
Mining Energy Traces to Aid in Software Development:
An Empirical Case Study

Ashish Gupta

1, Thomas Zimmermann

2, Christian Bird

2,
Nachiappan Nagappan

2, Thirumalesh Bhat

3, Syed Emran

3

1
 Stanford University
Stanford, CA, USA

ashgup@stanford.edu

 2
 Microsoft Research 3 Windows Phone, Microsoft Corporation

Redmond, WA, USA

{tzimmer, cbird, nachin, thirub, semran}@microsoft.com

ABSTRACT

With the advent of increased computing on mobile devices such as

phones and tablets, it has become crucial to pay attention to the en-

ergy consumption of mobile applications. The software engineering

field is now faced with a whole new spectrum of energy-related

challenges, ranging from power budgeting to testing and debugging

the energy consumption. In this paper, we present our work on an-

alyzing energy patterns for the Windows Phone platform. We first

describe the data that is collected for testing (power traces and ex-

ecution logs). We then present several approaches for describing

power consumption and detecting anomalous energy patterns and

potential energy defects. Finally we show prediction models based

on usage of individual modules that can estimate the overall energy

consumption with high accuracy. The techniques presented in the

paper allow assessing the individual impact of modules on the over-

all energy consumption and support overall energy planning.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging.

General Terms

Measurement, Experimentation.

1. INTRODUCTION
For several decades, power consumption has been a secondary con-

cern (if a concern at all) in software engineering.1 Most software

has been developed for desktop computers, which have a continu-

ous power supply. While industries like satellite sciences and

healthcare have been traditionally more power-aware, the general

software engineering community did not have the need to research

power consumption. This is about to change—or depending on the

viewpoint has changed now. With mobile phones and tablets gain-

ing wide usage in everyday life, new challenges are brought to soft-

ware development. There are many stakeholders that now care

about power: end-users realize that certain applications can reduce

battery life dramatically and consider energy consumption as an

important quality attribute.

“I have researched all the many ways to save battery life. I

have apps that kill other apps. I turn off Wi-Fi and 4G and

Bluetooth until I need them.”

—Scott Adams, creator of Dilbert [1]

As a consequence building energy-efficient applications becomes

important for developers, both application and operating system

(OS) developers. There are many ways that a developer can influ-

ence the power consumption of a mobile app, for example, the de-

cision to use TCP vs. UDP, or keeping sockets and connections

open longer than needed. Another example is making a lot of re-

quests to a server instead of batching up requests so that they utilize

wireless connectivity (a high energy component) effectively. Ulti-

mately power consumption comes down to how the hardware com-

ponents are used, but these are driven by software design decisions.

In this paper, we introduce a methodology for collecting and ana-

lyzing power data on mobile devices running Windows Phone 7.

Our methodology focuses on three parts: (1) describe and quantify

power consumption, (2) detect anomalies in power consumption,

and (3) predict power consumption. Anomalies identified by our

approach have been confirmed as true defects by developers who

used the anomalies to perform root-cause-analysis to detect defects

in phone software. More specifically, we focus on the following

questions:

 What modules consume the most power?2

(Section 5)

 What are characteristic energy shape patterns of certain

modules? Can we find anomalous energy patterns?

(Section 6)

 Can we predict power consumption? (Section 7)

These results hold value for major stakeholders in mobile devices.

The OS platform developers and application developers specifi-

cally need to be aware of individual energy consumption patterns

and can use overall prediction models to determine the energy us-

age in a particular scenario to decide on the need for energy opti-

mizations or rethink the design aspects of the scenario. End-users

need to be aware of the energy consumption levels to plan better

for the battery life under different load conditions. These are two

simple situations where knowing about energy patterns is of value.

1 Throughout the rest of this paper we use the term energy and power inter-
changeably.

2 We use the term modules (or components) for executable files and shared

libraries.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ESEM’14, September 18–19, 2014, Torino, Italy.

Copyright 2014 ACM 978-1-4503-2774-9/14/09...$15.00

One of the goals of this paper is to expose the need of more software

engineering research on energy awareness, utilization as well as op-

timization.

In the remainder of the paper, we discuss the underlying analysis

and methodology (Section 3) from the viewpoint of OS platform

developers. More specifically, we focus on idle tests, i.e., one sce-

nario (e.g., checking mail, browsing to web pages, or opening a

map) is tested repeatedly on the phone for a 12 hour period. Be-

tween each test run is an idle period to simplify the alignment be-

tween power consumption and actual activity on the phone. For

each idle test, we collect and align execution logs and power logs

(Section 4). This data is then used to address questions that Win-

dows Phone developers often ask when testing and debugging the

mobile operating system for energy consumption (Section 5–7).

