
Who? Where? What? Examining Distributed Development in Two Large Open
Source Projects

Christian Bird
Microsoft Research

Redmond, Washington
cbird@microsoft.com

Nachiappan Nagappan
Microsoft Research

Redmond, Washington
nachin@microsoft.com

Abstract—To date, a large body of knowledge has been built
up around understanding open source software development.
However, there is limited research on examining levels of
geographic and organizational distribution within open source
software projects, despite many studies examining these same
aspects in commercial contexts. We set out to fill this gap in OSS
knowledge by manually collecting data for two large, mature,
successful projects in an effort to assess how distributed they
are, both geographically and organizationally. Both FIREFOX
and ECLIPSE have been the subject of many studies and are
ubiquitous in the areas of software development and internet
usage respectively. We identified the top contributors that made
95% of the changes over multiple major releases of FIREFOX
and ECLIPSE and determined their geographic locations and
organizational affiliations. We examine the distribution in each
project’s constituent subsystems and report the relationship of
pre- and post-release defects with distribution levels.

I. INTRODUCTION

FIREFOX and ECLIPSE are commonly referred to as
archetypes of successful Open Source Software (OSS)
development. They are large and complex code bases that
have achieved wide scale adoption. ECLIPSE is so successful
that it has developed a business ecosystem surrounding it.
One obvious question to ask is how such products have
come to exist and what types of development processes these
projects use. Champions of the open source movement (such
as Eric Raymond [1]) claim that open source software defies
the constraints of globally distributed development because
its main collaboration mechanisms are based on the internet,
which is inherently geographically and organizationally
distributed.

Open source software systems have been used to study
various aspects of software engineering, spanning the spec-
trum from requirements engineering [2], software quality [3],
characterizing the development process [4], investigating code
review practices in open source software systems[5], and
examining communication practices [6], [7], [8]. However,
perhaps because it often seems implicit with the very notion
of OSS, few studies exist which examine levels of either
geographic or organizational distributed development in open
source software. In an attempt to add an additional piece
to the OSS knowledge puzzle, we investigate distributed
development for two large OSS systems.

In this study, we take a deeper look into the development
of FIREFOX and ECLIPSE to study how distributed its devel-

opment is and what the effects of distributed development
are.

We make the following contributions in this paper:
1) We identify and characterize geographic distributed

development for two large open source projects at
system-wide and also component levels of granularity.

2) We identify which organizations contribute to these
projects and report how organizationally distributed
these projects are.

3) We assess the impact of geographic and organization-
ally distributed development using measures introduced
in earlier empirical studies of commercial software
projects.

With regard to the third contribution listed, a portion of
this study represents a replication of an earlier study of
distributed development [9] on projects in a different context
(OSS vs. Commercial), although the previous study did not
examine organizational distribution. In this case, we present
a dependent replication [10]. As Shull et al. indicate, insight
into the software engineering question of interest (in our
case, the question of the relationship between distributed
development and defects) can be gained, whether such a
replication has similar or opposite results.

II. PRIOR WORK

In recent years open source software systems have been
studied in great detail as they provide a ready repository of
real-live software systems, without complications of dealing
with software companies for permission to access repositories,
legal issues, distribution of results and confidential clauses.

There has been prior work that identifies organizational
and geographical attributes of open source projects. We list
here the most prominent.

The closest work to ours is that of Spinellis [11]. In
this study Spinellis analyzed FreeBSD by investigating the
impact of geographical location on code quality. He identified
locations of contributions by using the latitude and longitude
of developers that distributed with the FreeBSD port of
XEarth. In total he was able to attribute 79% of the commit
lines to developers with known locations. Based on this data,
Spinellis determined that global development allows round-
the-clock work, but there are some significant differences
between the type of work performed at different locations.



The effects of distributed developers on the quality of code
and productivity were negligible.

Tang et al. used email metadata such as top level domain
and IP addresses in email headers to identify location of
contributors to PostgreSQL and GTK+ [12]. They found
that in both cases, the majority of contributions came from
the United States, followed by Germany. Our method of
identification of organization and location does not rely on
email, but is also completely manual.

Robles et al. looked at how involved companies are in
the codebase of projects that comprise the Debian Linux
distribution [13]. They used attribution within source files to
conclude that 6% to 7% of code in Debian can be attributed
to companies, mostly led “by giants like Sun Microsystems,
IBM, SAP, Silicon Graphics and AT&T, but also includes
more small, focused on libre software companies like Red
Hat, Ximian (now owned by Novell) or MySQL.” Robles
also examined the locations of sourceforge contributors [14]
through the time zone and email address information stored
at sourceforge. They also found that the top two contributing
countries were the United States and Germany.

