
Using Developer-Interaction Trails to Triage
Change Requests

Motahareh Bahrami Zanjani, Huzefa Kagdi
Department of Electrical Engineering and Computer Science

Wichita State University
Wichita, Kansas 6760, USA

Email: {mxbahramizanjani, huzefa.kagdi}@wichita.edu

Christian Bird
Microsoft Research

Redmond, WA, USA
Email: cbird@microsoft.com

Abstract— The paper presents an approach, namely iHDev,
to recommend developers who are most likely to implement
incoming change requests. The basic premise of iHDev is that
the developers who interacted with the source code relevant to
a given change request are most likely to best assist with its
resolution. A machine-learning technique is first used to locate
source-code entities relevant to the textual description of a given
change request. iHDev then mines interaction trails (i.e., Mylyn
sessions) associated with these source-code entities to recommend
a ranked list of developers. iHDev integrates the interaction trails
in a unique way to perform its task, which was not investigated
previously.

An empirical study on open source systems Mylyn and Eclipse
Project was conducted to assess the effectiveness of iHDev. A
number of change requests were used in the evaluated bench-
mark. Recall for top one to five recommended developers and
Mean Reciprocal Rank (MRR) values are reported. Furthermore,
a comparative study with two previous approaches that use
commit histories and/or the source-code authorship information
for developer recommendation was performed. Results show
that iHDev could provide a recall gain of up to 127.27% with
equivalent or improved MRR values by up to 112.5%.

I. INTRODUCTION

Software change requests and their resolution are an in-
tegral part of software maintenance and evolution. It is not
uncommon in open source projects to receive tens of change
requests daily that need to be promptly resolved [1]. Issue
triage is a crucial activity in addressing change requests in
an effective manner (e.g., within time, priority, and quality
factors). The task of automatically assigning issues or change
requests to the developer(s) who are most likely to resolve
them has been studied under the umbrella of bug or issue
triaging. A number of approaches to address this task have
been presented in the literature [1]–[5]. The fundamental idea
underlying most triage approaches is to identify the expertise
and interests of developers, infer the concern or component
that must be addressed for a task, and then match developers
to tasks. Approaches typically operate on the information
available from software repositories (e.g., models trained from
past bugs/issues or source-code changes), the source-code
authorship [3], or their combinations [6] under the rationale
that if a developer frequently commits changes to, or fixes
bugs in, particular parts of a system, they have knowledge of
that area and can competently make changes to it.

We agree with the fundamental concept that historical

records of developers’ activity yield insight into their knowl-
edge and ability, but we also posit that additional traces
of developer activity such as interactions with source code
(beyond those leading to commits) when resolving an issue
can provide a more comprehensive picture of their expertise.
The records of developers’ interactions with code in resolving
an issue remain largely untapped in solving this problem.

In this paper, we show that exploiting these additional
sources of such interactions leads to better task assignment
than relying on commit and bug tracking histories. We propose
a new approach, namely iHDev, for assigning the incoming
change requests to appropriate developers. iHDev is centered
on the developers’ interactions with source code entities that
were involved in the resolution of previous change requests.
Developers may interact with source-code entities within an
Integrated Development Environment (IDE) that may or may
not be eventually committed to the code repository [7], [8].
These interactions (e.g., navigate, view, and modify) could
have contributed in locating and/or verifying the entities that
were changed due to a change request. Therefore, it suggests
that the interacting developers are knowledgeable in those
entities. On the face value, it could be conjectured that
commits (i.e., changed entities) are a subset of interactions
(i.e., viewed and changed entities). Our previous investigation
found that a superset or subset relationship does not always
hold [7]. Thus, the interaction trails have the potential to
offer aspects that may not be embodied in commit histories.
Tools such as Mylyn capture and store such interaction trails
(histories) [9].

iHDev takes the textual description of an incoming change
request (e.g., a short bug description) and locates relevant
entities (e.g., files) from a source-code snapshot. A machine
learning technique, K-Nearest Neighbor (KNN) algorithm and
cosine similarity, is used in this step. The interaction histories
of these entities are mined to forge a ranked list of candidate
developers to resolve the change request. The basic premise
of our approach is that the developers who interacted with
the relevant source code to a given change request in the
past are most likely to best assist with its resolution. In
a nutshell, our approach favors interaction Histories over
other types of past information to recommend Developers;
hence, the name iHDev. It neither needs to mine for textually
similar past change requests nor source-code change (commit)

histories. It only needs developer-interaction sessions from the
issue repository of a system, which are typically attached to
issue/bug reports (e.g., in the Mylyn prescribed XML format).

To evaluate the accuracy of our technique, we conducted
an empirical study on two open source systems Mylyn and
Eclipse Project. Recall and Mean Reciprocal Rank (MRR)
metric values of the developer recommendations on a number
of bug reports sampled from this system are presented. That
is, how effective our iHDev approach is at recommending
the actual developer who ended up fixing these bugs. Addi-
tionally, our iHDev approach is empirically compared with
two other approaches that use the commit and/or source-code
authorship information [3], [6], [2]. The results show that
the proposed iHDev approach outperformed these baseline
competitors. Lowest recall gains of 6.17% and 9.72% were
recorded against the two respective approaches. Highest recall
gains of 125% and 127.27% were recorded against the two
respective approaches. These gains came without incurring
any decreased Mean Reciprocal Rank (MRR) values; rather
iHDev recorded improvements in them. That is, iHDev would
typically recommend the correct developers at higher ranks
than the subjected competitors.

Our paper makes the following noteworthy contributions in
the context of recommending relevant developers to resolve
incoming change requests:

1) To the best of our knowledge, our iHDev approach is
the first to utilize developers’ source-code interaction
histories involved with past change requests.

2) We performed a comparative study with two other ap-
proaches that use commit and/or source-code authorship
information.

The rest of the paper is organized as follows: Our approach
is discussed in Section II. The empirical study on Mylyn
and Eclipse Project, and its results are presented in Section
III. Threats to validity are listed and analyzed in Section
IV. Related work is discussed in Section V. Finally, our
conclusions and future work are stated in Section VI.

II. APPROACH

Our approach iHDev to assign an incoming change request
to the appropriate developer(s) consists of the following steps:

1) Locating Relevant Entities to Change Request: We
use the K-Nearest Neighbor (KNN) algorithm to locate
relevant units of source code (e.g., files and classes)
that match the given textual description of a change
request or reported issue. The indexed source-code re-
lease/snapshot is typically between the one in which
an issue is reported and before the change request is
resolved (e.g., a bug is fixed).

2) Mining Interaction Histories to Recommend Devel-
opers: The interaction histories of the units of source
code from the above step are then analyzed to recom-
mend a ranked list of developers that are the most expe-
rienced and/or have substantial contributions in dealing
with those units (e.g., classes). The interaction histories
are extracted from the issue-tracking system.

A. Key Terms and Definition
Interaction: Interaction is the activity of program-

mers in an IDE during a development session (e.g., editing a
file or referencing an API documentation).