The techniques discussed in this paper can be used in a similar fash-

ion by application developers or even end-users. Application devel-

opers can programmatically collect battery usage statistics and cor-

relate this information with execution-data of their app. Similarly,

end-users can observe battery levels (possibly with the help of a

battery monitors) and correlate this information with the apps that

they have used. While the techniques discussed in this paper have

some limitations, they are also largely independent of the operating

system and can also be applied to iPhone or Android platforms.

2. RELEVANCE TO SOFTWARE

ENGINEERING
In this section we wish to emphasize why software engineering re-

searchers and practitioners should care about energy, as the im-

portance might not be immediately clear. The events of the last few

years have significantly changed the face of computing.

Observation #1:

Energy awareness is relevant now
The main reason for the increased importance of energy analysis is

because of the advent of smart phones and tablets. With the explo-

sive growth of smartphones (for example, Windows Phone, An-

droid, iPhone, and Blackberry), Nielsen Media Research expects

more smartphones in the U.S. market than feature phones in 2011

[2]. The market analysis company IDC reported total shipments in

2011 were 491.4 million units up 61.3 percent from 2010 [3]. Ac-

cording to IDC smartphones started outselling PCs in the fourth

quarter of 2010 with 100.9 million shipped devices vs. 92.1 million

and there will be more mobile Internet users than wire line users in

the U.S. by 2015 [4].

With the growth of tablets and smartphones the problems related to

energy consumption are increasing. Both end-users and developers

are sensitive to the energy consumed by individual components of

the phone (such as Wi-Fi, 3G) as well as applications downloaded

and running on the phone. Lower than expected battery life on mo-

bile devices can lead to frustrated customers and negative publicity

for a company (for example, the recent iOS launch [5]); several

technology blogs discuss ways to improve battery consumption.

The Computer World magazine presents “More tips for boosting

Android battery life” where they discuss ways to increase battery

life, including turning off Wi-Fi, turning off Bluetooth, dimming

the background, and running an energy monitoring app [6].

Observation #2: Energy awareness is relevant

for the software engineering community
The rapid growth of the market for mobile devices brings a need

for understanding various aspects of energy consumption. Simply

put: how do we test for energy? We have an extensive body of

knowledge on testing and test prioritization but we need to start de-

signing new methods for testing applications, features, and compo-

nents for energy-awareness, both to determine the amount of en-

ergy they consume and to ensure they are not consuming more than

their allotted energy from a power budget. Testing will evolve into

connecting devices into applications to monitor power spikes, out-

liers, etc. The work in this paper is a first step in this direction.

3. THE APPROACH
For the analysis in this paper, we use power traces and execution

logs, typically taken from 12-hour idle tests (see overview in Figure

1). The two sources of data are subsequently aligned and split into

power spikes based on idle periods. Each power spike has duration,

average power consumption, and a list of associated modules.

After the completion of an idle test, the power trace and execution

logs are analyzed by engineers of the Windows Phone platform. For

one or more given power traces, engineers want to understand the

energy consumed by different modules and if there are any patterns

(anomalies) that they should pay special attention to. They typically

ask questions such as:

 What modules consume the most power?

 What are characteristic energy shape patterns of certain

modules?

 Are there anomalous energy patterns?

To answer these questions, we implemented several tools based on

supervised (decision trees) and unsupervised learning techniques

(clustering). All our analysis is done in an automatic fashion requir-

ing little involvement and statistical knowledge on the user side.

Engineers can choose one or more of the above questions and get

the results in reports. We discuss the details of the above questions

in Sections 5 and 6.

Another frequent problem that engineers face is to estimate the

power that will be consumed by an application. The reason is that

many mobile apps are developed within a power budget. That is,

on average the application is only allowed to consume a certain

amount of energy.

 Can we predict power consumption?

To estimate the power consumption of power spikes, we built and

evaluated prediction models based on linear regression. The output

of these models can be used by engineers to make informed deci-

sions regarding power budgeting. The results are promising: our

models can estimate power with high accuracy. Details are dis-

cussed in Section 7.

4. DATA COLLECTION
We use two sources of data for the power analysis in this paper

(recall Figure 1). First we collect logs of the executable files and

shared libraries, hereafter referred to as modules, which are active

Power
Trace(s)

Database

Models
Clusters
Anomalies
PredictionExecution

Log(s)s

Spikes

Align +
Combine

Store Analyze

Figure 1. Overview of our approach. We use two data sources: power traces

and execution logs. The data is then aligned and combined and we extract
power spikes from the traces, which are stored in database and serve as

input for the analysis throughout this paper.

at certain points in time. Next we collect traces of power consump-

tion over time. Finally we align and combine both sources into the

data that we use throughout this paper.

The data collection is briefly summarized below; for the details we

refer to a technical report [7].

