repository. Using
a python script, we stored the different file revisions in an
intermediate format.

Our third step comprised analyzing the generics usage in
each revision. We performed this analysis using Eclipse’s
JDT to create an abstract syntax tree of each revision. From
the abstract syntax tree, we extracted information relevant
to generics, such as what kind of generic was used (type
or method declaration, and parameterized type). We then
populated a MySQL database with this information.

Finally, we analyzed the data in the database in a number
of different ways, depending on what information we were try-
ing to extract. We primarily used the R statistical package for
analyzing and plotting data. Our data and tools are available
in the PROMISE repositories (http://promisedata.org).

4.4.1 Identifying Generification
As part of our analysis, we identified instances in source

code evolution where raw types were replaced by their generic
counterparts (e.g. List to List<String>, hereafter referred
to as corresponding types). We describe our approach in
detail here and describe the results of using such analysis in
subsection 7.1.

To identify changes in use of generics within a project, we
use an approach similar to APFEL, by Zimmermann [20].
For each file in a project repository, we examined each pair
of subsequent revisions of the file. For each method in
each file (identified by name) we identify the number of
uses of each raw and parameterized type in the method.
If the count for a particular raw type decreases from one
revision to the next and the count for the corresponding
parameterized type increases by the same amount, we mark
this as a generification.

More formally, let F denote the set of all files in a project
repository and R = {1, 2, . . . , n} denote the set of all revisions
in the repository. Thus, fr ∈ F×R represents file f in revision
r (or, put another way, immediately after revision r has been
checked into the repository). Let M be the set of all method
names in the source code in the repository and Tr be the set
of all raw types and Tg be the set of all parameterized types
in the source code. We now define two functions. Typesr
takes a method m, file f , revision r, and raw type t ∈ Tr and
returns the number of uses of t in method m within revision
r of file f .

Typesr : (M × F ×R× Tr)→ Z

Similarly, Typesg provides the same functionality for a pa-
rameterized type t ∈ Tg.

Typesg : (M × F ×R× Tg)→ Z

Finally, let Elide : Tg → Tr be a function that maps a pa-
rameterized type to its corresponding raw type. For example
Elide(List<String>) = List. We record a generification of
type tr ∈ Tr to type tg ∈ Tr in method m ∈M in revision

4

ohloh.net
ohloh.net
http://promisedata.org


r ∈ R of file f ∈ F iff

∃i > 0 : Typesr(m, f, r − 1, tr) = Typesr(m, f, r, tr) + i

∧ Typesg(m, f, r − 1, tg) = Typesg(m, f, r, tg)− i

∧ Elide(tg) = tr

We note that this approach is a heuristic and does not
provide conclusive proof that a generification occurred. To
assess this threat, we manually examined over 100 generifica-
tions identified by our algorithm and in all cases, the change
represented a generification of a raw type.

One limitation of this approach is that we will miss “im-
plicit” parameterized types. Consider the following two
method signatures:

void printList(List<String> l)
List<String> getList()

Our analysis will identify both methods as using generics.
However, if these two method calls are nested in a separate
method:

a. printList (b.getList ())

then no parameterized type appears in the AST and we do
not count it as a use of generics. Tackling this problem
would require a static analysis beyond the bounds of an
individual source file, heavily decreasing performance at the
scale of our analysis (hundreds of millions LOC). We do not
believe this impacts our results, as in our experience, few
methods contain implicit parameterized types without type
declarations.

5. DATA CHARACTERIZATION

5.1 Projects
Did projects adopt generics? Specifically, we equate the

presence of parameterized types as adoption of generics and
the presence of raw types as non-adoption. We counted the
number of parameterizations and raw types at the latest
point of development for all projects.

Figure 1 compares the number of raw types and parameter-
ized types. Eight projects had more parameterized types than
raw types while twelve projects used more raw types than
parameterized. JEdit and Squirrel-SQL made prominent
use of generics.