Tools, such as Mylyn, have been developed to model pro-
grammers’ actions in IDEs [9]. Mylyn monitors programmers’
activities inside the Eclipse IDE and uses the data to create
an Eclipse user interface focused around a task. The Mylyn
interaction consists of traces of interaction histories. Each
historical record encapsulates a set of interaction events needed
to complete a task (e.g., a bug fix). Once a task is defined
and activated, the Mylyn monitor records all the interaction
events (the smallest unit of interaction within an IDE) for the
active task. For each interaction, the monitor captures about
eleven different types of data attributes. The most important of
these is the structure handle attribute, which contains a unique
identifier for the target element affected by the interaction. For
example, the identifier of a Java class contains the names of the
package, the file to which the class belongs to, and the class.
Similarly, the identifier of a Java method contains the names
of the package, the file and the class the method belongs to,
the method name, and the parameter type(s) of the method.
Figure 1 shows an example of the Mylyn interaction edit event.
Trace file: For each active task, Mylyn creates an

XML trace file, typically named Mylyn-context.zip or its
derivative. A trace file contains the interaction history of a task.
This file is typically attached to the project’s issue tracking
system (e.g., Bugzilla or JIRA). The trace files for the Mylyn
project are archived in the Bugzilla as attachments to a bug
report. For example for issue #315184 there is one trace file
named Mylyn-context.zip1.
Attacher: Each issue/bug could have trace files. A de-

veloper submits these trace files to the project’s issue tracking
system and are attached to the associated issue report. We term
this developer as the attacher. This term helps differentiate
from the use of committers and developers in the context
of source-code repositories. There is no explicit information
to distinguish between the attacher and the actual developer
who performed the interaction session. We assume that the
attacher is the developer who performed the attached interac-
tion session. This issue is similar to the distinction between the
developer who performed and the committer who committed
the changes to a source-code repository. For example, Steffen
Pingel attached the file Mylyn-context.zip for issue #315184.
Considering the Mylyn workflow for interactions, we did not
expect nor found any instances where the attacher was not the
developer who performed the interaction session.

B. Locating Relevant Entities to Change Request
In our approach, we use techniques from natural language

processing and machine learning to locate textually relevant
source code files to a given change request for which we need
to assign developers. The specific steps are given below:

1) Creating a corpus from software: The source code of a
release, in or before which the change request is resolved,
is parsed using a developer-defined granularity level (e.g.,

1https://bugs.eclipse.org/bugs/show bug.cgi?id=315184

Fig. 1: A snippet of an interaction event recorded by My-
lyn for bug issue #330695 with trace ID #221752. File
TaskListView.java is edited.

file) and documents are extracted. A corpus is created such
that each file will have a corresponding document therein.
Identifiers, comments, and expressions are extracted from the
source code. Each document in the corpus is referred to as
docpast.

2) Preprocessing Step: Each document docpast is prepro-
cessed in two parts: removing stop words and stemming.

3) Document-Term Representation: Document
Indexing: We produce a dictionary from all of the
terms in our document and assign a unique integer Id to each
term appearing in it.

Term Weighting: We use tfidf in our approach. The
global importance of a term i is based on its inverse document
frequency (idf), calculated as the reciprocal of the number of
documents that the term appears in. idf is the document fre-
quency of term i in the whole document collection. tfi,j is the
term frequency of the term i in the document j. Each document
dj is represented as a vector dj = (w1,j , ..., wi,j , ..., wn,j)
where n is the total number of terms in our document
collection and wi,j is the weight of the term i in document j.

4) Using Change Request: The textual description of a
change request for which we want to find all of the relevant
files, and eventually to be assigned developer(s), is referred to
as docnew. docnew also goes through the preprocessing step
and is represented as a document.

5) K-Nearest-Neighbor: The task of multi-label classifica-
tion is to predict for each data instance a set of labels that
applies to it. Standard classification only assigns one label to
each data instance. However, in many settings a data instance
can be assigned by more than one label. In our context, each
data instance (i.e., a bug report) can be assigned multiple
labels (i.e., source-code files). ML-KNN is a state-of-the-art
algorithm in the multi-label classification literature [10]. We
employ the ML-KNN search with a user-defined value of K
(e.g., the value of 10 as used in previous work [5]) to search
the existing corpus (docpast) based on similarities with the
new bug description (docnew). This search finds the top K
similar files. Cosine is then used to measure the similarity of
the two document vectors.

fsim (docnew, docpast) =
docnew.docpast
|docnew||docpast|

(1)

At the conclusion of this step, we have identified the K most
relevant source-code files to the given change request. Now,
we need to mine the candidate developers from the interaction
histories of these files.

Fig. 2: A snippet of the bug #315184 interaction log entry
from its interaction log file.

C. Mining Interaction Histories to Recommend Developers

The basic premise of iHDev is that the attachers who sub-
stantially interacted with the specific source code in the past
are most likely the best candidate to assist with the issues/bugs
associated with it. Our approach uses an interaction log, which
was assembled from source-code interactions submitted by at-
tachers to the bug tracking system (e.g., Bugzilla). Interaction
log entries include the dimensions: attacher, date, and path
(e.g., files) involved in an interaction event. Interaction logs are
not directly available from the issue/bug tracking systems. We
engineered the interaction log to simplify the implementation
of the mining component of iHDev. A notable side effect is
that it provides an analogy to commit logs, which are a basis
for several developer-recommendation approaches.
Interaction Log: An Interaction Log is a file that

includes the interaction history and the attacher(s) who created
the trace file for each bug in the issue tracking system. The
specific steps for creating an interaction log are given below:

1) Extracting Interactions: We first need to identify the bug
reports with the mylyn-context.zip attachment(s) because not
all bug issues necessarily contain the interaction trace(s). We
searched the Bugzilla issue tracking system and included bugs
containing at least one mylyn-context.zip attachment.

2) Determining the list of attachers: All the trace files from
the issue-tracking system are automatically downloaded to a
user specified directory. A complete list of attachers for each
trace file of every bug is then produced.

3) Creating Interaction log: The tool then takes the di-
rectory that contains the trace files as input and parses each
trace file to create an interaction log. For each bug Id, this
interaction log includes the attacher (from the list of attachers)
and three of the eleven attributes from the trace file (see Figure
1): EndDate, Kind, and StructureHandle. There are several
different kinds of interaction events (e.g., edit, manipulation,
selection, and propagation); however, we consider only the edit
interaction events because these events refer to interactions
that resulted in a change to the source code file (even if that
change was never committed), an action that often requires
some level of knowledge of the source code. Other events such
as navigation or selection do not imply explicit interaction or
expertise and can therefore potentially introduce noise rather
than provide additional useful information. Also, it is possible
for one bug to have multiple trace files, each with a different
attacher. Thus, for each bug in the interaction log file, multiple
log entries may exist. Figure 2 shows a log entry for bug
#315184 in the interaction log, which has only one trace file
(and one attacher). For this bug, only one file has an edit
interaction event (i.e.,”AbstractTaskRepositoryPage.java”).

The interaction log includes data such as the bug Id,
attacher, the interacted source code, and the date on which the
source code was interacted to fix this issue (see Figure 2 for an
example). This data explains who interacted with the source
code and when they did it. An attacher may contribute multiple
interactions with the same file or multiple attachers may
interact with the same file in different trace files. Therefore,
interactions give an opportunity to analyze both the exclusive
and shared contributions of attachers to a source code file.
Developer Expertise Measures: One measure of

an attacher’s contribution is the total number of interactions
on source code performed in the past [11]. An attacher who
contributed a larger number of interactions on a specific part
of the source code than another attacher can be considered as
more knowledgeable on those parts.

