
Helping Developers Help Themselves:
Automatic Decomposition of Code Review

Changesets
Mike Barnett

Microsoft Research
Redmond, WA, USA

mbarnett@microsoft.com

Christian Bird
Microsoft Research

Redmond, WA, USA
cbird@microsoft.com

João Brunet
Federal University of Campina Grande

Campina Grande, Paraı́ba, Brazil
joao.arthur@computacao.ufcg.edu.br

Shuvendu K. Lahiri
Microsoft Research

Redmond, WA, USA
shuvendu@microsoft.com

Abstract—Code Reviews, an important and popular mecha-
nism for quality assurance, are often performed on a changeset,
a set of modified files that are meant to be committed to a
source repository as an atomic action. Understanding a code
review is more difficult when the changeset consists of multiple,
independent, code differences. We introduce CLUSTERCHANGES,
an automatic technique for decomposing changesets and evaluate
its effectiveness through both a quantitative analysis and a
qualitative user study.

I. INTRODUCTION

Code review is an important mechanism for quality assurance
in software development: it provides feedback and avoids
introducing bugs. However, code review is effective only to
the degree that reviewers are able to understand the changes
being made. Prior work has shown that the easier it is for
a reviewer to understand a change, the more likely they are
to provide feedback that improves quality [1]. We and others
have observed that when changes are small and/or cohesive,
reviewers are most able to understand them [2], [3].

Unfortunately, developers often make changes that incorpo-
rate multiple bug fixes, feature additions, refactorings, etc. [4],
[5], [6]. These result in changes that are both large and only
loosely related, if at all, leading to difficulty in understanding.
Developers have indicated that they are able to understand
these changes better if authors annotate them with comments
in the review tool, but this is a cumbersome task and occurs
less than 5% of the time in practice. Developers have also
provided feedback that decomposing such composite changes
would help them to understand changes during review, but to
date no such tools exist or are being used [2].

To address this, we developed CLUSTERCHANGES, a
lightweight static analysis technique for decomposing change-
sets. The insight underlying CLUSTERCHANGES is that we can
relate separate regions of change within a changeset by using
static analysis to uncover relationships such as definitions and
their uses present in these regions. For example, if a method
definition is changed in one region and its callsites are changed
in two other regions, these three regions are likely to be related
and should be reviewed together. Connected subgraphs of
related code entities form partitions that can be explored and
understood independently; a formal description of our algorithm
is presented in Section III.

In an effort to validate the results of CLUSTERCHANGES,
understand differences between different types of partitions, and
gauge its potential usefulness, we built a prototype graphical
tool and used it to investigate changesets submitted for review in
Bing and Office at Microsoft. Our quantitative evaluation shows
that over 40% of changes submitted for review at Microsoft can
be potentially decomposed into multiple partitions, indicating a
high potential for use. We also characterized and quantified the
nature of suggested partitions across 1000 changesets and have
performed a careful manual investigation of over 100 reviews
with an eye towards (i) spurious relationships for changesets
with fewer than 2 non-trivial partitions (Section III-B3), and
(ii) missing relationships for changesets with 10 or more trivial
partitions. We then conducted a qualitative user study with
twenty developers, where we found that most developers agree
with our automatic partitioning and believe the decomposition
is useful for reviewers to understand their changes better (some
even asked for the prototype to use on their own reviews going
forward).

Finally, we discuss limitations of our algorithm and our
implementation and describe how CLUSTERCHANGES can be
integrated into the code review process.

II. THE PROBLEM

Developers submit code to be reviewed on a daily basis.
Although good development practices prescribe that developers
perform small and cohesive commits, they often contain
large and independent changes. Code review is dependent
on understanding the change being made. While large commits
make review difficult (there is more to read and try to
understand), the presence of multiple independent changes
make matters worse. Developers are forced to read and make
sense of more code than they would need to if the independent
changes were examined separately. In this section we triangulate
different sources of information to show the existence of this
problem and to motivate our work.

a) Concrete example: Here is an arbitrarily chosen
commit made to the Roslyn project [7] on 18 August 2014 [8].
It contains edits to eight files and the addition of one file. The
commit message says:

Fix #244 by adding inmethod binders in between
properties and indexers. Also refactors expression-

Fig. 1. Example change from a real changeset. The white lines are unchanged
lines. The green lines are added lines. There are no deleted lines; those would
be shown highlighted in red.

bodied member semantic model tests into their own
file and adds some extra tests.

(“#244” refers to a bug report that had been made a few
weeks prior.) Part of the relevant change is shown in Figure 1.
Of particular interest for our work is that line 450 adds a call
to a method which is introduced in another file included in the
changeset, whereas the method call added on line 455 is to
the method introduced on line 458 and so is easily found and
understood. CLUSTERCHANGES does indeed decompose the
commit into two independent partitions, one of which contains
the two relevant files for the bug fix.

b) Literature: Prior literature has found that large changes
are problematic to examine [9]. For instance, Rigby et al. [3]
found that in order to facilitate review activity, changes should
be small and independent. For example, changes that combine
refactorings with bug fixes can be difficult to review together,
especially if the reviewer doesn’t know that there are multiple
things going on in the change. Rigby et al. raised the need
to enable a divide-and-conquer review style that keeps each
change logically and functionally independent.

In a later study, Rigby et al. [10] analyzed change size
(number of added and deleted lines, and number of changed
files) and its relationship to several complexity metrics for
changes submitted for peer review in 6 open source projects.
They found that the more files changed and differences
produced in a submitted change, the more likely the change
actually consisted of multiple relatively independent changes
that might affect diverse sections of a system. As a consequence,
developers experience more difficulty when trying to understand
large code changes.

Herzig and Zeller [6] found that a non-trivial proportion of
changes in five open source projects are tangled, meaning that
they contain more than one bug fix, feature, refactoring, etc.
While their study was on the impact of such changes on research
in mining software repositories, they provide evidence that
changes do exist which can in some way be decomposed. They
point out (and we agree) that there may be a completely valid
reason that a developer commits multiple changes that appear
unrelated as one change. One of our study participants indicated
that the overhead to run regression tests after each commit often
leads to a developer combining multiple changes in a commit.

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0
5

10
15

20
25

30

Files Changed

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

0
10

20
30

40
50

Methods Changed

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0
20

40
60

80
10

0

Diff Regions

Boxplots of Change Sizes

Fig. 2. Boxplots showing distributions of the size of changes in terms of the
number of files and methods changed as well as the number of diff-regions.