When a mobile device is tested for power usage, a recent build is

loaded onto the phone. Based on the operations that are being

tested, a number of tests (for example checking mail, browsing to

web pages, or opening a map) are run repeatedly on the phone for

a 12 hour period. The record of power usage is measured by a power

meter (5,000 samples per second) and called a power trace.

As mobile devices optimize for power consumption, power traces

show periods of inactivity (low power use), punctuated by brief pe-

riods of high activity (high power use). We term each of these high

power intervals a power spike or just spike. Note that within a spike,

there may also be fluctuations in power consumption. The duration

of spikes ranges from one tenth of a second to several seconds. In

order to isolate individual power spikes in a power trace, we use the

periods of inactivity as shown in Figure 2. In some cases a manual

approach may also be used depending on the nature of the test

cases, for example, when there are not enough idle periods in the

data. For the analyses presented in this paper, we used so-called idle

tests, which on purpose leave enough idle time between test activi-

ties.

After identifying spikes and aligning power traces with execution

logs, we have the following information available for each spike

(example is depicted in Figure 3):

 Spike ID, a unique identifier for the spike

 Start time and end time

 Duration

 Floor power (milliwatt)

 Average power (milliwatt)

 Peak power (milliwatt)

 Total energy consumed (milliwatt hours)

 Active modules, i.e. the modules which had code exe-

cuted during the spike.

This data allow us to perform a number of analyses on energy use

as discussed in Section 5–7. To facilitate access, we store the spike

information in a database.

In addition to the above information, each spike is linked to the

power trace that it originated from. For power traces we record in

the database:

 Build ID, which allows finding the associated state of the

source code.

 Model of the mobile device that was used to collect the

trace.

Note that for the analysis presented in this paper we do not aggre-

gate spikes across different mobiles devices models because they

may have slightly different power utilization characteristics due to

varying specifications (such as display type, processor speed, exist-

ence of specific sensors).

5. WHAT MODULES CONSUME THE

MOST POWER?
It is not trivial to identify the energy consumption of a single mod-

ule because energy consumption can only be directly linked to a set

of modules and not individual modules in the data. Spikes often

have tail-end energy which cannot be attributed to any single mod-

ule in the spike. Granularity limitations are another reason. In order

to isolate the energy consumption for different modules we use de-

cision trees [8], a supervised learning technique. For this analysis,

we use data of the following format (for space reasons, we show

only three lines of input data):

Spike ID Adrion.dll Allen.dll Bachman.dll Backus.exe …… Zweben.exe Avg. Power (mW)

123338 1 0 0 1 … 1 254.76

123563 0 0 1 0 … 1 680.23

123789 0 1 1 0 … 0 110.56

… … … … … … … …

Each observation has a unique spike identifier, followed by flags to

indicate the presence of modules in the spike (0 for absence, 1 for

present), and the average power consumption. For legal reasons, we

anonymized module names throughout the paper with the last

names of laureates of ACM Turing Awards as well as ACM SIG-

SOFT Distinguished Service Awards, Outstanding Research

Awards, and Influential Educator Awards.

We use decision trees [8] to model the influence of modules on av-

erage energy consumption because they can capture non-linear in-

teractions and are descriptive models that are easier to understand.

In our case, the inner nodes indicate the presence of certain modules

(yes/no). Each node holds the average energy consumption for sev-

eral spikes (as described by the path to the root note). For example

in Figure 4, node lists an average energy consumption of 85.9

mW for the 795 power spikes for which Mills.dll is absent and

Leveson.dll is present.

The decision trees can help developers to better understand how

power consumption and modules are related in one or more traces.

Time

P
o

w
er

Spike 814

Power Trace

Figure 2. Examples of a power trace (usually taken from a 12 hour
test session on a mobile device) and a power spike. Spikes are iso-
lated based on longer periods of inactivity in the power trace. Each
such spike is normalized in time to range from 0 to 1.

Spike 2555

Time

ID: 2555
Start: 1:03:22.00
End: 1:03:22.45
Duration: 0.45 sec.
Floor Power: 3 mw
Avg. Power: 45 mw
Peak Power: 80 mw
Total Energy: 0.0056 mwh
Active modules: module1.dll

module2.dll
module3.dll

P
o

w
er

Figure 3. A spike from a trace log and the associated data that is computed

and stored in a database for further analysis.

In Figure 4, the tree describes 843 spikes within a trace. The aver-

age energy consumption for all spikes is 112.1mW as indicated in

the root node of the tree. On the first level the spikes are split

based on the presence of module Mills.dll: for the 814 spikes that

do not contain Mills.dll, the average energy consumption is

92.5mW ; however, for the 29 spikes that contain Mills.dll the

average increases by six times to 664.6mW . On the second level,

the absence of Leveson.dll increases energy consumption by a fac-

tor of four (compare nodes and), and on the third level the

presence of Hamming.dll increases energy consumption by a factor

of three (nodes and).