Another consideration for attacher contributions is the work-
days (i.e., activity) involved in the interactions that are attached
as a trace file. The activity of a specific attacher is the percent-
age of their workdays over the total workdays of the system.
Here, an attacher’s workday is considered as a day (calendar
date) on which they interacted with at least one part of the
source code, because an attacher can have multiple interactions
on a given workday. A system’s workday is considered a day
on which at least one part of the source code is interacted. A
day on which no interactions exist is not considered a workday.
These two measures give us two different views on attachers’
development styles. Some may perform smaller interaction
sessions and submit frequently in a workday (e.g., multiple
attachments), while others may do it differently (e.g., single
attachment). The third measure accounts for the recency of
these interactions. We used these three measures, which were
inspired by our previous work on commits [2], to determine
the attachers that were more likely to be experts in a specific
source code file, i.e., attacher-interaction map. The attacher-
interaction map, AI for the attacher a and file f is given below:
AI(a,f) = 〈If , Af , Rf 〉
• If is the number of interactions that include file f and

are interacted by the attacher a.
• Af is the number of workdays in the activity of attacher

a with interactions that include the file f.
• Rf is the most recent workday in the activity of the

attacher a with an interaction that includes the file f.
Similarly, the file–interaction map FI represents the interaction
contribution to the file f, and is shown below:
FI(f) = 〈I ′f , A′f , R′f 〉, where
• I ′f is the number of interactions that include file f.
• A′f is the total number of workdays in the activity of all

attachers that include interactions with the file f.
• R′f is the most recent workday with an interaction that

includes the file f.
The measures If , Af , and Rf are computed from the

interaction log. More specifically, the dimensions attacher,
date, and paths of the log entries are used in the computation.
The dimension date is used to derive workdays or calendar
days. The dimension attacher is used to derive the attacher
information. The dimension path (StructureHandle) is used to
derive the file information. The measures I ′f , A′f , and R′f are

similarly computed. The log entries are readily available in the
form of XML and straightforward XPath queries are formulated
to compute the measures. The contribution or expertise factor,
termed xFactor, for the attacher a and the file f is computed
using the ratios of the attacher–interaction and file–interaction
maps. The contribution factor, xFactor, is given below:

xFactor(a, f) =
AI(a,f)

FI(f)
(2)

xFactor(a, f) =


If
I′
f
+

Af

A′
f
+ 1
|Rf−R′

f |
if |Rf −R′f | 6= 0

If
I′
f
+

Af

A′
f
+ 1 if |Rf −R′f | = 0

(3)
The xFactor score is computed for each of the relevant

source-code files to the given change request (see Section
II-B). According to Equation 3, the maximum value of xFactor
can be three because we have used three measures, each of
which can have a maximum contribution ratio of 1.
Recommending developers based on xFactor

scores: We now describe how the ranked-list of developers
is obtained from all of the scored attachers of each relevant
source code file to a given bug. From Section II-C, there is
a one-to-many relationship between the source code files and
attachers. That is, each file fi may have multiple attachers;
however, it is not necessary for all of the files to have the
same number of attachers. For example, the file f1 could
have two attachers and the file f2 could have three attachers.
The matrix Da (see Equation 4) gives the list of unique
attachers for each relevant file fi. Dafi represents the set
of attachers, with no duplication, for the file fi, where
1 ≤ i ≤ n and n is the number of relevant files. aij is the
jth attacher in the file fi with l unique attachers.

Da =

 f1 Daf1

f2 Daf2.. ..
.. ..
fn Dafn

Dafi = { ai1 ai2 ... ail } (4)

Although, a single file does not have any duplicate attachers,
two files may have common attachers. In Equation 5, Dau is
the union of all unique attachers from all relevant files.

Dau =

n⋃
i=1

Dafi (5)

Score(a) =

n∑
i=1

xFactori(a, fi) (6)

Each attacher a for a file f has the xFactor score. To obtain
the likelihood of the attacher a, i.e., Score(a), to resolve the
given change request, we sum xFactor scores of the relevant
files in which it appears (see Equation 6). The Score(a) value
is calculated for each unique attacher a in the set Dau.

In Equation 7, we have a set of candidate developers. The
developers in this set are ranked based on their Score(a)
values. Once the developers are ranked in the descending order
of their Score(a) values, we have a ranked list of candidate
developers. By using a cutoff value of m, we recommend the
top m candidate developers, i.e., with top m Score(a) values,
from the ranked list obtained from the set DF .

DF = {(a, Score(a)),∀a ∈ Dau} (7)

TABLE I: The attachers extracted with iHDev from each of the top ten files relevant to Bug# 313712.

Rank Files Ranked Attacher based on xFactor value
1 . . . /TaskEditorNewCommentPart.java Jingwen ’Owen’:1.23, Frank Becker:1.06, Steffen Pingel:0.54, Jacek Jaroczyn-

ski:0.19, David Shepherd:0.07, David Green:0.06
2 . . . /CopyContextHandler.java Shawn Minto:2.00, Steffen Pingel:0.61, Mik Kersten:0.42
3 . . . /NewAttachmentWizardDialog.java Frank Becker:1.40, David Green:0.90, Steffen Pingel:0.60, Mik Kersten:0.30
4 . . . /Messages.java
5 . . . /WebBrowserDialog.java
6 . . . /BugzillaResponseDetailDialog.java Frank Becker:3.00
7 . . . /UpdateAttachmentJob.java Frank Becker:1.94, Robert Elves:1.40
8 . . . /TaskAttachmentPropertyTester.java Philippe Marschall:1.63, Steffen Pingel:1.38
9 . . . /TaskEditorRichTextPart.java Frank Becker:1.11, Jingwen ’Owen’ Ou:0.90, Steffen Pingel:0.66, Thomas Ehrn-

hoefer:0.26, Jacek Jaroczynski:0.12, David Green:0.11, David Shepherd:0.03
10 . . . /BugzillaPlanningEditorPart.java Steffen Pingel:1.85, Robert Elves:1.35

This step concludes iHDev and we have the top m candidate
developers recommended for the given change request.

D. An Example from Mylyn

Here, we demonstrate our approach iHDev using an example
from Mylyn. The change request of interest here is the bug
#313712 ”attachment dialog does not resize when Advanced
section is expanded”. We first collected a snapshot of Mylyn’s
source code prior to this bug fixed and then parsed it using
the file-level granularity (i.e., each document is a file). After
indexing with a machine learning technique, we obtained a
corpus consisting of 1,825 documents and containing 201,554
words. A search query is then formulated using the bug’s
textual description, the result of which (i.e., a ranked list of
relevant files) is summarized in Table I. These (k = 10) files
are our starting point for iHDev. The correct developer who
fixed this bug and committed the change is Frank Becker. In
Table I, the third column shows a set of all attachers with the
xFactor values for each file fi.

In iHDev, we first obtained the set Dau from all of the
attachers recommended for each relevant file fi to the bug
#313712 in Table I. The set Dau consists of 11 unique
attachers. Because a developer could use different identities
for the attacher and committer roles, we normalized them to
a single identity, which was their full name. For each of the
11 unique attachers, the Score value is calculated according
to Equation 6. Table II shows the top five Score values and
the corresponding attachers, i.e., m = 5. Frank Becker has the
highest score in the set DF (a value of 8.51), so he is the
first recommended developer. For the remaining attachers, the
value of the function Score is less than Frank Becker’s score,
so they all have a rank greater than 1.
TABLE II: Top five attachers (developers) recommended to
resolve bug #313712 by iHDev.