Our goal is not to force developers to commit independent
changes separately, but rather to identify independent parts of
changes to facilitate understanding.

Tao et al. conducted a large scale study of how developers ex-
amine and understand code changes [2] with one of their main
goals being to determine “How to improve the effectiveness and
efficiency of the practice in understanding code changes.” They
observed that “engineers sometimes mix multiple bug-fixing
changes or changes with other purposes in a single checkin.
Understanding [these] composite changes requires non-trivial
efforts.” One of their main conclusions is that ”Participants
call for a tool that can automatically decompose a composite
change into separate sub-changes.” and point out that “however,
currently such decomposition lacks tool support.” As one of
the developers in their study indicated: “It would be useful
to be able to analyze groups of functional changes instead of
having to go file by file and context switch between changes.
I want to be able to see all the changes that related [sic] to
one bug, or possibly one variable within the changelist”.

c) Discussions with developers: We were also motivated
by data gathered from our previous empirical study on code
review [1] and follow on observations and discussions with
developers. One common theme that developers mentioned
when discussing code review is how large a review is. As one
developer indicated “If I get a code bomb to review with like
thirty files, I can either look at it now and skim it in five to ten
minutes or I can save it for later and I may or may not get to it.
Both aren’t good.” A Windows development manager indicated
that one of the bottlenecks in their process was reviewing
changes made to resolve conflicts after merges from branch
to another. It is not uncommon for such changes to include
upwards of 50 files and contain many unrelated changes.

d) Code change size at Microsoft: To quantitatively
investigate the change size at Microsoft, we conducted a
preliminary analysis on 1000 code changes submitted to be
reviewed within Microsoft Office during the Office 2013
development cycle. Figure 2 shows quantitative data on the
change sizes. “Files changed” shows a boxplot of the number of

files that are added, modified, or deleted in changes submitted
for code review. “Methods changed” is a count of the number
of individual methods that are added, modified, or deleted. We
define a diff-region as a contiguous sequence of added, deleted,
or modified lines. For example, Figure 1 shows two diff-regions.
The median number of changed methods and diff-regions are
12 and 24, while over 25% of reviews modify 23 methods and
comprise 45 diff regions. These numbers suggest that many
changes submitted for review may be large and/or difficult to
understand. Some developers that we talked to during this and
earlier studies ([1], [11]) indicated that it is difficult to review
a change that has many regions of change scattered across the
files even if there are a small number of modified files.

III. CLUSTERCHANGES

A. Starting Point

The predominant code review tool used at Microsoft is
CodeFlow [12]. CodeFlow provides access only to individual
changesets: these are standalone packages containing the set of
pairs of changed files. Each pair has a before-file and an after-
file (for added or deleted files, one element of the pair may
be empty). It is important to note that analyzing changesets is
quite different than analyzing the history of a source repository.
In particular, changesets do not provide full information: we do
not have the full set of project files, nor the compiler options
used to actually compile the code. We use a standard text
differencing tool on each pair of files to get a set of pairs
of diff-regions. Because our analysis applies only to C# files,
we split diff-regions that cross type and method boundaries
so that no diff-region crosses more than one type or method.
This corresponds to the predominant organizing units of object-
oriented code.

We restricted ourselves to C# [13] because it is one of the
primary programming languages used within Microsoft. It is a
modern object-oriented language, with types (primarily classes,
but also structs) composed of members such as fields, events,
properties, and nested types. Another reason for picking C#
is our ability to use Roslyn [7], the new Microsoft compiler,
with its open API. We use Roslyn to create a synthetic project
comprising the after-files from a changeset and the basic .NET
assembly references that provide definitions of basic types like
string, etc. In return, we access the resulting symbol table
and abstract-syntax tree that Roslyn provides after making a
best-effort (relative to the available definitions) parse of the
project.

B. Definitions and uses.

We use the def-use relationship as the primary organizing
principle for clustering diff-regions. Programmers often intro-
duce interesting functional changes to code by introducing or
modifying definitions along with their uses.

1) Computing def-use information: Given the project cor-
responding to the changeset, we collect the set of definitions,
D, for types, fields, methods (including constructors), and
local variables. D is the set of definitions present only in the
changeset (that is, the definitions that occur anywhere in the
files that were modified in the changeset). Then we scan the

project for the set of all uses (i.e., references to a definition), U ,
as provided by the Roslyn API. For instance, any occurrence
of a type, field, or method either inside a method or a field
initialization is considered to be a use. We focused on this one
relationship in order to evaluate the effectiveness of just this
one source of information.

We define a function Def : U → D ∪ {⊥} that maps
any use to the corresponding definition. For any use u ∈
U , Def (u) ∈ D whenever the definition is present in the
changeset; otherwise, Def (u) = ⊥ indicating that the definition
lies outside of the changeset.

Each definition and use has an associated span, which is
the sequence of (contiguous) characters in the source that
represents the definition or use.

2) Projecting def-use on diffs: Since we are concerned with
organizing the diff-regions, we consider only uses whose span
intersects that of some diff-region. We define the following
sets (in all formulas, the variable f represents a diff-region):

defs(f) = {d | d ∈ D ∧ span(f) ∩ span(d) 6= {}}

Note that a definition (of a method or type, e.g.) that is changed
in two non-contiguous regions results in the definition appearing
in the defs set for two different diff-regions. Similarly, we
define the references found in a diff-region:

uses(f) = {u | u ∈ U ∧ span(f) ∩ span(u) 6= {}}

In contrast with definitions, each use is distinct, so that given
two distinct diff-regions, f1 and f2, uses(f1)∩ uses(f2) = {}.
Next we project the definition-use relationship over the set
of diff-regions. A pair (d, u) ∈ D × U is in the relation
defUsesInDiffs if and only if:

(∃f1, f2 : f1 6= f2 : d ∈ defs(f1) ∧ u ∈ uses(f2) ∧Def (u) = d)

Finally, we also project uses of the same definition where
the definition itself is present in the changeset, but does not
appear within any diff-region. This captures changes made to
all uses but where the definition has not been changed. A pair
(u1, u2) is in the relation useUsesInDiffs if and only if:

(Def (u1) = Def (u2) 6= ⊥) ∧
(∀f :: Def (u1) 6∈ defs(f)) ∧
(∃f1, f2 : f1 6= f2 : u1 ∈ uses(f1) ∧ u2 ∈ uses(f2))

The first two conjuncts denote that (i) the two uses share a
definition present in the changeset, and (ii) the definition has
not been changed. The third conjunct denotes that the two uses
are present in distinct diff-regions.