0
2
4
6
8

10
12
14
16
18
20

ec
lip

se
 jd

t
sp

rin
g

hi
be

rn
at

e
an

t
su

bc
lip

se
w

ek
a

je
tt
y

xe
rc

es
2-

j
lo

g4
j

ch
ec

ks
ty

le
ec

lip
se

-c
s

fr
ee

m
in

d
m

av
en

3
je

di
t cc

lu
ce

ne
sq

ui
rr

el
-s

ql
az

ur
eu

s
fin

db
ug

s
ju

ni
t# 
Ra

w
 a

nd
 G

en
ric

 T
yp

es
 (t

ho
us

an
ds

) parameterized
raw

Figure 1: Parameterized and raw type counts in 20 projects.

Five projects ignored generics. Without interviewing the
developers, we can only speculate on why. In section 6, we
examine if the claims researchers made failed to hold in
practice, and could contribute to lower adoption.

5.2 Developers
Did developers widely embrace generics? We examined

commits with creation or modification of parameterized types,
generic type declarations, or generic method declarations. In
total, 532 developers made 598,855 commits to the projects.
Of those developers, 75 developers created or modified generic
declarations (14%) and 150 developers used parameterized
types (28%). For these developers, the average number of
commits involving generic declarations was 27 commits and
554 commits associated with parameterized types. Naturally,
some developers commit more than others, which may give
them more opportunity to use generics. Only 263 developers
had more than 100 commits, averaging 2247 commits. Within
this group of more frequent committers, 72 created or modi-
fied generic declarations (27%) and 112 used parameterized
types (42%).

The data suggests only a select few of developers (perhaps
with more authority or involvement) would create generic
declarations followed by a modest embrace of generics by
the most frequently committing developers. In later sections,
we examine in more detail whether certain developers are
choosing to ignore generics in favor of raw types (Section 7.1)
and whether there is a concerted effort to migrate those raw
types to use generic types instead (Section 7.2).

5.3 Features Breakdown

5.3.1 Common Parameterized Types
We classified parameterized types as either user-defined

or from the standard Java Collections (java.util) based
on name signatures. We found that on the whole, use of
Collections types accounts for over 90% of parameterized
types across all of the codebases that we examined. In every
project, List objects were the most common, followed by
Map objects. Table 1 illustrates this finding by showing use
of parameterized types in the Squirrel-SQL project.

Type Parameterizations

List<String> 1066
ArrayList<String> 682
HashMap<String,String> 554
List<ObjectTreeNode> 376
List<ITableInfo> 322
Class<?> 314
List<TableColumnInfo> 304
Vector<String> 234
List<ArtifactStatus> 196
Collection<String[]> 166
List<Object[]> 132
Iterator<String> 124
ArrayList<MappedClassInfo> 114
Set<String> 102

Table 1: Number of parameterizations of different generic
types in Squirrel-SQL

5.3.2 Common Arguments

5



We also investigated which type arguments were used most
frequently. Again, there was a very clear dominant usage
pattern. Strings were by far the most common arguments.
Table 1 shows the number of parameterized types of each
kind of type argument in Squirrel-SQL for the most com-
monly used types. In fact, it appears that Lists and Maps
of Strings account for approximately one quarter of param-
eterized types. We observed similar patterns in all projects
with generics, with Lists of Strings always topping the
list at almost twice the usage of the next commonly used
parameterized type.

5.3.3 Generic Types versus Methods
We compared the number of user-defined generic types

and methods. In total, 411 generic methods and 1127 generic
types existed across all projects during the time of study.
Out of the 15 projects that used generics, 6 had fewer than 10
generic types, and 3 projects had more than 100. This trend
was not necessarily a function of size; for example, FindBugs
made extensive use of generic types (88) in comparison to
JEdit (33) even though FindBugs is vastly smaller.

In every project there were more generic classes than
generic methods, an average of about a 3-to-1 ratio. We were
surprised by this; a large selling point of generics was the
ability to create generic operations over data. Rather it seems,
generics were used as placeholders and not as abstractions.

The number of generic declarations lagged the number
of parameterizations, a tendency followed by most of the
projects that we studied. Exceptions include FindBugs,
which began using declarations and parameterizations at
about the same time, and Ant and Subclipse, which never
used any declarations. This lag suggests that adoption grows
in stages as developers become more comfortable with the
new feature. We examine adoption lag in section 7.3.