Attacher Score Rank
Frank Becker 8.51 1
Steffen Pingel 5.64 2
Robert Elves 2.75 3

Jingwen ’Owen’ Ou 2.13 4
Shawn Minto 2.0 5

Table III shows the results for the approaches iHDev,
xFinder, xFinder′ and iMacPro (described in sections III-A)
for m = 5. Clearly, the best result is for iHDev, as it
recommends Frank Becker (the correct developer who fixed
bug #313712) in the first position, whereas xFinder, xFinder′,
and iMacPro recommend Frank Becker in the third, fourth,
and third position respectively. iHDev outperforms the others
with respect to recall@1 and recall@2 values. At recall@5, all
the approaches would be equivalent; however, iHDev provides
the best ranked position (i.e., the reciprocal ranked value).
TABLE III: Top five recommended developers and their as-
sociated ranks for the compared approaches. iHDev, xFinder,
xFinder′ and iMacPro.

Approach Top five recommended developers in ranked order
iHDev Frank Becker 1 , Steffen Pingel 2 , Robert Elves 3 ,

Jingwen ’Owen’ Ou 4 , Shawn Minto 5
xFinder Steffen Pingel 1 , Robert Elves 2 , Mik Kersten 2 ,

Frank Becker 3
xFinder′ Steffen Pingel 1 , Mik Kersten 2 , Robert Elves 3 ,

Frank Becker 4 , Shawn Minto 5
iMacPro Steffen Pingel 1 , Shawn Minto 2 , Frank Becker 3

III. CASE STUDY

The purpose of this study was to investigate how well our
iHDev approach recommends expert developers to assist with
incoming change requests. We also compared our approach
with two previously published approaches. The first approach,
xFinder [2], is based on the mining of commit logs. The
second approach, iMacPro [6], uses the authorship information
and maintainers of the relevant change prone source code
to recommend developers. We used these two approaches
for comparison because they require information from the
commit repository. iHDev uses interaction history of source
code. Therefore, this part of the study would allow us to com-
pare interactions and commits with respect to the developer
recommendation task. We addressed the following research
question RQ: How do iHDev (trained from the interaction
history) compare with xFinder, xFinder′, and iMacPro (trained
from the commit history) in recommending developers?

A. Compared Approaches: xFinder, xFinder′, and iMacPro
The xFinder approach uses the source-code commit history

to recommend developers to assist with a given change request.
The first step is finding the relevant source code files for
the change request, similar to iHDev (see Section II-B).
The commit (and not interaction) histories of these files are
analyzed to recommend a ranked list of developers.

xFinder uses the frequency count of the developers in the
relevant files for ranking purposes. For example, if a developer
occurs in three relevant files, its score is assigned a value
of 3, and is ranked above another developer that occurs in
two relevant files (with a score of 2). If multiple developers
have the same score, they are given the same rank (e.g., two
developers are ranked second in Table III). iHDev uses a
different ranking mechanism. We replaced xFinder’s ranking
algorithm with that of iHDev, which is based on the sum of
xFactor scores. This modified xFinder approach is termed
xFinder′. xFinder′ allows us to compare the core of two
approaches (i.e., interactions and commits) by neutralizing the
variability in their ranking mechanisms.

The iMacPro approach uses the source-code authorship and
commit history to assign incoming change requests to the
appropriate developers. The first step is finding the relevant
source code files for the change request, similar to iHDev
(see Section II-B). These source code units are then ranked
based on their change proneness. Change proneness of each
source code entity is derived from its commit history. The
developers who authored and maintained these source code
files are discovered and combined. Finally, a final ranked list
of developers for the given change request is recommended.

B. Subject Software Systems
We focused on the Mylyn and Eclipse Project.
1) Mylyn: Mylyn contains about 4 years of interaction data

and is an Eclipse Foundation project with the largest number
of interaction history attachments. It is mandatory for Mylyn
project committers to use the Mylyn plug-in. Commit history
started 2 years prior to that of interaction, and commits to the
Mylyn CVS repository terminated on July 01, 2011. To get
both interaction and commit histories within the same period,
we considered the history between June 18, 2007 (the first day
of an interaction history attachment) and July 01, 2011 (the
last day of a commit to the Mylyn CVS repository). Doing
so ascertained that none of the approaches had any particular
advantage or disadvantage over the others due to the lack
of history for training. The Mylyn project consists of 2272
bug issues containing 3282 trace files for a total of 276390
interaction logs for interaction events that lead to edit of the
interacted source code. The Mylyn project consists of 5093
revisions, out of which 3727 revisions contained a change to
at least one Java file and for 3536 revisions there exists at least
one trace file in the interaction history.

2) Eclipse Project: Eclipse Project contains 6 different
sub projects: e4, Incubator, JDT, Orion, PDE and Platform2.
Eclipse Project contains about 7 years of interacted data from
July 2007 to May 2014. It is not mandatory for the Eclipse

2http://www.eclipse.org/eclipse/

Project committers to use the Mylyn plug-in. Therefore, it is
not surprising that the number of issues that contain inter-
actions is less than those in the Mylyn project. The commit
history for Eclipse Project started in April 2001, 6 years prior
to that of interaction, and commits to the Eclipse Project CVS
repository terminated on November 05, 2012. To get both
interaction and commit histories within the same period, we
considered the history between July 25, 2007 (the first day
of an interaction history attachment) and November 05, 2012
(the last day of commits/revisions to the Eclipse Project CVS
repository). During this history the Eclipse Project consists of
700 bug issues containing 897 trace files for a total of 95834
interaction logs for interaction events that lead to edit of the
interacted source code. It consists of 52126 revisions, out of
which 35290 revisions contained a change to at least one Java
file and for 861 revisions there exists at least one trace file in
the interaction history.

Both xFinder and iMacPro need the commit histories of the
Mylyn and Eclipse Project open source systems because they
need files that have been changed together in a single commit
operation. SVN preserves the atomicity of commit operations;
however, older versions of CVS did not. Subversion assigns a
new ”revision” number to the entire repository structure after
each commit. The ”older” CVS repositories were converted
to SVN repositories using the CVS2SVN tool, which has
been used in popular projects such as gcc3. For the datasets
considered in our study, Mylyn and Eclipse Project had their
commit histories in CVS depositories. Therefore, we converted
the CVS repositories to SVN repositories.

C. Benchmarks: Training and Testing Datasets
For Mylyn and Eclipse Project, we created a benchmark

of bugs and the actual developers who fixed them to conduct
our case study. The benchmark consists of a set of change
requests that has the following information for each request:
a natural language query (request summary) and a gold set of
developers that addressed each change request. The benchmark
was established by a manual inspection of the change requests,
source code, their historical interactions in the bug tracking
system, and their historical changes recorded in version-
control repositories. Interaction trace files were used to find
the interaction events related to each bug and the attacher
who created the trace file was used as the attacher in our
interaction log. For tracing each Bug Id in the Subversion
(SVN) repository commit logs, keywords such as Bug Id in the
commit messages/logs were used as starting points to examine
if the commits were in fact associated with the change request
in the issue tracking system that was indicated with these
keywords. The author and commit messages in those commits,
which can be readily obtained from SVN, were processed to
identify the developers who contributed changes to the change
requests (i.e., gold set). These developers were then used to
form our actual developer set for evaluation. A vast majority
of change requests are handled by a single developer (92%
in Mylyn and 97% in Eclipse Project). Table IV shows the
frequency distributions of developers resolving issues in the
benchmarks for Mylyn and Eclipse Project. For example, 277
issues were resolved by a single developer in Mylyn and none

TABLE IV: The frequency distributions of developers resolv-
ing issues in the benchmarks for Mylyn and Eclipse Project.

