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ABSTRACT 

With the advent of increased computing on mobile devices such as 

phones and tablets, it has become crucial to pay attention to the en-

ergy consumption of mobile applications. The software engineering 

field is now faced with a whole new spectrum of energy-related 

challenges, ranging from power budgeting to testing and debugging 

the energy consumption. In this paper, we present our work on an-

alyzing energy patterns for the Windows Phone platform. We first 

describe the data that is collected for testing (power traces and ex-

ecution logs). We then present several approaches for describing 

power consumption and detecting anomalous energy patterns and 

potential energy defects. Finally we show prediction models based 

on usage of individual modules that can estimate the overall energy 

consumption with high accuracy. The techniques presented in the 

paper allow assessing the individual impact of modules on the over-

all energy consumption and support overall energy planning. 

Categories and Subject Descriptors 

D.2.5 [Software Engineering]: Testing and Debugging.  

General Terms 

Measurement, Experimentation. 

1. INTRODUCTION 
For several decades, power consumption has been a secondary con-

cern (if a concern at all) in software engineering.1 Most software 

has been developed for desktop computers, which have a continu-

ous power supply. While industries like satellite sciences and 

healthcare have been traditionally more power-aware, the general 

software engineering community did not have the need to research 

power consumption. This is about to change—or depending on the 

viewpoint has changed now. With mobile phones and tablets gain-

ing wide usage in everyday life, new challenges are brought to soft-

ware development. There are many stakeholders that now care 

about power: end-users realize that certain applications can reduce 

battery life dramatically and consider energy consumption as an 

important quality attribute.  

                                                                 

 

 

 

“I have researched all the many ways to save battery life. I 

have apps that kill other apps. I turn off Wi-Fi and 4G and 

Bluetooth until I need them.” 

—Scott Adams, creator of Dilbert [1] 

As a consequence building energy-efficient applications becomes 

important for developers, both application and operating system 

(OS) developers. There are many ways that a developer can influ-

ence the power consumption of a mobile app, for example, the de-

cision to use TCP vs. UDP, or keeping sockets and connections 

open longer than needed. Another example is making a lot of re-

quests to a server instead of batching up requests so that they utilize 

wireless connectivity (a high energy component) effectively. Ulti-

mately power consumption comes down to how the hardware com-

ponents are used, but these are driven by software design decisions. 

In this paper, we introduce a methodology for collecting and ana-

lyzing power data on mobile devices running Windows Phone 7. 

Our methodology focuses on three parts: (1) describe and quantify 

power consumption, (2) detect anomalies in power consumption, 

and (3) predict power consumption. Anomalies identified by our 

approach have been confirmed as true defects by developers who 

used the anomalies to perform root-cause-analysis to detect defects 

in phone software. More specifically, we focus on the following 

questions: 

 What modules consume the most power?2  

(Section 5)  

 What are characteristic energy shape patterns of certain 

modules? Can we find anomalous energy patterns?  

(Section 6) 

 Can we predict power consumption? (Section 7) 

These results hold value for major stakeholders in mobile devices. 

The OS platform developers and application developers specifi-

cally need to be aware of individual energy consumption patterns 

and can use overall prediction models to determine the energy us-

age in a particular scenario to decide on the need for energy opti-

mizations or rethink the design aspects of the scenario. End-users 

need to be aware of the energy consumption levels to plan better 

for the battery life under different load conditions. These are two 

simple situations where knowing about energy patterns is of value.  

1 Throughout the rest of this paper we use the term energy and power inter-
changeably. 

2 We use the term modules (or components) for executable files and shared 

libraries. 
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One of the goals of this paper is to expose the need of more software 

engineering research on energy awareness, utilization as well as op-

timization.  

In the remainder of the paper, we discuss the underlying analysis 

and methodology (Section 3) from the viewpoint of OS platform 

developers. More specifically, we focus on idle tests, i.e., one sce-

nario (e.g., checking mail, browsing to web pages, or opening a 

map) is tested repeatedly on the phone for a 12 hour period. Be-

tween each test run is an idle period to simplify the alignment be-

tween power consumption and actual activity on the phone. For 

each idle test, we collect and align execution logs and power logs 

(Section 4). This data is then used to address questions that Win-

dows Phone developers often ask when testing and debugging the 

mobile operating system for energy consumption (Section 5–7). 