5.3.4 Unique parameterizations
For generics to be advantageous, each type declaration

must be parameterized by multiple types, otherwise a sim-
ple non-generic solution would suffice. But, for example, a
generic type may be parameterized many times throughout
the code but only have one unique parameter (e.g., String).
In practice, how many unique parameterizations are made
of type declarations? Is the number small or are generics
preventing thousands of clones from being created?

From our data, we counted user-defined type declara-
tions and their parameterizations. In total, 334 user-defined
generic type declarations were instantiated. Of those, 33%
had a single parameterization. The remaining 67% ranged
from 2 to 39 parameterizations (mean=4.5). Overall, the
distribution was very positively skewed such that 80% of
generic classes had fewer than 5 parameterizations. Does
this support the cost savings envisioned by the language
designers? We investigate further in Section 6.2.

5.3.5 Advanced Parameterizations
We examined several advanced uses of parameterization,

including wildcard types, such as List<?>, where the type
argument matches any type; bounded types, such as List<?
extends Integer>, where the argument matches a certain
set of types; nesting, such as List<List<String> >; and
mutiple type arguments such as Map<String,Double>.

As a percentage of all parameterized types, each advanced
use made up the following percentages: nesting (<1%),

bounded types (3%), wildcards (10%), multiple type ar-
guments (20%).

6. INVESTIGATING CLAIMS

6.1 Generics reduce casts
One primary argument for introducing generics is that

they reduce the number of runtime exceptions because they
reduce the need to cast (Hypothesis 1). Thus, it is reasonable
to expect that the addition of generics will reduce casts.

To test Hypothesis 1, we examined our data to determine
if an increase in generics leads to a decrease in casts. Figure 2
plots the number of casts against the number of parameter-
ized types for three projects. The x-axis represents time and
the y-axis is the ratio of program elements (parameterized
types or casts) to Halstead’s program length; this essentially
normalizes the number of program elements for program size.
Red (top) lines represent the normalized number of casts over
time. Blue (bottom) lines represent the normalized number
of parameterized types (this ratio is multiplied by a factor
of 10, because the number of parameterized types is small
relative to the number of casts).

Overall, the graphs do not suggest a strong relationship
between the use of casts and the use of parameterized types,
for several reasons:

• The number of casts fluctuates significantly in the initial
phase of all three projects (a trait shared by most of
the 20 projects that we investigated), even before the
introduction of generics. It would appear that some
software development practice has a larger effect on
casts than parameterized types.

• After the initial turmoil, all three projects show a
gradual decline in the number of casts (a trait shared
by about half of the projects that we investigated),
even before developers start to introduce generics. This
suggests that some other software development practice
reduces the number of casts in a project over time.

However, the figures do suggest that the introduction of
generics may, in some circumstances, reduce the number of
casts. Specifically, notice that Eclipse-cs and Squirrel-
SQL both exhibit sharp increases in the number of generics.
Eclipse-cs, and to a lesser extent Squirrel-SQL, simulta-
neously decrease the number of casts in the program. This
suggests that some projects will see a decrease in the number
of casts when generics are introduced. However, this effect
seems to be limited; a total of 6 out of 15 projects that used
generics ever exhibit this sharp inverse relationship.

In addition to a visual inspection, we used a spearman
rank correlation to examine the relationship between generics
use and use of casts. We also employed Benjamini-Hochberg
p-value correction to mitigate false discovery [2]. Of the
statistically significant results (p < 0.05), we found that
six of the projects showed a moderate inverse correlation
(between −0.4 and −0.7) and only one project, Squirrel-
SQL, showed a strong relationship (−0.84). Surprisingly, the
Spring Framework actually showed a positive correlation
(0.49), indicating that increased generics use coincided with
more casts.

Overall, the data that we collected does not support Hy-
pothesis 1.

The main limitation to this analysis is that we considered
trends across all contributors. While this illustrates a more

6



eclipse-cs

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

jedit squirrel-sql

Figure 2: Number of casts (red, top line) versus number of parameterized types (blue, bottom line), normalized by program
length.

project-wide trend, it may be that if we considered only the
trends of generics and casts for developers who embraced
generics, there would be a stronger relationship.