We informally validated the decision trees for several traces with

Windows Phone engineers. They confirmed the correctness of the

results based on their previous experience, i.e., the modules identi-

fied by decision trees as power-consuming were indeed power-con-

suming.

A limitation of our current data (not the approach) is that we only

have information about the presence of modules (0 or 1), but not

the actual usage (numerical). Decision trees do support numerical

input data and we are currently exploring other lightweight tracing

techniques for collecting more fine-grained data without altering

power usage. We have also experimented with linear regression to

estimate power consumption; preliminary results are summarized

in a technical report [7].

6. WHAT ARE THE CHARACTERISTIC

ENERGY SHAPE PATTERNS?
Power traces consist of hundreds, often thousands of spikes, which

all can have very similar shapes. By clustering spikes based on their

shapes, we can identify characteristic shape patterns and reduce the

number of spikes that need to be investigated by developers for a

power trace. Rather than looking at all spikes, developers instead

can focus on a small number of clusters (typically 10-20), each cor-

responding to a characteristic shape pattern with a list of associated

spikes. Developers can also rollup the meta-information for each

spike (such as length, modules, etc.) to the cluster level.

Developers can choose different input data for clustering. They can

cluster all spikes in a power trace or only subsets, for example all

spikes related to a module. Figure 5 shows a small example with 11

spikes for module Sommerville.dll. While the human eye can easily

spot two clusters, detecting the clusters in an automated fashion is

slightly more complicated. For automatic clustering of elements,

one typically uses a distance function (to compare spikes) and a

clustering algorithm (to group spikes):

6.1 Distance function
To compute the distance between two spikes, we use the Kullback-

Leibler divergence [9]. To reduce the computational cost of com-

paring spikes, we divide each spike into 100 buckets, calculate the

average energy consumption for each bucket, and compute Kull-

back-Leibler across these 100 buckets for each pair of spikes. The

result of this step is a distance matrix D, where a cell value dxy cor-

responds to the distance between spike x and y.

6.2 Clustering
For clustering spikes we use the Ward hierarchical clustering

method [10]. Initially, each spike is assigned to its own cluster; for

n=843
 112.1 mW

n=814
92.5 mW

n=795
85.9 mW

n=29
664.6 mW

n=19
366.3 mW

n=774
72.8 mW

N=21
202.0 mW

Mills.dll
no

Mills.dll
yes

Leveson.dll
yes

Hamming.dll
no

Hamming.dll
yes

Leveson.dll
no

Number of spikes

Average power consumption

Figure 4. Example of a decision tree learned from energy consump-
tion data. On the first level the spikes are split based on the presence
of module Mills.dll—spikes that contain Mills.dll consume on av-
erage six times the power than spikes that do not contain the module
.

Figure 5. Example with 11 spikes for module Sommerville.dll.

Figure 6. Dendrogram of the hierarchical clustering of the 11 spikes
for module Sommerville.dll. Initially each spike is assigned to its own
cluster and then iteratively at each stage the two most similar clus-
ters are joined.

an example see the spikes k814 to k17278 for module Sommer-

ville.dll in Figure 6. Then iteratively at each stage the two most

similar clusters are joined until there is just a single cluster. For

example k1887 and k17118 are joined first and later combined with

the cluster of k4091 and k8438. The result of hierarchical clustering

is a tree-diagram of clusters (called dendrogram) that indicates the

join order. The tree can then be cut into a certain number of clusters;

in Figure 6 we cut the tree in two clusters as indicated by the red

boxes. The number of clusters can either be provided by the devel-

oper or automatically be inferred based on the similarity across

clusters.

To evaluate the automated clustering approach we built a gold set

by manually clustering 588 spikes based on similarity of the shapes.

The first four authors sorted 147 spikes each, resulting in four sep-

arate clusterings. Then clusters were discussed and the four authors

agreed on one clustering with 9 clusters for all 588 cards.

Next we automatically clustered the 588 spikes with Ward and

Kullback-Leibler. To quantify the quality of the automated cluster-

ing, we compared it to the gold set by (1) computing the Variation

of Information (VI) index, which is typically used to quantify the

similarity between clusterings [11], and by (2) manually inspecting

the two clusterings. The VI index and manual inspection showed a

high agreement between the automated clustering and the gold set;

for details we refer to a technical report [7].