The techniques discussed in this paper can be used in a similar fash-

ion by application developers or even end-users. Application devel-

opers can programmatically collect battery usage statistics and cor-

relate this information with execution-data of their app. Similarly, 

end-users can observe battery levels (possibly with the help of a 

battery monitors) and correlate this information with the apps that 

they have used. While the techniques discussed in this paper have 

some limitations, they are also largely independent of the operating 

system and can also be applied to iPhone or Android platforms. 

2. RELEVANCE TO SOFTWARE  

ENGINEERING 
In this section we wish to emphasize why software engineering re-

searchers and practitioners should care about energy, as the im-

portance might not be immediately clear. The events of the last few 

years have significantly changed the face of computing. 

Observation #1:  

Energy awareness is relevant now 
The main reason for the increased importance of energy analysis is 

because of the advent of smart phones and tablets. With the explo-

sive growth of smartphones (for example, Windows Phone, An-

droid, iPhone, and Blackberry), Nielsen Media Research expects 

more smartphones in the U.S. market than feature phones in 2011 

[2]. The market analysis company IDC reported total shipments in 

2011 were 491.4 million units up 61.3 percent from 2010 [3]. Ac-

cording to IDC smartphones started outselling PCs in the fourth 

quarter of 2010 with 100.9 million shipped devices vs. 92.1 million 

and there will be more mobile Internet users than wire line users in 

the U.S. by 2015 [4]. 

With the growth of tablets and smartphones the problems related to 

energy consumption are increasing. Both end-users and developers 

are sensitive to the energy consumed by individual components of 

the phone (such as Wi-Fi, 3G) as well as applications downloaded 

and running on the phone. Lower than expected battery life on mo-

bile devices can lead to frustrated customers and negative publicity 

for a company (for example, the recent iOS launch [5]); several 

technology blogs discuss ways to improve battery consumption. 

The Computer World magazine presents “More tips for boosting 

Android battery life” where they discuss ways to increase battery 

life, including turning off Wi-Fi, turning off Bluetooth, dimming 

the background, and running an energy monitoring app [6]. 

Observation #2: Energy awareness is relevant 

for the software engineering community 
The rapid growth of the market for mobile devices brings a need 

for understanding various aspects of energy consumption. Simply 

put: how do we test for energy? We have an extensive body of 

knowledge on testing and test prioritization but we need to start de-

signing new methods for testing applications, features, and compo-

nents for energy-awareness, both to determine the amount of en-

ergy they consume and to ensure they are not consuming more than 

their allotted energy from a power budget. Testing will evolve into 

connecting devices into applications to monitor power spikes, out-

liers, etc. The work in this paper is a first step in this direction. 

3. THE APPROACH 
For the analysis in this paper, we use power traces and execution 

logs, typically taken from 12-hour idle tests (see overview in Figure 

1). The two sources of data are subsequently aligned and split into 

power spikes based on idle periods. Each power spike has duration, 

average power consumption, and a list of associated modules. 

After the completion of an idle test, the power trace and execution 

logs are analyzed by engineers of the Windows Phone platform. For 

one or more given power traces, engineers want to understand the 

energy consumed by different modules and if there are any patterns 

(anomalies) that they should pay special attention to. They typically 

ask questions such as: 

 What modules consume the most power? 

 What are characteristic energy shape patterns of certain 

modules? 

 Are there anomalous energy patterns? 

To answer these questions, we implemented several tools based on 

supervised (decision trees) and unsupervised learning techniques 

(clustering). All our analysis is done in an automatic fashion requir-

ing little involvement and statistical knowledge on the user side. 

Engineers can choose one or more of the above questions and get 

the results in reports. We discuss the details of the above questions 

in Sections 5 and 6. 

Another frequent problem that engineers face is to estimate the 

power that will be consumed by an application. The reason is that 

many mobile apps are developed within a power budget. That is, 

on average the application is only allowed to consume a certain 

amount of energy. 

 Can we predict power consumption? 