6.2 Generics prevent code duplication
Another claim regarding generics is that a generic type

Pair<S,T> would prevent the need for countless clones of
classes such as StringIntPair and StringDoublePair if a
developer wanted to create a type-safe container. But in
practice, how many clones would actually be needed? How
many duplicated lines of code and bugs would be introduced
from having to maintain these clones?

To test Hypothesis 2, we measure the number of unique
parameterizations for all parameterized types to determine
the number of clones. Further, we take our previous measures
of unique parameterizations of just user-defined generics
(shown in subsection 5.3.4), and use the lines of code and
number of revisions in the source repository to estimate the
impact of code duplication. Total lines of duplicated code
are calculated by taking the number of unique parameters
(P), lines of code (LOC) and applying this formula: D =
LOC ∗ (P −1). This estimates the amount of additional code
needed to provide implementations of non-generic code for
each type parameter, P . Next, we take the total duplicated
lines (D), the number of revisions (R), and an error constant
(K) to estimate the potential faults in the code in this manner:
E = D ∗ R ∗K. This is a rough estimate that assumes a
relatively uniform bug rate across lines of code.

From our data, we found a large number of clones would
need to be created for a small number of types. We observed
usage of 610 generic classes, but actually found about 50%
of these types (306) only had exactly one type argument
ever used throughout the project’s history, suggesting that
needless or premature generification of objects occurs fairly
frequently. From the top ten generic classes having the most
variation (all were Java collection classes), we found a total of
4087 variations. To accommodate all the variations of these
ten classes, 4077 clones would need to be created, or about
407 clones per class. But the number of variations dropped
drastically for the remaining 294 classes; 1707 clones would
need to be created, or about 5.8 clones per class. Interestingly,
we only found 6 variations for Pair across all projects.

Next, we analyzed the top 27 parameterized user-defined
types to estimate the impact of code duplication. The generic
classes had a total of 365 parameter variations. The mean
code size of the types was 378 LOC and the types were
changed a total of 775 times (mean 28). We estimate, as
a result from these 27 generic types alone, an estimated
107,985 lines of duplicated code were prevented. With our
error estimation, 400 errors would have been prevented based

on our metric and an error constant of 7.4/10000 (1/100
errors per commit, and 7.4/1000 errors per LOC [11]). On
average, 28 bugs were prevented by a generic type.

Overall, this supports Hypothesis 2; however, the im-
pact may not have been as extensive as expected. The benefit
of preventing code duplication is largely confined to a few
highly used types.

There are limitations to our results. We may over-estimate
the code duplication if inheritance could have shared non-
generic methods. We may under-estimate the number of
unique parameterizations, as some generic types are intended
for client use and were not used in the code we analyzed,
for example the library Commons Collections; there were
674 generic classes that were never parameterized. Further,
we excluded 119 generic types from analysis that had only
one unique parameter which themselves were other generic
parameters. This might be common, for example, with a
GenericHashKey that might be used by other generic types.

7. JAVA GENERIC ADOPTION

7.1 What happens to old code?
Since generics supposedly offer an elegant solution to a

common problem, we investigated how pre-existing code
is affected by projects’ adoption of generics in an effort
to answer Research Question 2. Is old code modified to
use generics when a project decides to begin using generics?
There are competing forces at play when considering whether
to modify existing code to use generics. Assuming that new
code uses generics extensively, modifying existing code to use
generics can make such code stylistically consistent with new
code. In addition, this avoids a mismatch in type signatures
that define the interfaces between new and old code. In
contrast, the argument against modifying old code to use
generics is that it requires additional effort on code that
already “works” and it is unlikely that such changes will be
completely bug-free.