Our decision to restrict useUsesInDiffs to definitions in
D is motivated by two factors. First, definitions outside
D are not necessarily resolved correctly, given the partial
information available in the changeset. Second, changes to
method calls defined in the framework (e.g. addition of calls
to Console.WriteLine in two different methods) leads
to spurious relationships among diff regions. We discuss this
further in Section VI-A.

Fig. 3. Cluster Changes - Tree view displaying a change from the Roslyn project (located at https://roslyn.codeplex.com/SourceControl/changeset/4c74a47ca896)

3) Partitioning the set of diff-regions: Now we can define
precisely what we mean by two diff-regions being related,
using the relation RelatedDiffs . Distinct diff-regions f1 and
f2 are in the relation RelatedDiffs if and only if:

SameEnclosingMethod(f1 , f2)∨
(defs(f1)× uses(f2)) ∩ defUsesInDiffs 6= {}∨
(uses(f1)× uses(f2)) ∩ useUsesInDiffs 6= {}

The relation SameEnclosingMethod is true for pairs of
distinct diff-regions whose span intersects the span of the
same method (or property) definition. We group diff-regions in
the same method together because a) in practice, we observe
that changes to the same method are often related, and b) in
prior research [1], we observed that reviewers usually review
methods atomically (i.e., they rarely review different diff-
regions in a method separately). Given these relations we
create a partitioning over the set of diff-regions by computing
the reflexive, symmetric and transitive closure of RelatedDiffs .

We then distinguish the set of trivial partitions as those
partitions where all of the diff-regions within the partition are
within the same method or where there is only one diff-region
in the partition and it is outside of a method definition. We
refer to the former category as trivial in-method partitions. That
is, the trivial partitions are those diff-regions which we did not
group with any other diff-regions (except those that are related
only because they occur within the same method). All other
partitions are non-trivial partitions: they contain diff-regions
from multiple methods or changes in one method along with
at least one change outside of any method definition.

C. Tool description

Summarizing, we have built a tool CLUSTERCHANGES
that takes as input a CodeFlow changeset and produces a
partitioning of the diff-regions from the after-files. Reviewers
visualize the partitions in a tree view, as shown in the left pane

of Figure 3. Currently, we number and assign colors to identify
partitions. The tree view is similar to the current code review
tool’s user interface. In the tree view, each partition’s leaves
are the individual diff-regions which are then organized by
method, type, and file. However, we do not explicitly show the
relationships used to create the partitions. Prior to the study,
some developers had indicated they were confusing and more
importantly, there was a threat that showing them might bias
the study.

The tree view is linked to a standard textual difference view
of the before-file and the after-file: selecting a diff-region in the
tree view produces a view of the source file with the changes
highlighted, as shown in the right pane of Figure 3.

Our tool is not meant to replace the current code review
tool, but rather is a prototype for validating our techniques.

IV. QUANTITATIVE EVALUATION

We initially took a random sample of 100 changesets
submitted for review from Microsoft’s search engine, Bing,
in an effort to identify missing relationships and bugs in our
implementation. We also used the tool on our own changesets as
we worked on it. We selected changesets from reviews rather
than commits because a review doesn’t always correspond
directly to a commit, as the former is used to solicit feedback
and drive change while the latter is not intended to be rolled
back.

We then applied CLUSTERCHANGES to a randomly chosen
set of 1000 changesets submitted for review in Microsoft Office
during Office 2013 development to determine the distribution
of suggested trivial and non-trivial partitions. Figure 4 shows
a histogram of the number of non-trivial partitions in these
changesets.

While the most common case are changesets containing just
one non-trivial partition, this still makes up only 45%. Nearly
42% of all changes contain more than one non-trivial partition.

https://roslyn.codeplex.com/SourceControl/changeset/4c74a47ca896

0 1 2 3 4 5 6 7 8 9 10

Histogram of Non−Trivial Partitions across Reviews

Non−Trivial Partitions

N
um

be
r

of
 R

ev
ie

w
s

0
10

0
20

0
30

0
40

0
50

0

Manually
Examined (58%)

User Study (40%)

Not Examined (1.4%)

Fig. 4. Distribution of non-trivial partitions from 1000 changesets submitted
as reviews

In addition, the proportion of changed methods that end up
in non-trivial partitions is 66% on average per review. To the
degree that CLUSTERCHANGES correctly identifies non-trivial
partitions, this indicates that i) a large proportion of changesets
can be decomposed into multiple independent changes, and ii)
our decomposition covers a large fraction of changed methods
in a review. At the same time, the other 34% of changed
methods that form trivial in-method partitions indicate that
there is room for improvement for our technique. Figure 5
shows the distribution of trivial in-method partitions across
the same changesets. There is a long tail in this distribution
(one change had 326 trivial partitions) and just under 4% of
the changesets actually have more than 20 trivial in-method
partitions.

Ideally, we would evaluate our technique by validating the
suggested partitions with the ground truth about the relative
independence of these partitions. The best source of ground
truth is the developer who created the changeset, which is
feasible for only a very small fraction of the developers that
made the 1000 changes. We therefore developed the following
strategy to loosely group the set of reviews based on the number
of partitions:
• ≤ 1 non-trivial partition: We manually examined change-

sets that contained fewer than two non-trivial partitions
(a changeset can have no non-trivial partitions if it
is composed only of trivial partitions) in a manner
similar to Herzig and Zeller [6] by examining commit
messages and looking at the modifications to the source
code to determine if the partitioning appeared correct
(Section IV-A).

• 2 − 5 non-trivial partitions: We selected changes that
comprised two to five non-trivial partitions for a user study
to obtain the ground truth (Section V). These changes
represent a significant fraction (around 40%) of all changes
in Figure 4.

• ≥ 6 non-trivial partitions: We excluded reviews with six
or more partitions from our study since (a) they constitute

0 2 4 6 8 10 12 14 16 18 20

Histogram of Trivial Partitions across Reviews

Trivial Partitions

N
um

be
r

of
 R

ev
ie

w
s

0
50

10
0

15
0

20
0

4% of Reviews have more
than 20 trivial partitions

Fig. 5. Distribution of trivial in-method partitions from 1000 changesets
submitted as reviews

only 1.4% of reviews in Figure 4, and (b) consulting
developers for these changes would take longer than our
goal of a short interview.