To estimate the power consumption of power spikes, we built and 

evaluated prediction models based on linear regression. The output 

of these models can be used by engineers to make informed deci-

sions regarding power budgeting. The results are promising: our 

models can estimate power with high accuracy. Details are dis-

cussed in Section 7. 

4. DATA COLLECTION 
We use two sources of data for the power analysis in this paper 

(recall Figure 1). First we collect logs of the executable files and 

shared libraries, hereafter referred to as modules, which are active 

Power 
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PredictionExecution 

Log(s)s

Spikes

Align +
Combine

Store Analyze

 
Figure 1. Overview of our approach. We use two data sources: power traces 

and execution logs. The data is then aligned and combined and we extract 
power spikes from the traces, which are stored in database and serve as 

input for the analysis throughout this paper. 



at certain points in time. Next we collect traces of power consump-

tion over time. Finally we align and combine both sources into the 

data that we use throughout this paper.  

The data collection is briefly summarized below; for the details we 

refer to a technical report [7]. 

When a mobile device is tested for power usage, a recent build is 

loaded onto the phone. Based on the operations that are being 

tested, a number of tests (for example checking mail, browsing to 

web pages, or opening a map) are run repeatedly on the phone for 

a 12 hour period. The record of power usage is measured by a power 

meter (5,000 samples per second) and called a power trace.  

As mobile devices optimize for power consumption, power traces 

show periods of inactivity (low power use), punctuated by brief pe-

riods of high activity (high power use). We term each of these high 

power intervals a power spike or just spike. Note that within a spike, 

there may also be fluctuations in power consumption. The duration 

of spikes ranges from one tenth of a second to several seconds. In 

order to isolate individual power spikes in a power trace, we use the 

periods of inactivity as shown in Figure 2. In some cases a manual 

approach may also be used depending on the nature of the test 

cases, for example, when there are not enough idle periods in the 

data. For the analyses presented in this paper, we used so-called idle 

tests, which on purpose leave enough idle time between test activi-

ties. 

After identifying spikes and aligning power traces with execution 

logs, we have the following information available for each spike 

(example is depicted in Figure 3): 

 Spike ID, a unique identifier for the spike 

 Start time and end time  

 Duration  

 Floor power (milliwatt) 

 Average power (milliwatt) 

 Peak power (milliwatt) 

 Total energy consumed (milliwatt hours) 

 Active modules, i.e. the modules which had code exe-

cuted during the spike. 

This data allow us to perform a number of analyses on energy use 

as discussed in Section 5–7. To facilitate access, we store the spike 

information in a database. 

In addition to the above information, each spike is linked to the 

power trace that it originated from. For power traces we record in 

the database:  

 Build ID, which allows finding the associated state of the 

source code. 

 Model of the mobile device that was used to collect the 

trace.  

Note that for the analysis presented in this paper we do not aggre-

gate spikes across different mobiles devices models because they 

may have slightly different power utilization characteristics due to 

varying specifications (such as display type, processor speed, exist-

ence of specific sensors).  

5. WHAT MODULES CONSUME THE 

MOST POWER? 
It is not trivial to identify the energy consumption of a single mod-

ule because energy consumption can only be directly linked to a set 

of modules and not individual modules in the data. Spikes often 

have tail-end energy which cannot be attributed to any single mod-

ule in the spike. Granularity limitations are another reason. In order 

to isolate the energy consumption for different modules we use de-

cision trees [8], a supervised learning technique. For this analysis, 

we use data of the following format (for space reasons, we show 

only three lines of input data):  

Spike ID Adrion.dll Allen.dll Bachman.dll Backus.exe …… Zweben.exe Avg. Power (mW)

123338 1 0 0 1 … 1 254.76

123563 0 0 1 0 … 1 680.23

123789 0 1 1 0 … 0 110.56

… … … … … … … …

 

Each observation has a unique spike identifier, followed by flags to 

indicate the presence of modules in the spike (0 for absence, 1 for 

present), and the average power consumption. For legal reasons, we 

anonymized module names throughout the paper with the last 

names of laureates of ACM Turing Awards as well as ACM SIG-

SOFT Distinguished Service Awards, Outstanding Research 

Awards, and Influential Educator Awards. 