System Frequency distribution Total Issues
1 # 2 # 3

Mylyn 277 21 3 301
Eclipse Project 70 0 2 72

of the issues were resolved by two developers in Eclipse
Project. Our technique operates at the change request level,
so we also needed input queries to test. We considered all of
the bugs that have at least one associated Id in the commit
messages and traces files. We created the final training corpus
from all of the source code files in the last revision before
the bug issues in our benchmark were fixed. We split the
benchmark into training and testing sets. We picked June 18,
2007 to March 16, 2010 as our training set and March 16,
2010 to July 01, 2011 as our testing set for Mylyn. The testing
set period contains 600 different revisions and 301 different
issues/bugs. Similarly We picked July 25, 2007 to March 01,
2010 as our training set and March 01, 2010 to November
05, 2012 as our testing set for Eclipse Project. The testing set
contains 140 different revisions and 72 different issues/bugs.
Our benchmarks are available online3. The experiment was
run for m = 1, m = 2, m = 3, and m = 5, where m is the
number of recommended developers. We considered the top
ten relevant files from the machine learning step.

D. Metrics and Statistical Analyses
We evaluated the accuracy of each of the approaches for

all of the bug issues in our testing set using the Recall and
Mean Reciprocal Rank (MRR) metrics used in previous work
[1], [3], [5]. For each bug b, in a set of bugs B of size n, in
the benchmark of a system and a m number of recommended
developers, the formula for the recall@m is given below:

recall@m =
| RD(b) ∩AD(b) |
| AD(b) |

(8)

where RD(b) and AD(b) are the recommended developer
by the approach and the actual developer who resolved the
issue for the bug b respectively. This metric is computed for
recommendation lists of developers with different sizes (e.g.,
m = 1, m = 2, m = 3, and m = 5 developers).

Increasing the value of m could lead to a higher recall
value (and typically does); however, it may come at the cost
of an increased effort in examining the potential noise (false
positives). Over 90% of the cases in our benchmarks have only
a single correct developer. In such a scenario, each increment
to m in pursuit of a correct developer could add drastically
to the proportion of false positives. Therefore, a traditional
metric of the likes of precision is not a suitable fit for our
context. For example, if a correct developer is found at m = 5,
the possible precision value is in the range [0.2, 1.0] for the
rank positions [5, 1], typically around the lower bound of 0.2.
Note that the precision metric is also agnostic to the rank
positions of recommendations. Therefore, for a cutoff value
of m, it would produce the same value for two approaches

3http://serl.cs.wichita.edu/svn/projects/dev-rec-
interactions/trunk/ICSE2015/data/Benchmark

presenting the same number of correct answers. For m = 5,
two approaches presenting a single correct answer at the
positions 1 and 5 respectively will have the same precision
value of 0.2. Nonetheless, a complimentary measure to recall
is also needed to assess the potential effort in addressing noise
(false positives). We focused on evaluating the ranked position
of the correct developer for each bug in each benchmark from
a cumulative perspective regardless of the cutoff point m.

Mean Reciprocal Rank (MRR) is one such measure that can
be used for evaluating any process that produces a list of possi-
ble responses to a sample of queries, ordered by probability of
correctness. This metric has been used in previous work [12].
The reciprocal rank of a query response is the multiplicative
inverse of the rank of the first correct answer. Intuitively, the
lower the value (between 0 and 1), the farther down the list,
examining incorrect responses, one would have to search to
find a correct response.

MRR =
1

| n |

|n|∑
i=1

1

ranki
(9)

Here, the reciprocal rank for a query (bug) is the reciprocal
of the position of the correct developer in the returned ranked
list of developers (ranki) and n is the total number of bugs
in our benchmark. When the correct developer for a bug is
not recommended at all, we consider its inverse rank to be a
zero. When there are multiple correct developers (which are a
very few cases in our benchmark), we consider the highest/first
ranked position. The higher the value of MRR, the better it
speaks of the potential effort spent in noise. For example,
an MRR value of 0.5 suggests that the approach typically
produces the correct answer at the 2nd rank. Overall, our
main research hypothesis is that iHDev will outperform
the subjected competitors in our study in terms of recall
without incurring additional costs in terms of MRR.

We applied the One Way ANOVA test to validate whether
there was a statistically significant difference with α = 0.05
between the results of both recall and MRR values. For MRR,
we considered the ranks of correct answers of the approaches
for each bug (data point). We used this non-parametric test
because we did not assume normality in the distributions of
the recall results. The purpose of the test is to assess whether
the distribution of one of the two samples is stochastically
greater than the other. Therefore, we defined the following
null hypotheses for our study (the alternative hypotheses can
be easily derived from the respective null hypotheses):

• H-1: There is no statistically significant difference be-
tween the recall@m values of iHDev and each of xFinder,
xFinder′, and iMacPro.

• H-2: There is no statistically significant difference be-
tween the MRR values of iHDev and each of xFinder,
xFinder′, and iMacPro.

We expect the hypotheses H-1 and H-2 to be rejected in
favor of iHDev. That is, iHDev will offer improvements over
others in terms of recall. Also, iHDev will not incur any
additional cost in terms of MRR compared to others (or may
even offer improvements).

TABLE V: Average of recall @1, 2, 3 and 5 values of the approaches iHDev, xFinder, xFinder′, and iMacPro measured on
the Mylyn and Eclipse Project benchmarks.

m Recall@m iHDev vs xFinder iHDev vs xFinder′ iHDev vs iMacPro
iHDev xFinder xFinder′ iMacPro Gain% Pvalue Adv Gain% Pvalue Adv Gain% Pvalue Adv

Mylyn
1 0.50 0.45 0.52 0.50 11.11 0.22 None -3.84 0.58 None 0 0.9 None
2 0.71 0.63 0.59 0.63 12.69 0.02 iHDev 20.33 0.001 iHDev 12.69 0.03 iHDev
3 0.79 0.68 0.69 0.72 16.17 0.001 iHDev 14.49 0.004 iHDev 9.72 0.05 iHDev
5 0.86 0.69 0.81 0.76 24.63 ≤0.001 iHDev 6.17 0.08 None 13.15 0.0008 iHDev

Eclipse Project
1 0.25 0.12 0.12 0.11 108.33 0.03 iHDev 108.33 0.03 iHDev 127.27 0.02 iHDev
2 0.37 0.20 0.17 0.18 85.00 0.03 iHDev 117.64 0.007 iHDev 105.55 0.01 iHDev
3 0.41 0.20 0.22 0.22 105.00 0.005 iHDev 86.36 0.01 iHDev 86.36 0.01 iHDev
5 0.45 0.20 0.23 0.23 125.00 0.001 iHDev 95.65 0.004 iHDev 95.65 0.003 iHDev

TABLE VI: Mean Reciprocal Rank of the approaches iHDev, xFinder, xFinder′, and iMacPro measured on the Mylyn and
Eclipse Project benchmarks.