• ≥ 10 trivial partitions: Under the hypothesis that a single
developer’s change cannot consist of so many independent
changes, it is evident that there are relationships not
captured by our technique. We performed a manual
investigation of several of these reviews (Section IV-B).

A. Reviews with ≤ 1 non-trivial partition

We manually investigated the changesets that had one or
fewer non-trivial partitions, indicated by the leftmost two bars
in Figure 4 in an effort to determine if CLUSTERCHANGES
ever puts sets of diff-regions into one non-trivial partition
when they should actually be split. We examined the commit
message to determine if more than one task (bug fix, feature
implementation, refactoring, etc.) was accomplished. We also
investigated the changeset to determine if the identified non-
trivial partition in each changeset should actually be split into
multiple partitions (trivial and/or non-trivial) or if any of the
identified relationships were spurious.

We randomly sampled 50 of the changesets that had one
or fewer non-trivial partitions. Of these, six had changeset
descriptions indicating more than one task. In four of the six,
CLUSTERCHANGES separated the tasks into partitions, but
only one of the tasks comprised a non-trivial partition; the
others were contained in trivial partitions. In the other two, the
two tasks were actually semantically related. For example, one
changeset addressed a bug in which a particular type of data
file and its backup were lost or corrupted when it was moved.
The changeset contained changes to the file manipulation code
and updated tests that made calls to the same code. Since the
test code did have a def-use relationship with the code in the
bug fix, the diff-regions were placed into the same non-trivial
partition.

We observed three cases where one or more trivial partitions
in a changeset would have fit into existing non-trivial partitions,

but were kept separate due to relationships that CLUSTER-
CHANGES does not capture. For instance, the addition of a
method call to a method in a base class was not put in the same
partition as a change to an overriding method in a subclass
(see Section VI-A for a discussion of these sorts of missing
relationships).

We observed no cases of spurious relationships in non-trivial
partitions. That is, whenever CLUSTERCHANGES put a group
of diff-regions into one partition, we never found a case where
the partition should have been split into multiple partitions.

B. Reviews with ≥ 10 trivial partitions

We randomly sampled 15 out of 119 changes with 10 or more
trivial partitions, and performed manual investigation. It seemed
very unlikely that there could be so many unrelated changes.
Indeed, manual inspection revealed almost all of them were
due to missing relationships. The three most prevalent missing
relationships that we encountered are: (a) annotating several
methods with common C# attributes such as Serializable
or Obsolete, (b) a common refactoring (e.g. addition of a
log message or variable renaming) across a large number of
methods, and (c) relationships between overridden methods
and their implementations. See Section VI-A for a detailed
discussion of these and other missing relationships.

Next, we describe our user study where we approached re-
view creators with the partitionings (2–5 non-trivial partitions).

V. USER STUDY

In this section we describe our user study methodology and
its results. The following three research questions guided our
user study:

RQ1: Do developers agree with our decomposition of their
changes? Our technique groups related code changes
into partitions that should be independent. We were
interested in whether participants agree with our
decomposition.

RQ2: What role do trivial partitions play? Our parti-
tioning results in both non-trivial partitions and
trivial partitions. We investigated how participants
perceive the trivial partitions regarding their relevance
and understanding with respect to the non-trivial
partitions.

RQ3: Can organizing a changeset using our decomposition
help reviewers? We were interested in participants’
opinion about whether our decomposition would
make it easier for reviewers to understand their code
changes.

To answer these research questions, we conducted semi-
structured interviews with developers. We present the study
and discuss some limitations of our approach identified during
the study.

A. Methodology

We used a firehouse research study design [14], [15] to
conduct 20 interviews with participants from 13 projects; we
refer to them as P1 through P20. This research method gets
its name from the fact that the research requires events to

occur that cannot be induced by the researchers themselves.
Researchers wishing to study those affected by fires must
literally sit in a firehouse waiting for a fire to be reported. In
our study we would “rush to the scene” soon after a change
was submitted as a code review so that the author still had
a mental model of his or her change fresh in mind. Through
this method, we were able to interview developers within at
most three days from the day they submitted a code change
to be reviewed. Hence, we could get fresh feedback on their
reasoning about their own changes, since developers were still
familiar with them.

B. Participant Selection

We selected interviewees based on two criteria: i) their office
should be located inside the Microsoft Redmond Campus, and
ii) they should have submitted a code change that contained
two to five non-trivial partitions. could easily travel to the
building where the code change author worked and so that our
decomposition had enough structure but was still be simple
enough to fit in a twenty minute interview. In summary, the
reviews we chose have: between 2 and 5 non-trivial partitions
(median 2), between 2 and 13 changed files (median 5), between
7 and 52 diff-regions (median 25), and between 1 and 8 trivial
partitions (median 2).

Each morning, we identified interview candidates by query-
ing code review data for reviews that were created on the
previous day. Then we sent out an email to review authors
briefly describing our study and inviting the code change owner
to participate by letting us visit them for approximately 20
minutes. In total, we sent out 43 invitations. Our response rate
was 46%.

We interviewed 20 developers from 13 different projects.
Participants have between 6 months and 13 years of experience
at Microsoft (median 6 years). Among the 20 developers, 5 of
them have the term “tester” in their job description.

C. Protocol

Once we had scheduled an interview, we went to the author’s
office. We started each interview by briefly explaining why we
were there and the general purpose of our study. Before showing
CLUSTERCHANGES, we made clear to developers that that they
were not under evaluation. Rather, our approach was. After
that, we showed our decomposition of their code change and
explained how they could use it to inspect code changes. Then,
we let them use CLUSTERCHANGES to look through their own
change and drove the interview according to each participant’s
behavior. Most of the participants were quite communicative
and, right after spending some time learning how to use the
tool, they started explaining their change, the meaning of
the partitions, if they made sense or not, if we missed any
information, etc. For these participants, we tried to not interrupt
them and let them drive the conversation during the interview.
For the few participants that were less communicative, we
asked questions to stimulate them to think aloud, such as,
“Would you explain what this partition means?” or “Can you
tell us the difference between these partitions?”