We use decision trees [8] to model the influence of modules on av-

erage energy consumption because they can capture non-linear in-

teractions and are descriptive models that are easier to understand. 

In our case, the inner nodes indicate the presence of certain modules 

(yes/no). Each node holds the average energy consumption for sev-

eral spikes (as described by the path to the root note). For example 

in Figure 4, node  lists an average energy consumption of 85.9 

mW for the 795 power spikes for which Mills.dll is absent and 

Leveson.dll is present. 

The decision trees can help developers to better understand how 

power consumption and modules are related in one or more traces. 

Time
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o

w
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Power Trace

 
Figure 2. Examples of a power trace (usually taken from a 12 hour 
test session on a mobile device) and a power spike. Spikes are iso-
lated based on longer periods of inactivity in the power trace. Each 
such spike is normalized in time to range from 0 to 1. 
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Figure 3. A spike from a trace log and the associated data that is computed 

and stored in a database for further analysis. 



In Figure 4, the tree describes 843 spikes within a trace. The aver-

age energy consumption for all spikes is 112.1mW as indicated in 

the root node  of the tree. On the first level the spikes are split 

based on the presence of module Mills.dll: for the 814 spikes that 

do not contain Mills.dll, the average energy consumption is 

92.5mW ; however, for the 29 spikes that contain Mills.dll the 

average increases by six times to 664.6mW . On the second level, 

the absence of Leveson.dll increases energy consumption by a fac-

tor of four (compare nodes  and ), and on the third level the 

presence of Hamming.dll increases energy consumption by a factor 

of three (nodes  and ).  

We informally validated the decision trees for several traces with 

Windows Phone engineers. They confirmed the correctness of the 

results based on their previous experience, i.e., the modules identi-

fied by decision trees as power-consuming were indeed power-con-

suming. 

A limitation of our current data (not the approach) is that we only 

have information about the presence of modules (0 or 1), but not 

the actual usage (numerical). Decision trees do support numerical 

input data and we are currently exploring other lightweight tracing 

techniques for collecting more fine-grained data without altering 

power usage. We have also experimented with linear regression to 

estimate power consumption; preliminary results are summarized 

in a technical report [7]. 

6. WHAT ARE THE CHARACTERISTIC 

ENERGY SHAPE PATTERNS? 
Power traces consist of hundreds, often thousands of spikes, which 

all can have very similar shapes. By clustering spikes based on their 

shapes, we can identify characteristic shape patterns and reduce the 

number of spikes that need to be investigated by developers for a 

power trace. Rather than looking at all spikes, developers instead 

can focus on a small number of clusters (typically 10-20), each cor-

responding to a characteristic shape pattern with a list of associated 

spikes. Developers can also rollup the meta-information for each 

spike (such as length, modules, etc.) to the cluster level.  

Developers can choose different input data for clustering. They can 

cluster all spikes in a power trace or only subsets, for example all 

spikes related to a module. Figure 5 shows a small example with 11 

spikes for module Sommerville.dll. While the human eye can easily 

spot two clusters, detecting the clusters in an automated fashion is 

slightly more complicated. For automatic clustering of elements, 

one typically uses a distance function (to compare spikes) and a 

clustering algorithm (to group spikes): 

6.1 Distance function 
To compute the distance between two spikes, we use the Kullback-

Leibler divergence [9]. To reduce the computational cost of com-

paring spikes, we divide each spike into 100 buckets, calculate the 

average energy consumption for each bucket, and compute Kull-

back-Leibler across these 100 buckets for each pair of spikes. The 

result of this step is a distance matrix D, where a cell value dxy cor-

responds to the distance between spike x and y. 

6.2 Clustering 
For clustering spikes we use the Ward hierarchical clustering 

method [10]. Initially, each spike is assigned to its own cluster; for 
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Figure 4. Example of a decision tree learned from energy consump-
tion data. On the first level the spikes are split based on the presence 
of module Mills.dll—spikes that contain Mills.dll  consume on av-
erage six times the power than spikes that do not contain the module 
. 

 
Figure 5. Example with 11 spikes for module Sommerville.dll. 