Interestingly, there are also several specialized conferences
for Open source (for instance, OSCon and the International
Conference on Open Source Systems) and for distributed
development (most notably the International Conference
on Global Software Engineering). These conferences are
dedicated to these topics individually but we are primarily
interested in their intersection.

In contrast to our interest in open source software, many
have studied distributed development in the context of
commercial software projects.

Cataldo and Herbsleb [15] investigated a large-scale project
that implemented 1195 features in a software system. They
examined the impact product features, attributes of the
feature teams and cross feature interactions on software
integration failures. Their results show that factors like
the nature of component dependencies and organizational
factors such as the geographic dispersion of the feature teams
and the role of the feature owners have a complementary
impact on software quality. They also found that cross-
feature interactions, quantified by the number of architectural
dependencies between two product features, were a major
driver of integration failures.

Ramasubbu et al. [16] studied 362 projects from four
different firms to assess the impact of impact of project-
level configurational choices of globally distributed software
teams on project productivity, quality, and profits. They
identified that imbalances in the expertise and personnel
distribution of project teams significantly helps increase
profit margins but a profit oriented imbalance could also
significantly affect productivity and/or quality outcomes.
They provide recommendations and insights for managers
and companies to make the correct choices to help enable
successful projects.

Cataldo and Sangeeth [17] examined the impact of process
maturity and geographic distribution on software quality in
a multi national software development organization and and

found that there was indeed a large impact. Further they
found that as work becomes more distributed the benefits of
process maturity diminish.

Prior work by Bird et al. [9] investigated the distributed
development of Windows Vista across different sites at Mi-
crosoft. The study showed that distributed development does
not affect software quality when organizational and process
changes are put in place to enable software development.

III. RESEARCH QUESTIONS

Unlike commercial software in which contributions come
from employees of the same company or in some cases from
contracted entities, OSS projects accept work from nearly
any organization (provided that such work is of sufficient
quality and is legally acceptable). Research at Microsoft [18]
and in other commercial settings [19] have found that when
a component or work item is spread organizationally, quality
and productivity suffer. While OSS projects do not typically
adhere to an organizational structure as strictly as in the
commercial world, we can still identify the organizations
that are contributing to the project.

Research Question 1: What organizations contribute
code and how organizationally distributed are the
projects?

In addition, we are also interested in understanding and
characterizing the level of geographic distribution of OSS
projects. This is also required in order to examine the
relationship of distribution to quality. We therefore ask:

Research Question 2: How geographically distributed
are the software projects?

Lastly, once we have understood and characterized the
level of geographic and organizational distribution in OSS
projects, what are the effects, if any, on software quality?
Are the results commensurate with prior studies, indicating
a more general phenomenon that is not development process
specific or do the effects of distribution on quality differ in
OSS?

Research Question 3: What is the effect of geographi-
cally and organizationally distributed development on
software quality?

Our hope is that by examining OSS projects in a way
similar to previous studies in other contexts, we can gain a
deeper understanding of the effects of distributed development
(e.g., delay or quality) and how these effects change with
domain and process.



IV. DATA COLLECTION AND ANALYSIS

In this section we discuss the collection of data as well as
the techniques used to analyze the data. As the novel data
that we collected includes the organizational and geographic
information for developers in ECLIPSE and FIREFOX, we
have made this data available on the PROMISE Software
Engineering Repository [20]1.

A. Data Collection
For our analysis, we collected a number of types of data.

We gathered data from source code repositories and bug
databases and also determined the locations of developers.

As an OSS project, Mozilla maintains a publicly available
source code repository, which contains the sources for the
FIREFOX browser. We mined the changes from this CVS
repository, which comprised a total of 1,147,175 changes
from March, 1998 to March, 2008. In our analysis, we only
examined changes to the files that were included in two major
releases of FIREFOX, 1.5 and 2.0 during their respective
development cycles. There were 6,151 and 6,211 C and C++
source files that shipped as part of FIREFOX versions 1.5
and 2.0 respectively and a total of 44,877 changes made to
these files during development of these releases. We also
mined the changes from the ECLIPSE CVS repository, which
comprised a total of 920,989 changes from April, 2001 to
February, 2008.