TABLE I
LIST OF QUESTIONS

RQ1 • For this review do you consider the decomposition
we’ve created to be intuitive (correspond to your
intention in having made the changes)?

• For this review is the decomposition “correct”?

RQ2 • For this review, are the non-trivial partitions more
important than trivial partitions?

• For this review, are the trivial changes easier for
reviewers to understand than the partitions? I.e.,
would they need less context to understand those
changes?

RQ3 • For this review, do you think this decomposition
would help your reviewers to understand your
changes? Why?

• Do you think it would help to structure the changes
in a code review?

• Would you like to use this tool for your next code
review?

At the end of each session, we asked 7 detailed questions
whose answers provide data to support conclusions for our
three main research questions. Table I lists such questions and
maps them to our main research questions. Surprisingly, while
using CLUSTERCHANGES, all the 20 participants provided
answers to some of these questions even before we asked them.
We discuss these answers with more details in the next section.

The interviews lasted approximately 15-35 minutes. One
participant did not allow us to record the interview; we had
technical recording problems in three other interviews. We
transcribed each recorded interview and had detailed notes
from the others. At the end of each interview, although we
had not offered it as an incentive, we compensated participants
with a $5 gift card for lunch.

D. Coding Interviews

All four authors coded four transcribed interviews in a
meeting together to define and calibrate the codes. Codes were
created for each question. Besides that, sentences that could
not be related to any of the questions but provided valuable
feedback we coded as “other”. For example, we coded the
sentence “It would be nice to rename the partitions” as other;
we found that many of these statements gave us valuable
information about a missing feature of our tool. Then all four
authors coded the same seven interviews individually. Since we
used more than two raters for the transcriptions we used Fleiss’
Kappa [16] on the individually coded responses to determine
inter-rater reliability. The inter-rater reliability was 72%, which
Landis and Koch consider to be substantial agreement [17].
The remaining interviews were each coded by an individual
author.

In total, we coded 572 sentences extracted from our notes
and audio transcripts: 366 (64%) were coded as none. These
were sentences that do not provide any information to answer
our questions. Of the remaining 206 (36%) sentences, 115
were coded to RQ1, 37 to RQ2, 46 to RQ3, and 33 to the
other category. Note that 18 sentences were coded to more
than one category.

public class MarkupHandler {
private Regex listRe = new Regex("\s*\d+\.\s");
private Regex listRe = new Regex("\s*#\.\s");

public static Markup MarkupList(string text)
{
Match result = listRe.Match(text)
...

}
}
public class MarkupTest {
public bool TestList()
{

string testStr = "1. this is a test"
string testStr = "#. this is a test"
Markup testOutput = MarkupHandler.MarkupList(testStr);
...

}
}

Fig. 6. Missed relationship between two diff-regions in a changeset.

E. Results and Analysis

1) RQ1: Of the 20 participants, 16 said that our non-trivial
partitions were both correct and complete, i.e., the non-trivial
partitions were indeed independent, the diff-regions within each
partition were related and there were no missing conceptual
groups. Of the remaining 4, 2 said that there should not have
been more than one partition, while the other 2 said that
while the non-trivial partitions were correct, some of the trivial
partitions should have been grouped together in a new non-
trivial partition.

Figure 6 shows an example of two trivial partitions that one
participant thought should be in the same partition. In each
pair of colored lines, the top red line had been removed and
the bottom green line had been added. The developer changed
both a string containing a regular expression (in listRe) and
a string used to test the regular expression (testStr). The
strings are related only through a method call to a method,
MarkupList, which although defined in the changeset had
not been modified. Such a relationship is not captured by
CLUSTERCHANGES and the two diff-regions remain in separate
partitions.

Interestingly, even though we did not explain the details of
our analysis, one of the participants realized how difficult it
would be to group such changes: “ In some sort of hypothetical
perfect splitting that read my mind, there is one change in one
line which was a variable changed (regular expression) that
could be in a different partition. But I would not expect that,
because it is difficult” [P9].

The 2 participants that said their code changes shouldn’t be
partitioned were not clear about the reasons that led them to
disagree with the partitions, but both mentioned that all the
changes are somewhat related to a general concept, even if they
are not related to each other. One of them was skeptical about
our approach and stated at the beginning of the interview that
“there is no reason [...] to commit unrelated changes” [P13].

We identified a pattern for the 16 cases in which we created
the expected partitions. Even though all the diff-regions within
non-trivial partitions were placed correctly and the partitions
matched developers’ reasoning about their own changes, 14
developers would have moved some (not more than 3) of the

trivial changes to one of the partitions. These were cases
in which the analysis we employ could not identify the
relationships. Most pertain to interface method usage and
entities referenced by XML files or event-based framework
calls. We discuss these cases with more details in Section VI.

Overall, developers were quite positive about our partitioning.
All the aforementioned 16 developers confirmed that the
partitions are indeed unrelated to each other and could be
reviewed separately. In particular, three scenarios caught our
attention.

In the first scenario, a developer mentioned that, before the
interview, she realized that the commit could be split in two
different changesets. She actually did split the changes and
said that her commits match our two partitions: “These were
actually two different changes and I actually split them in two
different things after this review” [P7]. Six other participants
mentioned that they should have split their changes according
to our partitioning and committed them separately. For example,
“When I was writing this I was thinking to myself to separate
this commit in two separate commits” [P5].

In the second scenario, at the beginning of the interview, the
participant was skeptical about our approach and mentioned that
her changes were all related. However, when we presented the
partitions to her, she seemed surprised: “You are actually doing
a good job. Actually you surprised me. It is quite intelligent”
[P6].

Third, according to a developer, we correctly split changes
from two components into two different partitions. He men-
tioned that one of the components is responsible for the direct
calls made to a service provider, while the other contained the
callback methods which get called by the same service provider.
In this case, the developer had changed the two components
and added tests for each one. CLUSTERCHANGES created two
partitions: one for each component and its tests. The developer
mentioned that if he could, he would name partition 1 “Changes
and tests for component 1” and partition 2 to “Changes and
tests for component 2”. In eight other interviews, developers
mentioned we were able to separate different components into
different partitions.

2) RQ2: As already mentioned, there were cases in which
participants considered some of the trivial partitions incorrect:
they should have been included in a non-trivial partition. Our
questions about trivial partitions excluded those and focused
on those that participants certified as being correct.