Automated clustering of spikes can also help with the identification

of inconsistencies and anomalies. In our analysis of power traces,

several individual spikes did not fit any cluster well. We considered

those spikes to be outliers and reported them to developers. The

developers confirmed the anomalies and were able to find bugs as-

sociated with modules Mills.dll, Ritchie.dll, Holzmann.dll, and

Wirth.dll. The reason for the bug was a communication client

(Wirth.dll), which was waking up every 30 minutes, but was not

closing the network socket (Mills.dll) properly. The anomaly

showed up as several spikes that were either running longer (several

minutes) than other spikes within their clusters or as spikes that did

not fit any cluster. Several anomalous spikes are displayed in Fig-

ure 7; they stand out by their high average power consumption over

a longer period of time.

7. CAN WE PREDICT OVERALL POWER

CONSUMPTION?
Mobile applications are often developed within a power budget,

i.e., on average the application is only allowed to consume a certain

amount of energy. Models that estimate power usage prior to de-

velopment help developers in planning and allow them to stay

within a power budget.

7.1 Predicting power consumption
To predict power consumption, we use linear regression models,

i.e., predict the spikes that consume most power on average based

on the modules used. To test the hypothesis that power consump-

tion can be predicted with modules used by an app, we built and

tested prediction models for five different datasets:

 T1, T2, T3, and T4 are power traces (with 843, 912, 828,

and 634 spikes respectively) and

 T1234, which is the combined dataset of T1–T4 (with

3215 spikes)

The datasets contain for each spike, a list of associated modules

(input variables) and the average power consumption during the

spike (output variable).

7.2 Evaluation of the predictions
To assess the predictive power of the linear regression models we

used a standard evaluation technique for prediction experiments

called data splitting [12]: for each dataset, we randomly selected

two thirds as training and one third as testing set and repeated this

step 50 times. To evaluate the quality of predictions, we compute

Spearman rank correlation between the predicted and observed

ranking. Spearman correlation is a commonly-used robust correla-

tion technique because it can be applied even when the association

between elements is non-linear [13] and is frequently used to assess

prediction experiments. Positive correlations result in a value of 1

and negative correlations in -1. For no correlation between ele-

ments, the correlation value is 0. In particular, a high positive value

for Spearman means that two rankings are similar (or identical for

a value of 1). For the purpose of our experiments, values close to 1

are desirable because they indicate that the predicted ranking does

(closely) match the actual ranking.

Figure 7. Several of the anomalous spikes identified by our ap-
proach. They were marked as anomalies because of their high en-
ergy consumption over a long period of time.

 T1 T2 T3 T4 T1234

Min 0.6416 0.7388 0.7814 0.7856 0.8273

Median 0.7495 0.7968 0.8356 0.8352 0.8596

Max 0.8251 0.8535 0.8762 0.8691 0.8835

Figure 8. The Spearman correlation values for the prediction experi-
ments. The median Spearman correlation in ranges from 0.7495 to
0.8596, which is considered to be a strong correlation.

The prediction results are displayed in Figure 8 as box plots, which

show the smallest value, lower quartile, median, upper quartile, and

largest value of the Spearman correlation. The results show that our

models reliably identify high-power consuming spikes. The lowest

correlation for all 250 runs is 0.6416. The median Spearman corre-

lation in the experiments ranges from 0.7495 (T1) to 0.8596

(T1234), which is considered to be a strong correlation [14]. It is

noteworthy that the Spearman correlations are the highest for the

T1234 dataset, which is the composition of T1–T4. This suggests

that traces from different applications can lead to better predictive

performance.

In summary, the presence of modules can produce a good ranking

of power-consuming spikes, as shown by very high correlation val-

ues between the predicted and observed values. Such predictions

can help developers to optimize the power budget at an early stage

of their project. By just knowing the modules that they plan to use,

developers can obtain a fairly reliable estimate of the power con-

sumption.

8. DISCUSSION

8.1 The Heisenberg uncertainty principle
The Heisenberg principle states that the more precisely one prop-

erty is measured, the less precisely the others can be controlled, de-

termined, or known.

Applied to our research, the question is to what extent profiling in-

fluences the power measurements and the analysis in this paper.

While profiling certainly has some influence on the measured

power, we do our best to minimize it. For example, to reduce the

energy cost of profiling, we only collect coarse-grained execution

data on the phone (modules at the time of context switch) rather

than fine-grained data, say at the method level. This reduces the

energy cost of profiling substantially. Furthermore, we exclude the

profiling module from our analysis because it will not be shipped

to customers as its sole purpose is to collect execution data during

testing.

8.2 Generality of the approach
We discussed the techniques in this paper with a special focus on

OS developers and the Windows Phone 7 platform. We are confi-

dent that our techniques generalize to other mobile platforms such

as Android or iOS. Several phones and platforms now have multi-

ple cores and allow multiple user-level applications to be active. In

these situations, some of the activity of multiple applications will

overlap and be combined in power spikes. We expect that given a

large number of samples the noise introduced by the simultaneous

apps will be mitigated. As an analogy, data mining has been used

successfully in the past to isolate patterns in large intermingled da-

tasets (e.g., purchase data). Another alternative is testing in con-

trolled environments that have only one active user-level app.