System MRR iHDev vs xFinder iHDev vs xFinder′ iHDev vs iMacPro
iHDev xFinder xFinder′ iMacPro Gain% Pvalue Adv Gain% Pvalue Adv Gain% Pvalue Adv

Mylyn 0.66 0.56 0.62 0.64 17.85 0.003 iHDev 6.45 0.22 None 3.12 0.4 None
Eclipse
Project

0.34 0.16 0.16 0.17 112.5 0.005 iHDev 112.5 0.007 iHDev 100 0.01 iHDev

E. Results

The recall@1, recall@2, recall@3, and recall@5 values
for each of the compared approaches for Mylyn and Eclipse
Project were calculated from the established benchmarks.
Table V shows the recall@m values of Mylyn and Eclipse
Project for all the compared approaches (see the Recall@m
column). The MRR values for each of the compared ap-
proaches for Mylyn and Eclipse Project were then calculated.
Table VI shows the MRR values of Mylyn and Eclipse Project
for all approaches (see the MRR column).

We computed the recall gain of iHDev over another com-
pared approach (i.e., Y) using the following formula:

GainR@miHDev−Y =
recall@miHDev − recall@mY

recall@mY
× 100

(10)
The MRR column in Table VI shows MRR values of the

compared approaches.
We computed the MRR gain of iHDev over another com-

pared approach (i.e., Y) using the following formula:

GainMRRiHDev−Y =
MRRiHDev −MRRY

MRRY
× 100 (11)

To answer the research question RQ, we compared the
recall values of iHDev, xFinder, xFinder′, and iMacPro for
m = 1, m = 2, m = 3, and m = 5. We computed the recall
gain of iHDev over Y in {xFinder, xFinder′, and iMacPro}
using Equation 10. Similarly, we compared MRR values of
iHDev, xFinder, xFinder′, and iMacPro. We computed the
MRR gain of iHDev over Y in {xFinder, xFinder′, and
iMacPro} using Equation 11. Table V and Table VI show the
recall and MRR results respectively. The Gain % columns in

Table V show the recall gains of iHDev over each compared
approach for the different m values. The Gain % columns in
Table VI show the MRR gain of iHDev over each compared
approach. The Pvalue columns in Table V shows the p-values
from applying the One Way ANOVA test on the recall values
for m = 1, m = 2, m = 3, and m = 5. The Pvalue columns
in Table VI shows the p-values from applying the One Way
ANOVA test on the reciprocal rank values. The Advantage
columns show the approach that had a statistically significant
gain over the other. In cases neither did, None is shown.

For each pair of competing approaches, there were eight
comparison points in terms of recall values (four each for
Mylyn and Eclipse Project). Overall, out of eight comparison
cases between iHDev and xFinder for recall values, iHDev was
advantageous over xFinder in seven of them; the remaining
one being a statistical tie. Out of eight comparison cases
between iHDev and xFinder′ for recall values, iHDev was
advantageous in six of them; the remaining two being a
statistical tie. Out of eight comparison cases between iHDev
and iMacPro for recall values, iHDev was advantageous in
seven of them; the remaining one being a statistical tie.
Despite a few observations of negative gains, there was not
even a single case in which one of the other approaches
was statistically advantageous over iHDev in terms of recall.
Therefore, we reject the hypothesis H1.

For each pair of competing approaches, there were two
comparison points in terms of MRR values (one each for My-
lyn and Eclipse Project). Overall, iHDev was advantageous in
both cases of comparison between iHDev and xFinder. iHDev
was advantageous in one case each for comparisons between
iHDev and xFinder′, and between iHDev and iMacPro. The
remaining two cases were a statistical tie. There were no

cases in which any of the other approaches were statistically
advantageous over iHDev in terms of MRR. Therefore, we
reject the hypothesis H2.

In summary, the overall results suggest that iHDev generally
performs better than xFinder, xFinder′, and iMacPro in terms
of both recall and MRR. Using the interaction history typically
leads to improvements in accuracy. Not only does identify the
correct developers more often (as evident by the significant re-
call gains or no loss), but also at a high enough position in the
list of recommended candidates (as evident by the significant
MRR gains or no loss). For example, iHDev recorded recall
gains over xFinder in the range [85% , 125%] for Eclipse
Project. Also, on average, the correct developer would appear
at the 3rd position (MRR=0.34) for iHDev recommendations,
whereas, in xFinder this value would be at the 6th position
(MRR=0.16). Thus, the MRR gain of over 112%. iHDev takes
us a step forward toward achieving the ideal goal of a
recommender that not only always identifies the correct
developers, but also puts them in the top positions of the
ranked list of candidates.

F. Discussion
We discuss a few qualitative points that would help un-

derstand the rationale behind the improved performance with
using interactions in iHDev.

Multiple Attempts at Resolution. Given the nature of
OSS, there are often multiple attempts at resolving a given
change request. For example, multiple (a few incomplete or
incorrect) fixes are attempted by perhaps multiple developers.
In the end, only a complete and correct resolution is accepted
and/or merged into the source code repository (i.e., the main
development trunk or branch). The interaction history records
these attempts; however, the commit history only records
the final outcome (i.e., only the things committed), if any.
For example, Gousios et al. [13] observed that in GitHub
some issues receive multiple pull-requests with solutions (all
representing interaction and competence), but not all are
accepted and merged. Our results show that past experiences
(including failures) are important ingredients in shaping devel-
oper expertise. Interactions offer a valuable insight into these
micro-level developers’ activities in building their expertise,
whereas, the commit repositories would largely miss out on
them. For example, the file UpdateAttachmentJob.java has 458
edit events; whereas, it has only 6 commits performed on it.
Additionally, the developer Frank Becker contributed 50 edit
events, but had only one commit. The interaction history shows
that he attempted resolutions for 6 bugs, whereas, the commit
shows that he contributed only one bug-fix. This example
suggests there is quite a disparity between the micro and macro
level perspectives of contributions.

Resolutions and Peer Review. The practice of peer re-
view of proposed resolutions/patches exist in both Mylyn and
Eclipse Project. We observed cases in which resolutions (even
those that were correct in the sense of a technical fix for
the problem at hand) were not merged to the source code
repository (e.g., potential conflicts with other code elements
or patches did not make it in time for the review process to
go through or were out of luck as they arrived after something

else was already accepted) or were revised and then merged
(e.g., a few changes to a few files revised or not needed). The
interaction history captures the resolutions while the commit
history misses out on these alternative solutions.

Interactions come first, Commits later. In the typical
workflow, interactions come first and commits later. Interac-
tions are available much earlier than commits to mine and
integrate the results. Our datasets show that for a given time
period, there are more interactions than commits. Therefore,
using interaction data may reduce the latency in building and
deploying actionable models on a project, as the training data
would become available sooner.

Self-Serving Benefits. We believe that the potential benefits
shown to developers by converting the interactions into action-
able support for their routine tasks could serve as a motivating
factor in using Mylyn type activity loggers. That is, developers
would see the value in logging their activities now, so that they
could benefit for concrete tasks in the future.

Task Applicability. Our work shows the potential value of
interactions in improving the developer recommendation tasks;
however, they could be use for other software maintenance and
evolution tasks that have typically relied on commit histories.
For example, we used interactions for impact analysis in our
previous work [7], [8].