To address this question as presented in Research Ques-
tion 2, we examined if and how old code is modified after
generics adoption. Figure 3 depicts a gross comparison by
showing the growth in raw types (solid red) and generic
types (dashed blue) over time for the three projects of in-
terest. Note that raw types are types used in the system
for which a corresponding generic type exists, such as List.
A drop in raw types that is coincident with an increase in
parameterized types (e.g. in mid 2007 in Squirrel-SQL,
which we manually verified by inspection as a large gener-
ification effort) indicate evidence of possible generification.
Changes in types may not themselves be evidence of actual

7



2002 2004 2006 2008 2010

0
50

0
10

00
15

00
20

00
25

00
30

00

Types usage in squirrel−sql

Date

N
um

be
r o

f T
yp

e 
U

se
s

Raw Types
Parameterized Types

(a) Squirrel-SQL

2004 2005 2006 2007 2008 2009 2010

0
10

0
20

0
30

0
40

0

Types usage in eclipse−cs

Date
N

um
be

r o
f T

yp
e 

U
se

s

Raw Types
Parameterized Types

(b) Eclipse-cs

2000 2002 2004 2006 2008 2010

0
10

00
20

00
30

00
40

00

Types usage in jedit

Date

N
um

be
r o

f T
yp

e 
U

se
s

Raw Types
Parameterized Types

(c) JEdit
Figure 3: Migration efforts in switching old style collections was mostly limited in projects: old code remains. Solid lines
indicate use of raw types (types such as List that provide an opportunity for generification) and dashed lines, generic types.

generification, however. We therefore determined generifica-
tions in a more principled way. Specifically, we identified raw
types in the code as candidates for parameterization. We
then examined what proportion of these candidates actually
were removed and replaced by their generic counterparts by
using the approach described in subsection 4.4.1.

In Squirrel-SQL, a total of 1411 raw types were intro-
duced into the codebase over the life of the project (note that
some were removed before others were added, so the maxi-
mum shown in Figure 3 is 1240). Of these, 574 (40.7%) were
converted to use generics over a five month period starting
when they were adopted in early 2007 (we identified these
using the approach described in section 4.4.1). In contrast,
JEdit had 517 of a total 4360 introduced raw types converted
to use generics (11.9%) and Eclipse-cs had only 30 of 497
converted (6%). Of the other projects studied, only Com-
mons Collections (28%) and Lucene (33.4%) had more
than 10% of their existing raw types generified. In aggregate,
only 3 of the 15 projects that use generics converted more
than 12% of their raw types and none of them converted
more than half of their raw types use. We therefore conclude
that although we do see a few large-scale migration efforts,
most projects do not show a large scale conversion
of raw to parameterized types.

7.2 Who buys-in?
Research Question 1 relates to who uses generics in the

projects that adopt them. We expect that since most large
projects depend on the principle of community consensus,
the decision to use generics would be made as a group and
would not be dominated by one developer.

To answer Research Question 1, we examined the intro-
duction and removal of parameterized types by developers
over time. Figure 4 shows the introduction (and removal) of
parameterized types by contributor for the five most active
contributors to each project. A solid line represents the
number of raw types, which are candidates for generification,
and a dashed line, parameterized types. Pairs of lines that
are the same color denote the same contributor. A downward
sloping solid line indicates that a contributor removed raw
types. For instance, 4-a shows that in Squirrel-SQL, one
contributor began introducing parameterized types in early
2007 while concurrently removing raw types.

The most common pattern that we observed across projects
was one contributor introducing the majority of generics.
This pattern is illustrated in Squirrel-SQL and Eclipse-
cs (4-a and 4-b), and similar phenomena were observed in
JDT, Hibernate, Azureus, Lucene, Weka, and Commons
Collections. We performed a Fisher’s exact test [7] of
introduction of raw and parameterized types comparing the
top contributor with each of the other contributors in turn
(using Benjamini-Hochberg p-value correction to mitigate
false discovery [2]) to determine if any one contributor uses
generics on average much more than the others. This test
examines the ratio of raw types to parameterized types rather
than the total volume, so that the difference of overall activity
is controlled for. We found that in all cases, one contributor
dominates all others in their use of parameterized types to a
statistically significant degree.

JEdit (4-c) represents a less common pattern in that all of
the active contributors begin using generics at the same time
(towards the end of 2006). This is more representative of
the Spring Framework, JUnit, and Maven. Interestingly,
although our graph of JEdit shows that most contributors
began using parameterized types, a Fisher’s exact test showed
that one contributor (shown in yellow) still used parameter-
ized types more often than raw types compared to all other
contributors to a statistically significant degree.

Lastly, FindBugs (not shown) is an outlier as the two main
contributors began using generics from the very beginning
of recorded repository history and parameterized types were
used almost exclusively where possible; we found almost no
use of raw types in FindBugs at all.