 

Figure 6. Dendrogram of the hierarchical clustering of the 11 spikes 
for module Sommerville.dll. Initially each spike is assigned to its own 
cluster and then iteratively at each stage the two most similar clus-
ters are joined. 



an example see the spikes k814 to k17278 for module Sommer-

ville.dll in Figure 6. Then iteratively at each stage the two most 

similar clusters are joined until there is just a single cluster. For 

example k1887 and k17118 are joined first and later combined with 

the cluster of k4091 and k8438. The result of hierarchical clustering 

is a tree-diagram of clusters (called dendrogram) that indicates the 

join order. The tree can then be cut into a certain number of clusters; 

in Figure 6 we cut the tree in two clusters as indicated by the red 

boxes. The number of clusters can either be provided by the devel-

oper or automatically be inferred based on the similarity across 

clusters. 

To evaluate the automated clustering approach we built a gold set 

by manually clustering 588 spikes based on similarity of the shapes. 

The first four authors sorted 147 spikes each, resulting in four sep-

arate clusterings. Then clusters were discussed and the four authors 

agreed on one clustering with 9 clusters for all 588 cards.  

Next we automatically clustered the 588 spikes with Ward and 

Kullback-Leibler. To quantify the quality of the automated cluster-

ing, we compared it to the gold set by (1) computing the Variation 

of Information (VI) index, which is typically used to quantify the 

similarity between clusterings [11], and by (2) manually inspecting 

the two clusterings. The VI index and manual inspection showed a 

high agreement between the automated clustering and the gold set; 

for details we refer to a technical report [7]. 

Automated clustering of spikes can also help with the identification 

of inconsistencies and anomalies. In our analysis of power traces, 

several individual spikes did not fit any cluster well. We considered 

those spikes to be outliers and reported them to developers. The 

developers confirmed the anomalies and were able to find bugs as-

sociated with modules Mills.dll, Ritchie.dll, Holzmann.dll, and 

Wirth.dll. The reason for the bug was a communication client 

(Wirth.dll), which was waking up every 30 minutes, but was not 

closing the network socket (Mills.dll) properly. The anomaly 

showed up as several spikes that were either running longer (several 

minutes) than other spikes within their clusters or as spikes that did 

not fit any cluster. Several anomalous spikes are displayed in Fig-

ure 7; they stand out by their high average power consumption over 

a longer period of time. 

7. CAN WE PREDICT OVERALL POWER 

CONSUMPTION? 
Mobile applications are often developed within a power budget, 

i.e., on average the application is only allowed to consume a certain 

amount of energy. Models that estimate power usage prior to de-

velopment help developers in planning and allow them to stay 

within a power budget. 

7.1 Predicting power consumption 
To predict power consumption, we use linear regression models, 

i.e., predict the spikes that consume most power on average based 

on the modules used. To test the hypothesis that power consump-

tion can be predicted with modules used by an app, we built and 

tested prediction models for five different datasets: 

 T1, T2, T3, and T4 are power traces (with 843, 912, 828, 

and 634 spikes respectively) and 

 T1234, which is the combined dataset of T1–T4 (with 

3215 spikes) 

The datasets contain for each spike, a list of associated modules 

(input variables) and the average power consumption during the 

spike (output variable).  

7.2 Evaluation of the predictions 
To assess the predictive power of the linear regression models we 

used a standard evaluation technique for prediction experiments 

called data splitting [12]: for each dataset, we randomly selected 

two thirds as training and one third as testing set and repeated this 

step 50 times. To evaluate the quality of predictions, we compute 

Spearman rank correlation between the predicted and observed 

ranking. Spearman correlation is a commonly-used robust correla-

tion technique because it can be applied even when the association 

between elements is non-linear [13] and is frequently used to assess 

prediction experiments. Positive correlations result in a value of 1 

and negative correlations in -1. For no correlation between ele-

ments, the correlation value is 0. In particular, a high positive value 

for Spearman means that two rankings are similar (or identical for 

a value of 1). For the purpose of our experiments, values close to 1 

are desirable because they indicate that the predicted ranking does 

(closely) match the actual ranking. 

  

  
Figure 7. Several of the anomalous spikes identified by our ap-
proach. They were marked as anomalies because of their high en-
ergy consumption over a long period of time. 

