
Un
de
r

Gerrit Software Code Review Data from Android
Murtuza Mukadam
Concordia University
Montreal, QC, Canada

m mukada@concordia.ca

Christian Bird
Microsoft Research
Redmond, WA, USA
cbird@microsoft.com

Peter C. Rigby
Concordia University
Montreal, QC, Canada

peter.rigby@concordia.ca

Abstract—Over the past decade, a number of tools and systems
have been developed to manage various aspects of the software
development lifecycle. Until now, tool supported code review,
an important aspect of software development, has been largely
ignored. With the advent of open source code review tools such as
Gerrit along with projects that use them, code review data is now
available for collection, analysis, and triangulation with other
software development data. In this paper, we extract Android
peer review data from Gerrit. We describe the Android peer
review process, the reverse engineering of the Gerrit JSON API,
our data mining and cleaning methodology, database schema,
and provide an example of how the data can be used to answer
an empirical software engineering question. The database is
available for use by the research community.

I. INTRODUCTION

The tools used to support software projects have provided a
rich source of data for software engineering research. For
example, common tools include source code management
systems, build systems, bug databases, and test infrastructures.
The results of such research have included insight into software
development practices (e.g. [5]) and tools to aid practitioners
(e.g. [6]). However, there are few mining scripts and datasets
available for studying tool supported peer review.

Software inspection has been an engineering “best practice”
for over 35 years [3]. Email based Open Source Software
(OSS) peer review has been extensively studied and been
shown to be effective [7]. It is important to understand how
tool supported peer review is impacting the effectiveness of
this engineering practice. In this data paper, we describe how
we mine the Gerrit [4] peer review system to extract reviews
done by Android developers. We provide a dataset that includes
information about which software changes are reviewed (and
implicitly, which are not), who typically looks at such changes,
how long reviews take, and what types of discussions and
feedback are given during code review.
The paper is structured as follows: we describe the Gerrit

based peer review process used by the Android project
(section II), the source of the data, the methods we used
to collect the data along with challenges and limitations
(section III), a description of the data schema (section IV), and
finally we show an example of how such data can be used
to answer questions relating to review practices and discuss
future avenues of research with the data (section V).

II. DESCRIPTION OF PROJECT AND DATA

Android is an operating system developed with a goal to
create real-world products which improves the experience for

users using mobile and tablet devices. It was initiated by
Android Inc. , and was bought by Google in 2005. Open
Source Software and was initiated by a group of companies
known as Open Handset Alliance in 2007, which is led by
Google [1]. The Android community uses the free web based
software code review tool Gerrit [4]. We downloaded a total
of 19k reviews from Gerrit.

Gerrit is integrated with git and serves as a barrier between
developers’ private repositories and the official, centralized
Android source tree [2]. Developers make local changes
and then submit these changes for review. Reviewers make
comments via the Gerrit web interface. For a change to be
merged into the Android source tree, it must be approved
and verified by a senior developer. Android is an example of
a review-then-commit policy [7] that has additional change
approval steps [2]:

1) ”Verified” - Before a review beings, someone must verify
that the change merges with the current master branch
and does not break the build. In many cases, this step is
done automatically.

2) ”Approved” - While anyone can comment on the change,
someone with appropriate privileges and expertise must
approve the change.

3) ”Submitted/Merged” - Once the change has been ap-
proved it is merged into Google’s master branch so that
other developers can get the latest version of the system.

The example in Figure 1 illustrates a review in Android.1

A Gerrit review begins when the owner (Shuo Gao) posts a
patch to be reviewed. Reviewers are assigned (Jeffrey Brown,
Christophe Bransiec, etc.) so that they can take part in the
reviewing of the patch uploaded by the owner. Unassigned
reviewers can also make comments. Reviewers can provide
comments on individual lines that have changed (2 comments)
or they can provide general comments (Jean Baptiste Queru
comments “Patch Set 1: Verified”). Reviewers can approve
(Christophe Bransiec gives a value +1) or reject (Jeffrey
Brown, a value of -2) the uploaded patch. The bot (Deckard
Autoverifier) comments, “Patch Set 2 is verified”. A patch set
encapsulates details regarding the author, committer and also
the inline comments made by the reviewers. Multiple patch
sets can be uploaded during a review (2 patch sets have been
uploaded).

1https://android-review.googlesource.com/#/c/41591/



Un
de
r

Fig. 1. Gerrit Android Review Number 41591

III. EXTRACTION METHOD

Android review data is stored in Gerrit.2 We were able to
avoid screen-scraping by observing how Gerrit web pages
are constructed. Gerrit works by initially sending a web page
skeleton and some Javascript to the browser. The Javascript then
makes a number of web requests back to the Gerrit server and
requests information about code reviews, which is returned in
JSON format. The page DOM is then modified by the Javascript
to display the code review information. When we developed
our script, the Gerrit REST API provided limited information.
However, the current Gerrit API provides an interface to JSON
formatted review data.3 This JSON data must still be parsed.