In summary, our findings highlight many aspects that the
developer recommendation methodology based on the commit
history may not capture.

IV. THREATS TO VALIDITY

We discuss internal, construct, and external threats to valid-
ity of the results of our empirical study.

Accuracy measures and correctness of developer recommen-
dations: We used the widely used metric recall in our study.
We also calculated mean reciprocal rank. We considered a
gold-set to be developers who contributed source code changes
to address change requests. Of course, it is possible that
other team members are also equally qualified to handle these
change requests; however, such a gold-set would be very
difficult to ascertain in practice. Nonetheless, our benchmark
can be viewed as conservative bounds.

Accuracy@k is another measure that is also used in the
context of recommendation systems [14]–[16]. Accuracy@k
generally considers only one correct answer to claim 100%.
In our study, over 90% of cases had only one correct answer.
Therefore, the differences in recall@k and accuracy@k values
are negligibly small. Although, (as discussed in Section III-D)
we deemed the precision metric to be unsuitable for our tech-
nique due to the ordered nature of responses, we summarize
the results. In case of Mylyn and xFinder precision gain ranges
between 12.76% and 136.36% and out of eight comparisons
with ANOVA, iHDev was advantageous in four of them. In
case of Mylyn and xFinder′ precision gain ranges between 12%
and 137.50 % and out of eight comparisons with ANOVA,
iHDev was advantageous in six of them. In case of Mylyn
and iMacPro precision gain ranges between 6% and 136.36
% and out of eight comparison with ANOVA, iHDev was
advantageous in seven of them. Furthermore, should there be a

larger number of cases with multiple correct answers, a metric
such as Mean Average Precision (MAP) could be employed.

Developer identity mismatch: Although we carefully ex-
amined all of the available sources of information in order
to match the different identities of the same developer, it is
possible that we missed or mismatched a few cases.

Explicit Bug Id Linkage: We considered interactions and
commits to be related if there was an explicit bug Id mentioned
in them. Implicit relationships were not considered.

Single Period of History: We considered only the history
between June 18, 2007 and July 01, 2011 for Mylyn and
the history between July 25, 2007 and November 05, 2012
for Eclipse Project. It is possible that these histories are not
reflective of the optimum results for every model. A different
history period might produce different relative performances.

Only Two Systems Considered: Due to the limited avail-
ability of Mylyn interaction histories for open source projects,
our study was performed on only two systems written in Java
Mylyn and Eclipse Project were the largest available datasets
within the Eclipse Foundation. Nonetheless, this fact may limit
the generality of our results.

V. RELATED WORK

Our intent is not to exhaustively discuss every single work,
but to briefly discuss a few representatives in the context of
developer recommendation and interactions.

Zou et al. [17] used the interaction history to identify
evolutionary information about a development process (e.g.,
restructuring is more costly than other maintenance activities).
Rastkar et al. [18] report on an investigation which consid-
ered how bug reports that are considered similar based on
the changeset information compare to bug reports that are
considered similar based on interaction information. Robbes
et al. [19] developed an incremental change based repository
by retrieving the program information from an IDE (which
includes more information about the evolution of a system
than traditional SCM) to identify a refactoring event. Parnin
and Gorg [20] identified relevant methods for the current task
by using programmers’ interactions with an IDE. Schneider et
al. [21] presented a visual tool for mining local interaction
histories to help address some of the awareness problems
experienced in distributed software development projects.

Minto and Murphy [22] developed a tool called Emergent
Expertise Locator (EEL), which is based on the framework
of Cataldo et al. [23] to compute coordination requirements
between documents. EEL mines the history to determine how
files were changed together and who committed those changes.
Using this data, EEL suggests developers who can assist
with a given problem. Another tool to identify developers
with the desired expertise is Expertise Browser (ExB) [11].
Anvik and Murphy [24] conducted an empirical evaluation of
two techniques for identifying expert developers. Developers
acquire expertise as they work on specific parts of a system.
Tamrawi et al. [4] used fuzzy-sets to model bug-fixing ex-
pertise of developers based on the hypothesis that developers
who recently fixed bugs are likely to fix them in the near
future. An approach based on a machine learning technique
is used to automatically assign a bug report to a developer

[1]. The resulting classifier analyzes the textual contents of a
given report and recommends a list of developers with relevant
expertise. Another approach to facilitate bug triaging uses a
graph model based on Markov chains, which captures the bug
reassignment history [25]. Matter et al. [26] used the similarity
of textual terms between a given bug report of interest and
source code changes (e.g., word frequencies of the diff given
changes from source code repositories).

There are a number of efforts on using MSR techniques
to study and analyze developer contributions. Rahman and
Devanbu [27] study the impact of authorship on code quality.
They conclude that authors with specialized experience for
a file are more important than those with general expertise.
Bird et al. [28] perform a study on large commercial software
systems to examine the relationship between code ownership
and software quality. Their findings indicate that high levels of
ownership are associated with fewer defects. Bird et al. [29]
analyzed the communication and co-ordination activities of the
participants by mining email archives. Ma et al. [30] proposed
a technique that uses implementation expertise (i.e., developers
usage of API methods) to identify developers. Weissgerber
et al. [31] depicts the relationship between the lifetime of
the project and the number of files each author updates by
analyzing and visualizing the check-in information for open
source projects. German [32] provided a visualization to show
which developers tend to modify certain files by studying
the modification records (MRs) of CVS logs. Fischer et al.
[33] analyzed related bug report data for tracking features in
software. Bortis et al. [34] introduced PorchLight, a tag-based
interface and customized query expression, to offer triagers
the ability to explore, work with, and assign bugs in groups.
Shokripour et al. [35] proposed an approach for bug report
assignment based on the predicted location (in the source code)
of the bug. Begel et al. [36] conducted a survey of inter-
team coordination needs and presented a flexible Codebook
framework that can address most of those needs. Robbes
et al. [37] used the interaction data from Mylyn to evaluate
developer-expertise metrics based on time, which is the start
time of a Mylyn-interaction session.

VI. CONCLUSIONS AND FUTURE WORK

We presented the iHDev approach to recommend developers
who are most likely to implement incoming change requests.
iHDev utilizes the archives of developers’ interactions within
an integrated development environment (e.g., software entities
viewed or modified) associated with past change requests.
Such use of interaction histories in conjunction with ma-
chine learning techniques to recommend developers was not
investigated previously. Moreover, an empirical study on the
open source systems showed that iHDev can outperform two
previous approaches with statistically significant recall and
rank gains. In the future, we plan to conduct additional
empirical studies to further validate iHDev. We would include
approaches based on the textual similarity of an incoming
change request to previously resolved ones in the comparison
study. Furthermore, we will investigate integration of other
sources of information (e.g., bug, commit, and code review
histories), which could further improve its effectiveness.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?,”
in proceedings of 28th ACM International Conference on Software
Engineering, ICSE ’06, pp. 361–370, 2006.

[2] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Hammad, “Assigning
change requests to software developers,” Journal of Software: Evolution
and Process, vol. 24, no. 1, pp. 3–33, 2012.

[3] M. Linares-Vasquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and
D. Poshyvanyk, “Triaging incoming change requests: Bug or commit
history, or code authorship?,” in proceedings of 28th IEEE International
Conference on Software Maintenance (ICSM), 2012, pp. 451–460, 2012.