There were indeed several cases where the trivial method
partitions identified by CLUSTERCHANGES were correct, i.e.
they can be reviewed in isolation. The most common cases
correspond to comments, log statements, blank lines, and
internal logic changes (e.g. changes to if statements). For
this reason, we had conjectured that trivial partitions were less
important than non-trivial partitions. Surprisingly, 8 participants
mentioned that trivial partitions are neither less or more
important than non-trivial ones. Ten participants confirmed
that they are less important than non-trivial ones, while the
remaining 2 participants could not give an answer to our
question. With respect to the 8 participants who said that
trivial partitions are relatively equally important to the non-

trivial ones, we found that they were somewhat not confident
in assigning them less or more importance than other changes.
As an example, a participant said “I would not say that isolated
changes are less important. It makes sense to separate them
out. It is nice to see that they are not in that component, but
they are still important” [P11]. We also found a scenario in
which a developer changed the internal logic of a method that
doesn’t directly impact its signature, but changed its semantics.
The participant considered this change equally important as
the ones within non-trivial partitions.

There was more consensus about whether trivial partitions
were easier to understand than non-trivial partitions. Most
participants (16) found them easier to understand, while 3
could not definitively answer the question, and 1 participant was
unable to differentiate trivial partitions understanding from non-
trivial ones. Overall, participants appreciated the fact that we
separated trivial partitions. Among other reasons, participants
mentioned the ability to prioritize non-trivial partitions, the
fact that they need less context to understand trivial ones, and
the fact that they are separated from the “meat” of the change.

3) RQ3: All participants were positive about the general
concept of our approach in the sense that it can help reviewers to
understand their changes. Some of them were quite optimistic,
using terms such as “perfect” [P1] or “amazing” [P11], while
others pointed that it could be helpful if we worked more
on GUI details of our tool [P3,P7,P14]. We understand that
participants tend to be positive during user studies and might be
uncomfortable to point out negative aspects. While our intent
was to gather observations from our qualitative study and not
to perform a statistical analysis, we found some similarities
among the answers. For example, 6 participants mentioned that,
especially for large code changes, CLUSTERCHANGES could
be helpful. During the interview, 1 of these 6 participants called
the actual reviewer of the change to analyze the partitions. The
participant started to explain the meaning of each partition
and the reviewer agreed that it would help him to review the
change as it was presented.

Also, 8 participants mentioned that our approach can be
used to help assign reviewers to a specific partition based on
expertise. Hence, reviewers could also prioritize partitions in
which they could better contribute: “[Decomposing changes] is
useful because allow different reviewers with different purposes
to focus on what they want” [P12].

Finally, 5 developers mentioned that breaking changes into
partitions would help reviewers to not spend too much time
trying to understand the change among different contexts. Three
mentioned the current view of CodeFlow and asked if we would
combine both tools. CodeFlow currently organizes files in a
review as a flat list: the diff-regions are organized only within
the directories/files in which they occur.

I think that could be really helpful. Usually when I
am reviewing I open up CodeFlow and maybe there
are hundreds of files and I start at the top and go in
a directory order. Sometimes I find myself jumping
around and saying there is this thing that was defined
and I do not know where was defined and then I
try to figure out what is going on and come back to

the stack I was working on. So breaking things up
into logical groups rather than just arbitrary directory
order sounds like a big one for the reviewer. [P19]

In respect to CLUSTERCHANGES, two participants were
unsure of its utility, one of them being the same participant
(P13) who does not see any reason for a developer to commit
unrelated changes. Nevertheless, she mentioned that the tool
should allow developers to modify partitions, but “the tool
should be 95% correct or else I would not use it because it
would be annoying” [P13]. The other participant focused on
criticizing GUI details of CLUSTERCHANGES. In particular,
she mentioned she would like to see information on how we
created partitions: “The UI does not tell me how you created
the partitions So, it is difficult for me to see its value” [P17].

The remaining 18 developers (including two that disagreed
with our partitioning) were positive about using CLUSTER-
CHANGES in their next changeset. Three of them indicated
that they would like to use CLUSTERCHANGES even before
committing the code: “If I had a way to run this tool before I
commit, I would have even considered splitting this partition 2
into a second commit” [P4]. Three other developers asked for
access to our prototype in order to use it for other changesets.
One of them (P20) mentioned that we should contact another
developer from her team because she has been committing
several unrelated changes.

VI. DISCUSSION

We were pleasantly surprised that using the def-use and
the use-use relationship did not have any false positives: i.e.,
there were no diff-regions that were incorrectly included in a
partition. During our manual investigations and the user study,
there was never a case where a non-trivial partition should
actually have been split into multiple partitions. In retrospect,
this makes sense: the def-use relationship is a fundamental
relationship within a program and the use of a compiler makes
it extremely unlikely to be mis-identified.

A. Missed Relations

As expected, there were many false negatives: diff-regions
which should have been included in a partition, but were not.
We categorize them by the difficulty of using a static analysis
to find them.

1) Easy: There are many relationships that we know about
and that we could automatically detect but which were not
used. For instance, we did not create a def-use relationship for
the definition of an interface method and its implementation
or for an override (in a subclass) of a virtual method in a base
class.

We found many changesets that consisted of annotating a
large number of methods with a particular custom attribute.
Custom attributes are user-defined tags that can appear on
program elements, such as types, methods, and fields. For
instance, many test methods may be added, each tagged
with the TestMethod attribute, so that the test framework
can automatically discover them. However, since we ignored
use-use relationships if the definition was not present in
the changeset, we did not group such methods, resulting in

numerous trivial partitions. Although in general it is difficult to
properly distinguish definitions that do not get fully resolved,
this is common enough to warrant special treatment.

Also, we restricted ourselves to analyzing only C# files. It
would be trivial to include Visual Basic files since Roslyn also
is the compiler for that. We could also add other languages,
given parsers for them.

2) Medium: We used only the after-files for creating the
partitions, which means that code deletions are not represented.

Other use-use relationships besides those of custom attributes
could be included as long as we do not conflate definitions
that do not get fully resolved in the parsing.

Sometimes developers change names of entities to enforce a
naming convention throughout the code; such changes do not
share any semantic relationship. Clone detection [18] can be
useful to identify relationships between such changes.