As discussed in the introduction, the techniques presented in this

paper can be used in a similar fashion by application developers to

test power consumption on their phones or tablets.

9. RELATED WORK
To the best of our knowledge there has been little research on en-

ergy testing and debugging. The closest in spirit is the work by Shye

et al. [15] who observed that the screen and CPU consume the most

power in mobile devices. They modeled total energy consumed

with regression and identified patterns in user behavior in order to

drive optimizations. Compared to Shye et al. [15], the advantage of

our approach is the granularity level. The observation that screen

and CPU consume most power is only of limited value to develop-

ers and users. Similarly, without any fine-grained level of infor-

mation, the regression models do not help in optimizing usage pat-

terns in an operational way. Instead of the hardware component

level (CPU, screen), our work is based on module level, which is

more actionable for developers

We now briefly discuss other work on energy-efficient software

with respect to reduction as well as measurement and estimation of

energy consumption. For a more detailed discussion of this work,

we refer to our technical report [7]. For a complete list of papers in

the area of resource-efficient (such as resource optimization and

perforated programs), we refer to the bibliography maintained by

the Automated Software Engineering Research Group at North

Carolina State University [16].

9.1 Reduction of Energy Consumption
While not directly related to energy awareness on mobile devices,

energy optimization is an increasingly important topic in datacenter

operations in the systems and networking research community. A

lot of research has focused on specialized energy-efficient algo-

rithms as well as applications; popular examples are malware de-

tection [17] [18] [19] and sorting [20] [21] [22].

9.2 Measurement and Estimation of Energy

Consumption
The Networking and Systems communities have focused on moni-

toring and modeling energy consumption in real world situations.

Balasubramanian et al. [23] measured energy consumption of three

mobile networking technologies: 3G, GSM, and Wi-Fi. They ob-

served that 3G and GSM have high tail energy consumption and

developed a protocol to reduce the energy consumption of common

mobile applications by modeling the network activity for each tech-

nology.

Pathak et al. [24] observed that capturing power consumption data

based on utilization of a hardware component is insufficient be-

cause power behavior is not always directly related to smartphone

component utilization (low level power optimizations in device

drivers are missed). The authors present an energy model based on

utilization and non-utilization on the Android and Windows Mobile

platforms.

PowerScope [25] is another energy profiling tool and combines

hardware instrumentation with kernel software support to measure

the system activity. Muttreja et al. [26] introduced a hybrid simula-

tion approach to estimate energy in embedded software. Brandolese

[27] introduced another hybrid approach, which combined execu-

tion data with static source instrumentation. Li et al. predicted

power and performance of storage servers with Multiple-Inputs-

Multiple-Outputs (MIMO) models [28]. Kan et al. computed en-

ergy-efficient processor frequencies for real-time tasks with a heu-

ristic based on convex optimization techniques; the heuristic was

evaluated with simulated energy data rather than actual energy data.

[29].

The main difference to most of this work is that for the measure-

ments in this paper, we use the actual power consumption in mobile

devices rather than relying on models based on simulation and/or

utilization of components.

Zhao et al. [30] built a system to predict the battery lifetime of mo-

bile devices. In contrast our approach predicts which parts will con-

sume the most power rather than the lifetime of the battery. Green-

Tracker is a tool that estimates the energy consumption of software

based on CPU data in order to help concerned users make informed

decisions about the software they use [31]. In their work-in-pro-

gress report, the authors presented preliminary experiences from

using the tool, but no evaluation of the accuracy of energy esti-

mates. Hoffman et al. introduced PowerDial, a system for dynami-

cally adapting application behavior to execute successfully in the

face of load and power fluctuations [32].

Other model-based techniques for the estimation of software power

consumption include the model described by Thompson et al. [33],

which can be used to estimate power consumption during the de-

sign instead of the testing stage as well as the work by Hao et al.

[34], which combines program analysis and per-instruction energy

modelling in order to estimate energy consumption at up to the

granularity of individual source code lines.

For more related work, please also see conferences and workshops

such as International Conference on ICT for Sustainability (ICT4S

2013-2014), International Workshop on Green and Sustainable

Software (GREENS 2012-2014 at ICSE), and Workshop on Energy

Aware Software-Engineering and Development (EASED 2011-

2014)

10. CONCLUSION AND CONSEQUENCES
With the increasing popularity of mobile devices such as

smartphones and tablets, energy awareness has become an im-

portant issue that all software engineers should care about. In this

paper, we have presented a data analysis on Windows Phone 7 us-

age data. We addressed several independent questions related to

identifying modules with most power-consumption, finding char-

acteristic energy shape patterns, detecting anomalies, and predict-

ing power consumption based on module usage.