We used the developer tools within the Chrome web browser
to inspect these web requests (inspecting header fields and
POST data) to the Gerrit server along with the responses
in an effort to reverse engineer the types of web methods
available and the structure of the JSON data returned by the
requests. We also determined which fields in the displayed web
pages corresponded to what fields within the JSON. The JSON
returned was fairly complex, deep, and redundant (it was not
uncommon for a single JSON response for a code review to
exceed 50 kilobytes). In addition, many web requests were
needed to obtain all information about an individual review.

2https://android-review.googlesource.com
3https://gerrit-review.googlesource.com/Documentation/rest-api.html

Fig. 2. JSON Response from the server

One review might contain many rounds of patch sets (an author
may submit one set of changes, get feedback, submit a set
of revised changes, etc.). Obtaining the information for each
patch set requires an additional web request, and gathering the
reviewer comments for each file within each patch set requires
yet another. Thus, a review might require over twenty to thirty
individual web requests. In an effort to avoid overloading the
Gerrit server (and also avoid our IP being blacklisted from the
site), we throttled our mining by delaying one second between
requests.

We developed a Python script that made use of the various
web methods and extracted the relevant data from the JSON
responses. We also created a database schema based on the
information returned from the server and the data was stored in
a Microsoft SQL Server database for later analysis. To enable
broad use of the data, we provide an SQL Server database
backup file as well as a simple XML dump of the data.4

Data Extraction Details and Example

We reverse engineered the JSON requests to get the
“ChangeDetailService” and “PatchDetailService”. In Figure 2,
we show a snippet of the JSON returned when we sent
a request for the ChangeDetailService for the review in
Figure 1. We store the raw data from each JSON request,
so that we can re-process the data without sending requests
to the server.5 Our Python script then extracts data from
the JSON into a database. For example, the patch id ([”re-
sult”][”patchSet”][”id”][”patchSetId”]=2), change type ([’re-
sult’][’patches’]=’A’), lines added ([’result’][’patches’]=19),
and lines removed ([’result’][’patches’]=0).

A. Challenges and Limitations

We describe some of the data limitations and some challenges
we overcame while cleaning anomalies from the data. We
hope that as this dataset becomes more widely used for
answering empirical software engineering research questions,
other challenges and limitations will be identified and removed
from the data.

Challenge: Gerrit JSON API

The Gerrit JSON API is the only way to get all information
from Gerrit. While the API is intended for public use, it is

4Script and data is available at https://github.com/mmukadam/gerrit-miner.git
5Please contact us for a dump of the raw data



Un
de
r

Fig. 3. Number of Reviews started per Month

not formally defined and there is no documentation for it. As
we discussed above we reverse engineered the JSON requests
and responses. However, the API can change between versions
of Gerrit and the location and names of services can also
change. For example, while mining Android, the location of
the “ChangeDetailService” was moved from
/gerrit/rpc/ChangeDetailService to
/gerrit_ui/rpc/ChangeDetailService

Challenge: A Bot and other Anomalies

Looking for anomalies in the data, we noticed that a bot
called “Deckard Autoverifier” was involved in 1.8k reviews.
Qualitative analysis revealed that the bot was responsible for
ensuring that the change merged with the master branch without
conflict and that it did not break the build – it was “Verified”.
Since the bot is responsible for automatically verifying new
changes, we expected there to be one verification for each patch
set. However, there are 19k reviews and the bot is involved in
only 1.8k. A mailing list discussion6 revealed that the ”Deckard
Autoverifier” cannot verify inter-project dependencies, so many
verifications must be done manually. For example, on AOSP
”Jean-Baptiste Queru” manually verifies all new changes. Since
Queru does many manual verifications, he will have commented
on an artificially large number of review. Depending on the
goal of future analysis, verifications with no other comments
may be tagged or removed.

Challenge: Collecting all Reviews

Reviews are identified by an id number; however, not every
review number contains a valid id. We download all reviews
between review number 1 to 51750, which resulted in 19k
reviews. Figure 3 plots the number of reviews per month.
While the number of reviews can fluctuate drastically in a
given month [7], there is evidence on the Android mailing lists
that the Gerrit database has been cleaned at various points in
time, removing stalled reviews, but leading to missing data. For
example, many reviews are missing from August 2011 until
the start of January 2012. A solution would be to regularly
mine the Android Gerrit data.

6https://groups.google.com/forum/#!msg/android-contrib/cEFSGewsqUQ/
umd5FKrv4 QJ

IV. DATA STORAGE AND SCHEMA

The database schema is depicted in Figure 4. In general,
each table has an Id column that is unique for each entry in the
table (e.g., the Review table has ReviewId, the Person table has
PersonId). Foreign key relations are indicated by the presence
of a column in one table that has the same name as the primary
key of another table.