Overall, the data and our analysis indicates that generics
are usually introduced by one or two contributors
who “champion” their use and broad adoption by
the project community is uncommon.

In further work, we plan to investigate and contact these
early adopters to identify why and how they began introduc-
ing generics as well as the obstacles (both technological and
social) that they encountered.

7.3 How soon adopted?
We next turn to the question of how long it has taken

software projects to adopt generics use and if there is a

8



2002 2004 2006 2008 2010

0
50

0
10

00
15

00
20

00
25

00

Squirrel−SQL

Date

Ty
pe

 In
tr

od
uc

tio
ns

/R
em

ov
al

s

Generic
Raw

(a) Squirrel-SQL

2004 2006 2008 2010

0
50

10
0

15
0

20
0

25
0

30
0

Eclipse−CS

Date
Ty

pe
 In

tr
od

uc
tio

ns
/R

em
ov

al
s

Generic
Raw

(b) Eclipse-cs

2000 2002 2004 2006 2008 2010

−
20

0
0

20
0

40
0

60
0

80
0

10
00

12
00

jEdit

Date

Ty
pe

 In
tr

od
uc

tio
ns

/R
em

ov
al

s

Generic
Raw

(c) JEdit
Figure 4: Contributors’ introduction and removal of type uses over time for the five most active contributors in each project.
Solid lines indicate use of raw types (types such as List that provide an opportunity for generification) and dashed lines,
parameterized types. Each color represents a different contributor.

relationship with tool support (including IDEs such as Eclipse
and NetBeans) of generics. In order to relate time to key
events that may affect adoption, we chose dates of generics
feature introduction in Java and IDE support for generics.

To evaluate Research Question 3, we first had to determine
which projects used which IDEs. We found evidence that
IDEs were used for development for most of the projects
that we studied. This evidence existed in the form of files
created by IDEs (.project files in the case of Eclipse) or
discussions on mailing lists. Eclipse was the most predom-
inant IDE that we found evidence for, used by developers
in Azureus, CheckStyle, Eclipse-cs, FindBugs, Jetty,
JUnit, JDT, the Spring Framework, Squirrel-SQL,
Subclipse, Weka, and Xerces.

Although Java 1.5 with generics was released in September
of 2004, Eclipse did not support generics until the public
release of version 3.1 in late June, 2005. NetBeans supported
generics at the same time that they were introduced, making
a study of the effects of support for this IDE difficult if
not impossible. We therefore examined each of the eight
projects that use Eclipse as an IDE to determine if they
adopted generics prior to the 3.1 release. Of these projects,
CheckStyle, JUnit, JDT and FindBugs started using
generics prior to generics support in Eclipse. The other
four projects waited until after generics support appeared
in Eclipse and did not switch until sometime in 2006 or
later (Subclipse did not begin using generics until 2010).
We examined the developer mailing lists at the time that
generics support was added to Eclipse and also at the time
that they began using generics and found no discussion of
generics support in Eclipse as a factor in decision-making.
Although these eight projects technically adopted generics
after Eclipse support for them, the fact that adoption did
not occur for at least six months after such support along
with an absence of evidence on the developer mailing lists,
leads us to believe that IDE support may not be critical.

The following quote from Jason King in a discussion of
generics support in Eclipse provides one way to reconcile the
perceived importance of tool support with our findings.2

2
http://www.theserverside.com/news/thread.tss?thread_id=37183

Our team adopted Java 5.0 back in November
2004 and incrementally adopted the [Eclipse] 3.1
milestone builds as they came out throughout the
first 6 months of this year. We found the product
to be remarkably stable from an early stage, with
few serious bugs.

As the entire team was learning the Java 5 fea-
tures, we started manually coding in generics (and
enums, varargs, annotations etc). A few times
we complained that autocompletion and refac-
toring would help, but the absence didn’t stop
us. When a new [Eclipse] milestone came out our
pairing sessions were really fun as we discovered
new features appearing in the IDE.