3) Hard: There are relationships due to the use of external
tools and/or cross-language integration. For instance, there are
XML files used as input to generate code: clearly the changed
XML file should be grouped into the same partition as the code.
XML files or other configuration files may indicate how to
“connect” pieces of an application together at run time. While
there is work on identifying cross-language dependencies [19],
a multi-language analysis for the diverse set of languages and
configuration formats that we encountered is beyond the scope
of this work.

Code related by dynamic dependencies would be very
difficult to analyze. For instance, many components use
callbacks for two-way communication. That is, a component
makes direct calls and also passes function pointers to allow
the called component to call back into the calling component.
This can be very difficult to precisely track, however some of
these conventions can be heuristically recognized and added
to our technique in the future.

Finally, there are always going to be changes that developers
intend to be related, but which no static or dynamic analysis
will ever find.

Adding a new relationship means that it is subject to the
transitive closure of the partitioning algorithm. Alternatively, we
found one particular strategy to address most of the developer’s
concerns with the trivial partitions. We can post-process the
set of trivial partitions to merge them into any existing non-
trivial partitions — creating one if needed — within the same
enclosing class.

B. User involvement
It quickly became clear during the study that users would

want to manually manipulate any proposed structuring as well
as being able to tag or add a description to each partition. In fact,
6 developers mentioned this during the study. They also would
like to have the partitions ordered so that the most important
partition, the one with the “meat” of the change, would be
first. Whenever any of these can not be done automatically, the
developer should be provided with the ability to do it manually.

C. Threats to Validity
Clearly, our results are conditioned by several caveats. So

far we have looked only at changesets from Microsoft. Even

within Microsoft, we have sampled only a very small subset
of available changesets. Also, we have restricted ourselves to
looking at diff-regions only within C# files. Finally, the small
sample size and human factors involved mean that we are not
able to achieve statistical significance, even within this scope.

VII. RELATED WORK

Tao et al. present an empirical study to investigate the role
of understanding code changes in software development [20].
Among other results, they observe that developers need to
decompose changes in order to understand them — one of the
primary goals of our approach.

To the best of our knowledge, there have been three prior
approaches towards the problem of decomposing code changes.
Kirinuki et al. [21] report a small experiment on identifying
unrelated changes. They use the longest common subsequence
algorithm to compare previous changes for the project to the
one being committed. Herzig and Zeller [6] propose a heuristic-
based algorithm to “untangle” changes based on information
such as file distance and the call graph of a change. Similarly,
Kawrykow and Robillard [4] apply a heuristic-based algorithm
to analyze changesets; they focus on a statement-level analysis
to find simple changes, such as, adding the keyword “this”
when accessing fields.

Our work, in contrast, is concerned with developers’ un-
derstanding of changes in the context of code reviews. Our
exclusive use of def-use information, i.e., semantic information
to partition changesets is novel and our validation with actual
change owners enabled us to get the ground truth about
independent changes being committed together.

Finally, there is a rich literature on techniques for un-
derstanding and summarizing changes. They range from
change impact analysis [22], summarizing structural changes
(automatically [23], [24] or interactively [25]) to the use of
symbolic execution and program analysis [26], [27], [28]. These
techniques are complementary to the problem of decomposing
changes, and can in fact be used in conjunction to further
summarize individual partitions suggested by our technique.

VIII. CONCLUSION

Changesets containing unrelated changes are not a rare event.
This can negatively affect understanding: reviewers might need
to switch contexts and manually separate unrelated changes to
effectively review them. To tackle this problem, we designed
an algorithm for partitioning the set of diff-regions present in
a code review and implemented it in a tool which was used to
perform both studies: quantitative and qualitative. We found
that using a single relationship, that between the use of a
type, method, or field and its definition, provided a useful
decomposition with no false positives. We performed this
initial validation with the author of the changes, rather than
its consumers in order to see if the partitioning reflects the
author’s intent. Now that we have confidence in the accuracy
of our partitioning, we can move on to do further studies with
code reviewers.

Figure 7 illustrates one way that our work could fit into the
development process. Initially, an author creates a changeset,

Cluster Changes

@refactoring

@bugfix

ChangeSet

 Author Author Reviewer

1

2

3

Fig. 7. Intended workflow for CLUSTERCHANGES.

which is then provided as input to CLUSTERCHANGES, which
(step 1) decomposes it into independent partitions. Then, in step
2, the author can review the created partitions to ensure they
are consistent with her understanding. In step 3, partitions can
be ordered and tagged so that the reviewer sees the structured
changeset. Steps 1 and 2 were already addressed by this
work; future work includes adding more relationships without
compromising precision (to step 1) and allowing developers
to tag/order partitions (step 3). We also intend to conduct a
broader quantitative study once the tool has been rewritten as
an extension of the existing code review tool used at Microsoft.

Another possibility is in the context of other modern
distributed revision control systems (e.g. GitHub) that have
been promoting code review through lightweight mechanisms
to annotate and discuss pull requests and commits. In particular,
besides enabling general comments to summarize a commit,
GitHub enables comments on code snippets, which can improve
changes comprehension. In this context, CLUSTERCHANGES
could be used as a mechanism to automatically identify where
to include such comments/tags.

CLUSTERCHANGES is not coupled to a specific development
environment, programming language, or application domain.
Given the set of textual differences, which can be provided
by any of the standard text differencing tools, we require only
the ability to parse and semantically understand the source
code. Many programming languages provide open APIs for
retrieving such information.

It is our belief that there is a huge role for automated analysis
and tooling for improving the code review process. Tools such
as CLUSTERCHANGES or DiffCat [4] should be evaluated in a
long-term study after they have been integrated into the “wild”.

ACKNOWLEDGMENTS

We thank Jack Tilford and Birendra Acharya from the
CodeFlow team and Balaji Soundrarajan from the Roslyn
team for all of their help. We would also like to thank Tom
Ball, Yingnong Dang, Jacek Czerwonka and Andrew Begel for
several interesting discussions about the problem and the tool.
We would especially like to thank all of the study participants
for their valuable time.

REFERENCES

[1] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of the 35th International Conference
on Software Engineering, 2013.

[2] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes?: An exploratory study in industry,”
in Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering, ser. FSE ’12. New
York, NY, USA: ACM, 2012, pp. 51:1–51:11. [Online]. Available:
http://doi.acm.org/10.1145/2393596.2393656

[3] P. C. Rigby, B. Cleary, F. Painchaud, M. Storey, and D. M. German, “Con-
temporary peer review in action: Lessons from open source development,”
Software, IEEE, vol. 29, no. 6, pp. 56–61, 2012.