 
 T1 T2 T3 T4 T1234 

Min 0.6416 0.7388 0.7814 0.7856 0.8273 

Median 0.7495 0.7968 0.8356 0.8352 0.8596 

Max 0.8251 0.8535 0.8762 0.8691 0.8835 

 

Figure 8. The Spearman correlation values for the prediction experi-
ments. The median Spearman correlation in ranges from 0.7495 to 
0.8596, which is considered to be a strong correlation. 



The prediction results are displayed in Figure 8 as box plots, which 

show the smallest value, lower quartile, median, upper quartile, and 

largest value of the Spearman correlation. The results show that our 

models reliably identify high-power consuming spikes. The lowest 

correlation for all 250 runs is 0.6416. The median Spearman corre-

lation in the experiments ranges from 0.7495 (T1) to 0.8596 

(T1234), which is considered to be a strong correlation [14]. It is 

noteworthy that the Spearman correlations are the highest for the 

T1234 dataset, which is the composition of T1–T4. This suggests 

that traces from different applications can lead to better predictive 

performance.  

In summary, the presence of modules can produce a good ranking 

of power-consuming spikes, as shown by very high correlation val-

ues between the predicted and observed values. Such predictions 

can help developers to optimize the power budget at an early stage 

of their project. By just knowing the modules that they plan to use, 

developers can obtain a fairly reliable estimate of the power con-

sumption. 

8. DISCUSSION 

8.1 The Heisenberg uncertainty principle 
The Heisenberg principle states that the more precisely one prop-

erty is measured, the less precisely the others can be controlled, de-

termined, or known.  

Applied to our research, the question is to what extent profiling in-

fluences the power measurements and the analysis in this paper. 

While profiling certainly has some influence on the measured 

power, we do our best to minimize it. For example, to reduce the 

energy cost of profiling, we only collect coarse-grained execution 

data on the phone (modules at the time of context switch) rather 

than fine-grained data, say at the method level. This reduces the 

energy cost of profiling substantially. Furthermore, we exclude the 

profiling module from our analysis because it will not be shipped 

to customers as its sole purpose is to collect execution data during 

testing. 

8.2 Generality of the approach 
We discussed the techniques in this paper with a special focus on 

OS developers and the Windows Phone 7 platform. We are confi-

dent that our techniques generalize to other mobile platforms such 

as Android or iOS. Several phones and platforms now have multi-

ple cores and allow multiple user-level applications to be active. In 

these situations, some of the activity of multiple applications will 

overlap and be combined in power spikes. We expect that given a 

large number of samples the noise introduced by the simultaneous 

apps will be mitigated. As an analogy, data mining has been used 

successfully in the past to isolate patterns in large intermingled da-

tasets (e.g., purchase data). Another alternative is testing in con-

trolled environments that have only one active user-level app. 

As discussed in the introduction, the techniques presented in this 

paper can be used in a similar fashion by application developers to 

test power consumption on their phones or tablets. 

9. RELATED WORK 
To the best of our knowledge there has been little research on en-

ergy testing and debugging. The closest in spirit is the work by Shye 

et al. [15] who observed that the screen and CPU consume the most 

power in mobile devices. They modeled total energy consumed 

with regression and identified patterns in user behavior in order to 

drive optimizations. Compared to Shye et al. [15], the advantage of 

our approach is the granularity level. The observation that screen 

and CPU consume most power is only of limited value to develop-

ers and users. Similarly, without any fine-grained level of infor-

mation, the regression models do not help in optimizing usage pat-

terns in an operational way. Instead of the hardware component 

level (CPU, screen), our work is based on module level, which is 

more actionable for developers 

We now briefly discuss other work on energy-efficient software 

with respect to reduction as well as measurement and estimation of 

energy consumption. For a more detailed discussion of this work, 

we refer to our technical report [7]. For a complete list of papers in 

the area of resource-efficient (such as resource optimization and 

perforated programs), we refer to the bibliography maintained by 

the Automated Software Engineering Research Group at North 

Carolina State University [16]. 

9.1 Reduction of Energy Consumption 
While not directly related to energy awareness on mobile devices, 

energy optimization is an increasingly important topic in datacenter 

operations in the systems and networking research community. A 

lot of research has focused on specialized energy-efficient algo-

rithms as well as applications; popular examples are malware de-

tection [17] [18] [19] and sorting [20] [21] [22]. 