Although tool support does not appear to be critical, we
also looked at time of adoption to identify other possible
factors affecting uptake time. Interestingly, we found no
trend related to when generics were adopted. As examples
of the observed variation, JEdit started using them in 2004,
Squirrel-SQL in 2006, Eclipse-cs in 2008, and Subclipse
in 2010. FindBugs is again an anomaly as it used generics
before generics were officially released ! The only statement
we can confidently make is that there was not strong adoption
of generics immediately following their introduction into Java.

We also saw wide variation in the rate of generics adoption
within the codebases. Figure 3 shows that Squirrel-SQL,
Eclipse-cs, and JEdit introduced generics into the code
at a rapid rate once the decision to use them was made.
In contrast, a number of projects, Lucene, Hibernate,
Azureus, CheckStyle, and JUnit show a lull in generics
use for months or even years following first generics use.

Overall, the data that we collected to answer Research
Question 3 indicate that lack of IDE support for gener-
ics did not have an impact on its adoption. This
finding raises more questions than it answers. Deciding to
use a new language feature is non-trivial and can have large
consequences. If many projects adopted generics, but did so
at vastly different times and rates, what factors affect the
decision of when to begin using them? In the future, we
plan to contact project developers, especially those that first
began using generics, to identify these factors.

9

http://www.theserverside.com/news/thread.tss?thread_id=37183


8. DISCUSSION AND FUTURE WORK
Overall, we were surprised by several of our findings about

generics, which are at odds with our initial hypotheses. For
instance, we were surprised that over half of the projects
and developers we studied did not use generics; for those
that did, use was consistently narrow. Empirically, we have
found that generics are almost entirely used to either hold or
traverse collections of objects in a type safe manner. Indeed,
had the language designers of Java generics instead opted to
introduce a single StringList class, then they would have
succeeded in satisfying 25% of Java generic usage.

Although we found some merit to claims of reducing code
duplication, we found the impact to be limited in scope. A
surprisingly dubious argument is that casts are reduced with
use of generics. In future studies, we would like to investigate
in more detail the underlying reason.

This could well indicate that a language enhancement as
large scale and sweeping as generics may have been more
than what was really needed. Perhaps, language designers
can take this to heart: in addition to the many difficulties
inherent in adding generics to the Java language, designers
had heated debates regarding the finer points of semantics.
James Gosling, known as the father of the Java language,
portrayed discussion of generics as a “food fight” and that
“generics is the thing that caused Bill Joy and I to get as
close to physical violence as we’ve ever gotten” [12].

While our results have painted a broad picture of how
generics are used, different projects adopted generics at dif-
ferent times, and different people made use of generics in
different ways. In the future we plan to better understand
what are deciding factors or barriers for adopting new lan-
guage features by contacting the developers to understand
their thoughts and opinions of generics. We have measured
use of generics by examining the frequency of their occurences
within the source code, but there may be other measures
of impact such as number of uses dynamically at run-time
and we are investigating these measures. Further, we plan
on manually inspecting less-frequently used aspects of gener-
ics to more qualitatively identify the value and impact of
generics on the software.

9. CONCLUSION
We have explored how Java developers have used, and not

used, Java generics over the past few years. We uncovered
surprising generics usage trends, but also observed variation
between projects and between developers. However, the
results presented here illustrate only broad trends; future
work will explain why these trends and variations exist.

While we expect that our retrospective results will, at this
point, have little impact on Java generics, our results may
help us adjust our expectations about the adoption of future
language features. For example, based on our results, devel-
opers may not replace old code with new language features,
so perhaps the introduction of a language feature alone is
not enough to assure adoption. In future language-design
wars, we hope that empirical data about how developers use
language features may be an antidote to anecdotes.

Acknowledgements
Thanks to NCSU students Brad Herrin, Michael Kolbas, and
Chris Suich, who contributed code to our analysis framework.
Thanks to Jonathan Aldrich, Andrew Black, Prem Devanbu,

Mike Ernst, Ron Garcia, Gail Murphy, Zhendong Su, and
Thomas Zimmerman, who provided valuable advice.

10. REFERENCES
[1] H. Basit, D. Rajapakse, and S. Jarzabek. An empirical study

on limits of clone unification using generics. In Proceedings of
the 17th International Conference on Software Engineering
and Knowledge Engineering, pages 109–114, 2005.