[4] D. Kawrykow and M. P. Robillard, “Non-essential changes in version
histories,” in Proceedings of the 33rd International Conference on
Software Engineering. ACM, 2011, pp. 351–360.

[5] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” Software Engineering, IEEE Transactions on, vol. 38, no. 1,
pp. 5–18, 2012.

[6] K. Herzig and A. Zeller, “The impact of tangled code changes,” in
Proceedings of the 10th Working Conference on Mining Software
Repositories, 2013, pp. 121–130.

[7] [Online]. Available: https://roslyn.codeplex.com/
[8] [Online]. Available: https://roslyn.codeplex.com/SourceControl/

changeset/8980c93e4d51eafbd088139afb6f262bbee40d33
[9] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of open

source software development: Apache and mozilla,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 11, no. 3, pp.
309–346, 2002.

[10] P. C. Rigby, D. M. German, L. Cowen, and M.-A. Storey, “Peer review
on open source software projects: Parameters, statistical models, and
theory,” ACM Transactions on Software Engineering and Methodology,
p. 34, 2014.

[11] P. C. Rigby and C. Bird, “Convergent contemporary software peer review
practices,” in Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering. ACM, 2013, pp. 202–212.

[12] [Online]. Available: http://www.microsoft.com/en-us/news/features/2012/
jan12/01-05codeflow.aspx

[13] A. Hejlsberg, S. Wiltamuth, and P. Golde, C# language specification.
Addison-Wesley Longman Publishing Co., Inc., 2003.

[14] E. M. Rogers, Diffusion of innovations. The Free Press, 2003.
[15] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan, “The design

of bug fixes,” in Software Engineering (ICSE), 2013 35th International
Conference on. IEEE, 2013, pp. 332–341.

[16] J. L. Fleiss, “Measuring nominal scale agreement among many raters.”
Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

[17] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” biometrics, pp. 159–174, 1977.

[18] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical study
of code clone genealogies,” in Proceedings of the 10th European
Software Engineering Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
ESEC/FSE-13. New York, NY, USA: ACM, 2005, pp. 187–196.
[Online]. Available: http://doi.acm.org/10.1145/1081706.1081737

[19] D. L. Moise and K. Wong, “Extracting and representing cross-language
dependencies in diverse software systems,” in Reverse Engineering, 12th
Working Conference on. IEEE, 2005, pp. 10–pp.

[20] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes?: an exploratory study in industry,”
in Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering. ACM, 2012, p. 51.

[21] H. Kirinuki, Y. Higo, K. Hotta, and S. Kusumoto, “Hey! are you
committing tangled changes?” in Proceedings of the 22Nd International
Conference on Program Comprehension, 2014, pp. 262–265.

[22] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chianti:
A tool for change impact analysis of java programs,” SIGPLAN
Not., vol. 39, no. 10, pp. 432–448, Oct. 2004. [Online]. Available:
http://doi.acm.org/10.1145/1035292.1029012

[23] A. Loh and M. Kim, “Lsdiff: A program differencing tool to identify
systematic structural differences,” in Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 2, ser.
ICSE ’10. New York, NY, USA: ACM, 2010, pp. 263–266. [Online].
Available: http://doi.acm.org/10.1145/1810295.1810348

[24] T. Apiwattanapong, A. Orso, and M. J. Harrold, “A differencing
algorithm for object-oriented programs,” in Proceedings of the 19th
IEEE International Conference on Automated Software Engineering, ser.
ASE ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp.
2–13. [Online]. Available: http://dx.doi.org/10.1109/ASE.2004.5

[25] T. Zhang, M. Song, J. Pinedo, and M. Kim, “Interactive code review for
systematic changes,” in Proceedings of 37th IEEE/ACM International
Conference on Software Engineering. IEEE, 2015.

[26] R. P. Buse and W. R. Weimer, “Automatically documenting
program changes,” in Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’10.
New York, NY, USA: ACM, 2010, pp. 33–42. [Online]. Available:
http://doi.acm.org/10.1145/1858996.1859005

[27] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu, “Differential
symbolic execution,” in Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
SIGSOFT ’08/FSE-16. New York, NY, USA: ACM, 2008, pp. 226–237.
[Online]. Available: http://doi.acm.org/10.1145/1453101.1453131

[28] S. K. Lahiri, K. Vaswani, and C. A. R. Hoare, “Differential static
analysis: Opportunities, applications, and challenges,” in Proceedings of
the FSE/SDP Workshop on Future of Software Engineering Research,
ser. FoSER ’10. New York, NY, USA: ACM, 2010, pp. 201–204.
[Online]. Available: http://doi.acm.org/10.1145/1882362.1882405

http://doi.acm.org/10.1145/2393596.2393656
https://roslyn.codeplex.com/
https://roslyn.codeplex.com/SourceControl/changeset/8980c93e4d51eafbd088139afb6f262bbee40d33
https://roslyn.codeplex.com/SourceControl/changeset/8980c93e4d51eafbd088139afb6f262bbee40d33
http://www.microsoft.com/en-us/news/features/2012/jan12/01-05codeflow.aspx
http://www.microsoft.com/en-us/news/features/2012/jan12/01-05codeflow.aspx
http://doi.acm.org/10.1145/1081706.1081737
http://doi.acm.org/10.1145/1035292.1029012
http://doi.acm.org/10.1145/1810295.1810348
http://dx.doi.org/10.1109/ASE.2004.5
http://doi.acm.org/10.1145/1858996.1859005
http://doi.acm.org/10.1145/1453101.1453131
http://doi.acm.org/10.1145/1882362.1882405

	Introduction
	The Problem
	ClusterChanges
	Starting Point
	Definitions and uses.
	Computing def-use information
	Projecting def-use on diffs
	Partitioning the set of diff-regions

	Tool description

	Quantitative Evaluation
	Reviews with 1 non-trivial partition
	Reviews with 10 trivial partitions

	User Study
	Methodology
	Participant Selection
	Protocol
	Coding Interviews
	Results and Analysis
	RQ1
	RQ2
	RQ3

	Discussion
	Missed Relations
	Easy
	Medium
	Hard

	User involvement
	Threats to Validity

	Related Work
	Conclusion
	References