Understanding which modules consume more energy is useful in-

formation to both application and platform developers and helps

them to drive better design, test efforts and influence new user sce-

narios. These results also enable users to understand how to con-

serve battery power energy; for example there are several public

discussions on how to conserve energy for the phone by using var-

ious combination of hardware components [6]). Given appropriate

tool support, the described methodology could be applied by devel-

opers and end-users on any mobile device to better understand how

to improve battery life by using certain combination of components

and applications.

In our future work, we plan to collaborate with researchers in the

testing community to leverage our techniques for optimizing testing

for energy awareness. We have merely scratched the surface of this

area and plan to expand our research in this area spanning user test-

ing and reliability. Finally, we hope that others in the software en-

gineering community will begin to work on problems related to en-

ergy awareness.

ACKNOWLEDGMENTS

We would like to thank the Microsoft Windows Phone team. Ash-

ish Gupta performed this work during a summer internship at Mi-

crosoft Research. We would like to thank the anonymous ESEM

reviewers for their valuable feedback on this work.

REFERENCES

[1] Adams, S. Uncommunication Devices.

http://dilbert.com/blog/entry/uncommunication_devices. 2011.

[2] Entner, R. Smartphones to Overtake Feature Phones in U.S. by
2011. http://blog.nielsen.com/nielsenwire/consumer/smartphones-

to-overtake-feature-phones-in-u-s-by-2011/. 2010.

[3] IDC. IDC - Press Release.
http://www.idc.com/getdoc.jsp?containerId=prUS23299912.

2012.

[4] IDC. IDC: More Mobile Internet Users Than Wireline Users in
the U.S. by 2015.

http://www.idc.com/getdoc.jsp?containerId=prUS23028711.

2011.

[5] Fried, I. Apple Confirms iOS 5 Bugs Causing Battery Issues for

Some iPhones. http://allthingsd.com/20111102/apple-some-ios5-
bugs-prompting-iphone-battery-issues/. 2011.

[6] Raphael, J. Android battery life: 10 ways to make your phone last

longer.
http://blogs.computerworld.com/16965/improve_android_battery_

life. 2010.

[7] Gupta, A., Zimmermann, T., Bird, C., Nagappan, N., Bhat, T., and
Emran, S. Detecting Energy Patterns in Software Development.

Technical Report MSR-TR-2011-106, Microsoft Research, 2011.

[8] Han, J., Kamber, M., and Pei, J. Data Mining: Concepts and
Techniques. Morgan Kaufmann, 2011.

[9] Kullback, S. and Leibler, R.A. On Information and Sufficiency.

Annals of Mathematical Statistics, 22, 1 (1951), 79–86.

[10] Hastie, T., Tibshirani, R., and Friedman, J. The Elements of

Statistical Learning. Springer, 2009.

[11] Meila, M. Comparing clusterings -- an information based distance.
Journal of Multivariate Analysis, 98 (2007), 873-895.

[12] Munson, J. and Khoshgoftaar, T. The Detection of Fault-Prone

Programs. IEEE Transactions on Software Engineering, 18
(1992), 423-433.

[13] Waserman, L. All of Statistics: A Concise Course in Statistical

Inference. Springer, 2010.

[14] Cohen, J. Statistical power analysis for the behavioral sciences.

Routledge Academic, 1988.

[15] Shye, A., Scholbrock, B., and Memik, G. Into the Wild: Studying
Real User Activity Patterns to Guide Power Optimizations for

Mobile Architectures. In MICRO '09: 42st Annual IEEE/ACM

International Symposium on Microarchitecture (2009), 168-178.

[16] Group, A.S.E.R. Resource/Energy-Efficient Software.

https://sites.google.com/site/asergrp/bibli/energy-efficient. 2012.

[17] Bickford, J., Lagar-Cavilla, H.A., Varshavsky, A., Ganapathy, V.,

and Iftode, L. Security versus Energy Tradeoffs in Host-based

Mobile Malware Detection. In Proceedings of the 9th

International Conference on Mobile Systems, Applications, and
Services (MobiSys 2011) (2011), 225-238.

[18] Cheng, J., Wong, S., Yang, H., and Lu, S. Smartsiren: Virus

detection and alert for Smartphones. In MobiSys '07: Proceedings
of the 5th International Conference on Mobile Systems,

Applications, and Services (2007), 258-271.

[19] Kim, H., Smith, J., and Shin, K.G. Detecting Energy-Greedy
Anomalies and Mobile Malware Variants. In MobiSys '08:

Proceedings of the 6th International Conference on Mobile

Systems, Applications, and Services (2008), 239-252.