[2] Y. Benjamini and Y. Hochberg. Controlling the False
Discovery Rate: A Practical and Powerful Approach to
Multiple Testing. Journal of the Royal Statistical Society.
Series B (Methodological), 57(1):289–300, 1995.

[3] J. Bloch. Effective Java. Prentice-Hall PTR, 2nd edition,
2008.

[4] G. Bracha. Lesson: Generics. Web.
http://download.oracle.com/javase/tutorial/extra/
generics/index.html.

[5] G. Bracha. Generics in the java programming language.
Web, July 2005.
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf.

[6] A. Donovan, A. Kiežun, M. S. Tschantz, and M. D. Ernst.
Converting java programs to use generic libraries. In
OOPSLA ’04: Proceedings of the 19th annual ACM
SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, 2004.

[7] S. Dowdy, S. Wearden, and D. Chilko. Statistics for research.
John Wiley & Sons, third edition, 2004.

[8] N. Ducheneaut. Socialization in an Open Source Software
Community: A Socio-Technical Analysis. Computer
Supported Cooperative Work (CSCW), 14(4):323–368, 2005.

[9] R. Fuhrer, F. Tip, A. Kieżun, J. Dolby, and M. Keller.
Efficiently refactoring Java applications to use generic
libraries. Eurpoean Conference on Object Oriented
Programming, pages 71–96, 2005.

[10] R. Geiger, B. Fluri, H. Gall, and M. Pinzger. Relation of
code clones and change couplings. Fundamental Approaches
to Software Engineering, 3922:411–425, 2006.

[11] W. S. Humphrey. A Discipline for Software Engineering.
Addison-Wesley Longman Publishing, 1995.

[12] D. Intersimone. New additions to the Java language. Java
One 2001 Keynote delivered by James Gosling. Web.
http://edn.embarcadero.com/article/27440.

[13] S. Markstrum. Staking claims: A history of programming
language design claims and evidence. In Proceedings of the
Workshop on the Evaluation and Usability of Programming
Languages and Tools, 2010.

[14] A. Mockus, R. Fielding, and J. Herbsleb. Two case studies of
open source software development: Apache and Mozilla.
ACM Transactions on Software Engineering and
Methodology (TOSEM), 11(3):309–346, 2002.

[15] A. Monden, D. Nakae, T. Kamiya, S. Sato, and
K. Matsumoto. Software Quality Analysis by Code Clones in
Industrial Legacy Software. In Proceedings of the 8th
International Symposium on Software Metrics, 2002.

[16] M. Naftalin and P. Wadler. Java generics and collections.
O’Reilly Media, Inc., 2006.

[17] S. O’Mahony and F. Ferraro. The emergence of governance
in an open source community. Academy of Management
Journal, 50(5):1079–1106, 2007.

[18] V. Pankratius, A. Adl-Tabatabai, and F. Otto. Does
Transactional Memory Keep Its Promises?: Results from an
Empirical Study. Technical Report 2009-12, Universität
Karlsruhe, Fakultät für Informatik, 2009.

[19] D. Vandevoorde and N. Josuttis. C++ templates: the
Complete Guide. Addison-Wesley Professional, 2003.

[20] T. Zimmermann. Fine-grained Processing of CVS Archives
with APFEL. In Proceedings of the OOPSLA Workshop on
Eclipse Technology eXchange. ACM Press, 2006.

10

http://download.oracle.com/javase/tutorial/extra/generics/index.html
http://download.oracle.com/javase/tutorial/extra/generics/index.html

	Introduction
	An Overview of Generics
	Motivation for Generics
	Programming with Generics

	Related Work
	Claims Regarding Generics
	Empirical Studies

	Investigation
	Investigated Claims
	Adoption Research Questions
	Projects Studied
	Methodology
	Identifying Generification


	Data Characterization
	Projects
	Developers
	Features Breakdown
	Common Parameterized Types
	Common Arguments
	Generic Types versus Methods
	Unique parameterizations
	Advanced Parameterizations


	Investigating Claims
	Generics reduce casts
	Generics prevent code duplication

	Java Generic Adoption
	What happens to old code?
	Who buys-in?
	How soon adopted?

	Discussion and Future Work
	Conclusion
	References