9.2 Measurement and Estimation of Energy 

Consumption 
The Networking and Systems communities have focused on moni-

toring and modeling energy consumption in real world situations. 

Balasubramanian et al. [23] measured energy consumption of three 

mobile networking technologies: 3G, GSM, and Wi-Fi. They ob-

served that 3G and GSM have high tail energy consumption and 

developed a protocol to reduce the energy consumption of common 

mobile applications by modeling the network activity for each tech-

nology.  

Pathak et al. [24] observed that capturing power consumption data 

based on utilization of a hardware component is insufficient be-

cause power behavior is not always directly related to smartphone 

component utilization (low level power optimizations in device 

drivers are missed). The authors present an energy model based on 

utilization and non-utilization on the Android and Windows Mobile 

platforms.  

PowerScope [25] is another energy profiling tool and combines 

hardware instrumentation with kernel software support to measure 

the system activity. Muttreja et al. [26] introduced a hybrid simula-

tion approach to estimate energy in embedded software. Brandolese 

[27] introduced another hybrid approach, which combined execu-

tion data with static source instrumentation. Li et al. predicted 

power and performance of storage servers with Multiple-Inputs-

Multiple-Outputs (MIMO) models [28]. Kan et al. computed en-

ergy-efficient processor frequencies for real-time tasks with a heu-

ristic based on convex optimization techniques; the heuristic was 

evaluated with simulated energy data rather than actual energy data. 

[29].  

The main difference to most of this work is that for the measure-

ments in this paper, we use the actual power consumption in mobile 

devices rather than relying on models based on simulation and/or 

utilization of components. 

Zhao et al. [30] built a system to predict the battery lifetime of mo-

bile devices. In contrast our approach predicts which parts will con-

sume the most power rather than the lifetime of the battery. Green-

Tracker is a tool that estimates the energy consumption of software 

based on CPU data in order to help concerned users make informed 

decisions about the software they use [31]. In their work-in-pro-

gress report, the authors presented preliminary experiences from 



using the tool, but no evaluation of the accuracy of energy esti-

mates. Hoffman et al. introduced PowerDial, a system for dynami-

cally adapting application behavior to execute successfully in the 

face of load and power fluctuations [32]. 

Other model-based techniques for the estimation of software power 

consumption include the model described by Thompson et al. [33], 

which can be used to estimate power consumption during the de-

sign instead of the testing stage as well as the work by Hao et al. 

[34], which combines program analysis and per-instruction energy 

modelling in order to estimate energy consumption at up to the 

granularity of individual source code lines. 

For more related work, please also see conferences and workshops 

such as International Conference on ICT for Sustainability (ICT4S 

2013-2014), International Workshop on Green and Sustainable 

Software (GREENS 2012-2014 at ICSE), and Workshop on Energy 

Aware Software-Engineering and Development (EASED 2011- 

2014) 

10. CONCLUSION AND CONSEQUENCES 
With the increasing popularity of mobile devices such as 

smartphones and tablets, energy awareness has become an im-

portant issue that all software engineers should care about. In this 

paper, we have presented a data analysis on Windows Phone 7 us-

age data. We addressed several independent questions related to 

identifying modules with most power-consumption, finding char-

acteristic energy shape patterns, detecting anomalies, and predict-

ing power consumption based on module usage. 

Understanding which modules consume more energy is useful in-

formation to both application and platform developers and helps 

them to drive better design, test efforts and influence new user sce-

narios. These results also enable users to understand how to con-

serve battery power energy; for example there are several public 

discussions on how to conserve energy for the phone by using var-

ious combination of hardware components [6]). Given appropriate 

tool support, the described methodology could be applied by devel-

opers and end-users on any mobile device to better understand how 

to improve battery life by using certain combination of components 

and applications.  

In our future work, we plan to collaborate with researchers in the 

testing community to leverage our techniques for optimizing testing 

for energy awareness. We have merely scratched the surface of this 

area and plan to expand our research in this area spanning user test-

ing and reliability. Finally, we hope that others in the software en-

gineering community will begin to work on problems related to en-

ergy awareness. 
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