[20] Bunse, C., Höpfner, H., Roychoudhury, S., and Mansour, E.

Energy Efficient Data Sorting Using Standard Sorting Algorithms.

Software and Data Technologies (2011).

[21] Bunse, C., Hoepfner, H., Roychoudhury, S., and Mansour, E.

Choosing the" best" sorting algorithm for optimal energy
consumption. In Proceedings of the International Conference on

Software and Data Technologies (ICSOFT) (2009), 199–206.

[22] Bunse, C., Höpfner, H., Mansour, E., and Roychoudhury, S.
Exploring the Energy Consumption of Data Sorting Algorithms in

Embedded and Mobile Environments. In Tenth International

Conference on Mobile Data Management: Systems, Services and
Middleware (2009).

[23] Balasubramanian, N., Balasubramanian, A., and Venkataramani,

A. Energy Consumption in Mobile Phones: A Measurement Study
and Implications for Network Applications. In Internet

Measurement Conference (2009), 280-293.

[24] Pathak, A., Hu, Y.C., Zhang, M., Bahl, P., and Wang, Y.-M. Fine-
Grained Power Modeling for Smartphones Using System Call

Tracing. In EuroSys '11: Proceedings of the Sixth European
Conference on Computer Systems European Conference on

Computer Systems (2011), 153-168.

[25] Flinn, J. and Satyanarayanan, M. PowerScope: A Tool for
Profiling the Energy Usage of Mobile Applications. In WMCSA

'99: Workshop on Mobile Computing systems and Applications

(1999), 2-10.

[26] Muttreja, A., Raghunathan, A., Ravi, S., and Jha, N.K. Hybrid

simulation for embedded software energy estimation. In

Proceedings of the 42nd Design Automation Conference (2005),
23-26.

[27] Brandolese, C. Source-Level Estimation of Energy Consumption

and Execution Time of Embedded Software. In 11th
EUROMICRO Conference on Digital System Design

Architectures, Methods and Tools (2008).

[28] Li, Z., Grosu, R., Muppalla, K., Smolka, S.A., Stoller, S.D., and
Zadok, E. Model Discovery for Energy-Aware Computing

Systems: An Experimental Evaluation. In Workshop on Energy

Consumption and Reliability of Storage Systems (ERSS 2011)

(2011), 1-6.

[29] Kan, E.Y.Y., Chan, W.K., and Tse, T.H. Leveraging Performance

and Power Savings for Embedded Systems using Multiple Target

Deadlines. In First International Workshop on Embedded System
Software Development and Quality Assurance (WESQA) (2010).

[30] Zhao, X., Guo, Y., Feng, Q., and Chen, X. A System Context-

Aware Approach for Battery Lifetime Prediction in Smart Phones.

In Proceedings of the 2011 ACM Symposium on Applied

Computing (SAC) (2011).

[31] Amsel, N. and Tomlinson, B. Green tracker: a tool for estimating

the energy consumption of software. In Proceedings of the 28th of

the international conference extended abstracts on Human factors
in computing systems (CHI EA '10) (2010).

[32] Hoffman, H., Sidiroglou, S., Carbin, M., Misailovic, S., Agarwal,

A., and Rinard, M. Dynamic Knobs for Responsive Power-Aware
Computation. In Proceedings of the 16th International Conference

on Architectural Support for Programming Languages and

Operating Systems (ASPLOS) (2011), 199-212.

[33] Thompson, C., Schmidt, D.C., Turner, H.A., and White, J.

Analyzing Mobile Application Software Power Consumption via

Model-driven Engineering. In PECCS'11: Proc. of the 1st Intl.
Conference on Pervasive and Embedded Computing and

Communication Systems (2011), 101-113.

[34] Hao, S., Li, D., Halfond, W.G.J., and Govindan, R. Estimating
mobile application energy consumption using program analysis. In

ICSE'13: Proceedings of the 35th International Conference on

Software Engineering (2013), 92-101.

	1. Introduction
	2. Relevance to Software Engineering
	Observation #1: Energy awareness is relevant now
	Observation #2: Energy awareness is relevant for the software engineering community

	3. The approach
	4. Data Collection
	5. What modules consume the most power?
	6. What are the Characteristic Energy Shape Patterns?
	6.1 Distance function
	6.2 Clustering

	7. Can we Predict Overall Power Consumption?
	7.1 Predicting power consumption
	7.2 Evaluation of the predictions

	8. Discussion
	8.1 The Heisenberg uncertainty principle
	8.2 Generality of the approach

	9. Related Work
	9.1 Reduction of Energy Consumption
	9.2 Measurement and Estimation of Energy Consumption

	10. Conclusion and Consequences
	Acknowledgments
	References