Reviews

The Review table contains information about the review
itself. This includes the review identification number used by
Gerrit (the primary key), the person that created the review
and typically made the change (OwnerId), the creation time
(CreatedOn), the last time that any activity occurred on the
review (LastUpdatedOn), a one line description of the change
(Subject) along with a description (message), the project that
the review is for, and the branch within git that the change was
made on. The Status can be “open”, meaning that the review
is active and the change has not yet been accepted,“merged”,
meaning that the review has passed and the change has been
merged into the codebase, and “abandoned”, indicating that
the review has not passed and is no longer active.

People

Many tables include references to people (reviewers, authors,
etc.) through the use of a PersonId. The Person table maps this
id to the person’s Name and Email address. We have observed
that some automated system accounts also add information to
reviews. For example, one “bot” adds comments to a review
that describe changes to the review. These accounts can be
identified due to the IsBotAccount being set to 1.

Patch Sets

A change for review is made up of a set of files that
correspond to a commit. In Gerrit parlance, this is called a patch
set. As an author responds to feedback, he may submit multiple
patch sets until the final patch set is accepted. The PatchSet
table includes information including whether this is the first,
second, third, etc. patch set for a review (PatchSetNumber),
the number of files in the patch set (NumberOfFiles), when
it was created (CreatedOn), and the revision within the git
repository that contains the versions of the files in the patch
set (GitRevision).

Patch Set Files

Each file within a patch set has an entry in the PatchSetFile
table. This includes the path of the file (Path), how many lines
were added and deleted, and the ChangeType, which indicates if
the file was added, removed, or modified. We do not store this
in the database. It is easy to obtain this with the GitRevision
from the corresponding PatchSet entry.

Comments

The information about each comment is in the Comment
table. This includes the text of the comment (Message), when
the comment was made (WrittenOn), who wrote the comment
(AuthorId), and which patch set the comment is relevant to



Un
de
r

Fig. 4. Database Schema

Sun Mon Tues Wed Thurs Fri Sat

0
50

10
0

15
0

Reviews per Day of Week

R
ev

ie
w

s

Fig. 5. Number of reviews submitted per day of the week over the last half
of 2012 in Android.

(PatchSetId). Comments can refer to a particular location within
a file in the patch set, in which case the file path (Path), line
within the file (LineNumber), and whether the comment refers
to the version of the file prior to or after the change (Side) are
indicated. Otherwise, these fields will be NULL.

Approvals

Each review is given certain points(-2,-1,0,1,+2) based on
whether reviewers judge that it should be accepted or rejected.
This information is stored in the Approval table, with an
entry for each person involved in a review. This is the only
table that doesn’t have a single field primary key, as the
ReviewId and the PersonId uniquely identify the entry and
act as a conjugate primary key. The information in this table
indicates whether the reviewer has signed off on the review
(ReviewedStatus) and/or verified that the change does not
cause problems (VerifiedStatus) and stores when these occurred
(ReviewedWhen and VerifiedWhen).

V. FUTURE WORK

In a forthcoming paper in preparation for submission, we
have used this data to quantitatively characterize code review

in Android and compare Android code review to review in
other contexts. However, here we present a simple illustration
of the types of questions that can be answered using this data.
We want to know how developers apportion their work over
the course of their work week.
Figure 5 shows boxplots that describe the distribution of

the number of code reviews submitted per weekday over the
past six months in the Android project. Using t-tests (since
the submission numbers per day follow normal distributions)
we determined that there is no statistical difference between
Monday, Tuesday, Wednesday, Thursday, and Friday. However,
they all show a statistically significant increase over both
Saturday and Sunday and Saturday has more than Sunday
to a statistically significant degree. Thus, one can reasonably
conclude that the contributors to Android work during the week
and take weekends off.
We are currently using this data set, other OSS datasets,

and datasets from software firms to understand how different
software development environments affect peer review practices.
Other research avenues include using this new dataset to
improve models of defect prediction, identifying attributes of
changes that lead to many comments from reviewers or many
iterations of change submission, and characterizing review
patterns of developers who join software projects.

REFERENCES

[1] Android. Android Open Souce Project. http://http://source.android.com/
index.html.

[2] Android. Submitting patches. http://source.android.com/source/
submit-patches.html.

[3] M. Fagan. Design and Code Inspections to Reduce Errors in Program
Development. IBM Systems Journal, 15(3):182–211, 1976.

[4] Gerrit. Web based code review and project management for git based
projects. http://code.google.com/p/gerrit/.

[5] A. Hindle, D. M. German, and R. Holt. What do large commits tell us?:
a taxonomical study of large commits. In MSR, 2008.

[6] R. Holmes and A. Begel. Deep intellisense: a tool for rehydrating
evaporated information. In MSR, 2008.

[7] P. C. Rigby, D. M. German, and M.-A. Storey. Open Source Software
Peer Review Practices: A Case Study of the Apache Server. In 30th ICSE,
pages 541–550, 2008.