[4] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen, “Fuzzy
set and cache-based approach for bug triaging,” in proceedings of
19th ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering, ESEC/FSE ’11, pp. 365–375,
2011.

[5] X. Xia, D. Lo, X. Wang, and B. Zhou, “Accurate developer recommen-
dation for bug resolution,” in Proceedings of 20th Working Conference
on Reverse Engineering (WCRE), 2013, pp. 72–81, 2013.

[6] K. Hossen, H. Kagdi, and D. Poshyvanyk, “Amalgamating source code
authors, maintainers, and change proneness to triage change requests,”
in Proceedings of the 22th IEEE International Conference on Program
Comprehension, ICPC, 2014.

[7] F. Bantelay, M. Zanjani, and H. Kagdi, “Comparing and combining
evolutionary couplings from interactions and commits,” in Proceedings
of the 20th Working Conference on Reverse Engineering (WCRE),
pp. 311–320, Oct 2013.

[8] M. B. Zanjani, G. Swartzendruber, and H. Kagdi, “Impact analysis
of change requests on source code based on interaction and commit
histories,” in Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR 2014, (New York, NY, USA), pp. 162–171,
ACM, 2014.

[9] G. Murphy, M. Kersten, and L. Findlater, “How are java software
developers using the elipse ide?,” IEEE Transactions on Software
Engineering, vol. 23, pp. 76–83, July 2006.

[10] M.-L. Zhang and Z.-H. Zhou, “Ml-knn: A lazy learning approach to
multi-label learning,” Pattern Recogn., vol. 40, pp. 2038–2048, July
2007.

[11] A. Mockus and J. D. Herbsleb, “Expertise browser: A quantitative
approach to identifying expertise,” in proceedings of 24th International
Conference on Software Engineering, ICSE ’02, (New York, NY, USA),
pp. 503–512, ACM, 2002.

[12] S. Wang and D. Lo, “Version history, similar report, and structure:
Putting them together for improved bug localization,” in Proceedings of
the 22Nd International Conference on Program Comprehension, ICPC
2014, (New York, NY, USA), pp. 53–63, ACM, 2014.

[13] G. Gousios, M. Pinzger, and A. van Deursen, “An exploratory study
of the pull-based software development model.,” in ICSE, pp. 345–355,
2014.

[14] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in
bug repositories,” in Proceedings of the 34th International Conference
on Software Engineering, ICSE ’12, (Piscataway, NJ, USA), pp. 25–35,
IEEE Press, 2012.

[15] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate bug
reports considered harmful really?,” in Software Maintenance, 2008.
ICSM 2008. IEEE International Conference on, pp. 337–345, Sept 2008.

[16] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen, “Fuzzy
set and cache-based approach for bug triaging,” in Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ESEC/FSE ’11, (New York, NY,
USA), pp. 365–375, ACM, 2011.

[17] L. Zou, M. Godfrey, and A. Hassan, “Detecting interaction coupling
from task interaction histories,” in Proceedings of the 15th IEEE Interna-
tional Conference on Program Comprehension,ICPC ’07, pp. 135–144,
June 2007.

[18] S. Rastkar and G. Murphy, “On what basis to recommend: Changesets
or interactions?,” in Proceedings of the 6th IEEE International Working
Conference on Mining Software Repositories, MSR ’09, pp. 155–158,
May 2009.

[19] R. Robbes, “Mining a change-based software repository,” in Proceedings
of the Fourth International Workshop on Mining Software Repositories,
2007. ICSE Workshops MSR ’07., pp. 15–15, May 2007.

[20] C. Parnin and C. Gorg, “Building usage contexts during program com-
prehension,” in Proceedings of the 14th IEEE International Conference
on Program Comprehension, ICPC, pp. 13–22, 2006.

[21] K. Schneider, C. Gutwin, R. Penner, and D. Paquette, “Mining a
software developer’s local interaction history,” in Proceedings of the
IEEE International Conference on Software Engineering Workshop on
Mining Software Repositories,, 2004.

[22] S. Minto and G. Murphy, “Recommending emergent teams,” in proceed-
ings of fourth International Workshop on Mining Software Repositories,
2007. ICSE Workshops MSR ’07., pp. 5–5, 2007.

[23] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Carley,
“Identification of coordination requirements: Implications for the design
of collaboration and awareness tools,” in proceedings of 2006 20th
Anniversary Conference on Computer Supported Cooperative Work,
CSCW ’06, pp. 353–362, 2006.

[24] J. Anvik and G. Murphy, “Determining implementation expertise from
bug reports,” in proceedings of fourth International Workshop on Mining
Software Repositories (MSR), 2007 ICSE Workshops MSR ’07, pp. 2–2,
2007.

[25] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with
bug tossing graphs,” in proceedings of the the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, ESEC/FSE
’09, (New York, NY, USA), pp. 111–120, ACM, 2009.

[26] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using
a vocabulary-based expertise model of developers,” in proceedings
of 6th IEEE International Working Conference on Mining Software
Repositories, 2009. MSR ’09., pp. 131–140, 2009.

[27] F. Rahman and P. Devanbu, “Ownership, experience and defects: A
fine-grained study of authorship,” in proceedings of 33rd International
Conference on Software Engineering, ICSE ’11, pp. 491–500, 2011.

[28] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t touch
my code!: Examining the effects of ownership on software quality,” in
proceedings of 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ESEC/FSE ’11,
pp. 4–14, 2011.

[29] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan,
“Mining email social networks,” in proceedings of 2006 International
Workshop on Mining Software Repositories, MSR ’06, pp. 137–143,
2006.

[30] D. Ma, D. Schuler, T. Zimmermann, and J. Sillito, “Expert recom-
mendation with usage expertise,” in proceedings of IEEE International
Conference on Software Maintenance,ICSM 2009., pp. 535–538, 2009.

[31] P. Weissgerber, M. Pohl, and M. Burch, “Visual data mining in software
archives to detect how developers work together,” in proceedings of
fourth International Workshop on Mining Software Repositories, 2007.
ICSE Workshops MSR ’07., pp. 9–9, 2007.

[32] D. German, “An empirical study of fine-grained software modifications,”
in proceedings of 20th IEEE International Conference on Software
Maintenance, 2004., pp. 316–325, 2004.

[33] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in proceedings
of International Conference on Software Maintenance, 2003. ICSM
2003., pp. 23–32, 2003.

[34] G. Bortis and A. v. d. Hoek, “Porchlight: A tag-based approach to bug
triaging,” in proceedings of 2013 International Conference on Software
Engineering, ICSE ’13, pp. 342–351, IEEE Press, 2013.

[35] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “Why so
complicated? simple term filtering and weighting for location-based
bug report assignment recommendation,” in proceedings of 10th IEEE
Working Conference on Mining Software Repositories (MSR), 2013,
pp. 2–11, 2013.

[36] A. Begel, Y. P. Khoo, and T. Zimmermann, “Codebook: Discovering
and exploiting relationships in software repositories,” in proceedings of
32Nd ACM/IEEE International Conference on Software Engineering -
Volume 1, ICSE ’10, pp. 125–134, 2010.

[37] R. Robbes and D. Röthlisberger, “Using developer interaction data
to compare expertise metrics,” in Proceedings of the 10th Working
Conference on Mining Software Repositories, MSR ’13, (Piscataway,
NJ, USA), pp. 297–300, IEEE Press, 2013.