We found that 227 accounts made commits to the FIREFOX
codebase. However, the 77 most active contributors accounted
for 95% of the source code commits. None of the other
contributors accounted for more than 0.2% of the commits to
FIREFOX during these development cycles. Although there
were 208 ECLIPSE CVS accounts, we found that some
people had multiple accounts. After dealing with the account
aliasing, we found that 190 unique people made commits
to main project repository. Similar to FIREFOX, ECLIPSE
contributions were skewed such that the 100 most active
contributors accounted for over 95% of the commits and non
of the remaining 90 contributors made more than 0.12% of
the total commits.

We use FIREFOX pre and post-release defects that had
been mined previously for each of the C/C++ files as a part of
this study. For our ECLIPSE bug data, we mined the project’s
bugzilla repository. This database contains information such
as severity, version of the product, priority, assignments,
resolution information and timestamps for 221,518 bug
entries. We only include entries that are marked as bugs (e.g.,
no feature requests) and that are assigned to the ECLIPSE
main platform.

We used automated techniques to link closed bugs in the
database to the commits that fixed them in the software
repository [21]. Each bug in the database includes the date
that it was opened and also the version of ECLIPSE that
the bug occurred in. We use this information along with the
release dates of each version of ECLIPSE to categorize bugs
into pre-release and post-release for each of the versions of

1http://promisedata.org

ECLIPSE released during the period of study. ECLIPSE has a
rigorous policy of manually attributing bug IDs in their log
messages. We manually used text similarity and information
from the internet to link CVS accounts with bug database
accounts in ECLIPSE using techniques introduced by Bird
et al. [22].

B. Locating Developers
We are interested in where the developers are both in

terms of organization (who do they work for) and geography
(where do they work). We note that just because a developer
works for a particular organization does not mean that the
organization itself is a formal contributor. If a student from
MIT or an employee from BEA commits code, that in no
way indicates sponsorship from their organizations. However,
we expect that ease of communication, commonality of goals,
and cohesiveness of changes will differ based on whether
developers are from different organizations or not. This
information is not generally made public anywhere so deeper
investigation is required. Fortunately, for each developer that
contributed directory to the source code repository, we can
extract their email address, name, and history of contributions.
We identified the top contributors that made 95% of the
commits to the each project’s source repository.

We used a number of techniques to determine the geo-
graphic and organizational information for the developers.
Email domain names — Many email addresses contain
geographical or organizational information in the domain
name. For instance, bzbarsky@mit.edu indicates a con-
tributor from MIT. Companies like IBM are apparent from
the domain name. Often the country is also indicated in
the domain (for instance enndeakin@sympatico.ca is
in Canada). Although the granularity is coarse (e.g. only
narrowing down to a country), these give some indication of
where else to look for identifying information.
Social Networking sites — LinkedIn is a common profes-
sional networking site. Since most primary developers are
professionals, many of them were on LinkedIn. Their profiles
indicate the metropolitan area that they are living in and often
list job history so we can see where they were at the time of
commits. In cases where a name is common, such as “Jeff
Brown”, it is possible to filter on employer or job domain.
In addition, other networking sites such as Facebook, which
often indicate geographical location or employer, were also
helpful.
Blogs — Since developers are heavily technical and active
in ECLIPSE or FIREFOX community, many maintain either
technical programming or personal blogs. It is usually
apparent where they live and who they work for from
their postings on these blogs. As an example taken from
our investigations, “I got back to MIT to begin the Spring
Semester last week. . . ” indicated an MIT student that made
contributions.
Emails — Often information is contained in the body of an
email about the location of the sender. People may refer to
others and include their location. For instance “. . . as Debbie
(Ottowa/Can/IBM) has stated previously, the UI can’t. . . ”

http://promisedata.org


indicates that Debbie (whose full name we identify earlier
in the email thread) works at IBM’s Ottawa site.
Presentations and Conferences — Many developers attend
conferences or give presentations to others. The title slide in
presentations online often included the name of the presenters
along with their location of employment. Online conference
programs also usually give a brief bio of the presenter which
included their location and employer.
Direct Communication — In rare cases, we contacted
contributors directly. As an example, when searching for
Billy Biggs, a developer for ECLIPSE, we encountered a web
site for someone with that name that listed ECLIPSE as one
of his projects. We contacted him through his site and asked
questions regarding where he lived and who he worked for
(as well as the same information for other hard to locate
contributors) [23].
Company sites — Some companies contain biographical
pages for their employees or allow employees to create their
own pages (e.g., Microsoft Research has this facility for its
employees). Often there is a link to the site that the employee
works at and the location can be inferred from that.
Web Articles — In one case a web “journalist” for an
online news site had written an article about ECLIPSE and
mentioned that he’d talked to an ECLIPSE developer where
he worked in San Francisco at BEA. This indicated both the
location and employer of the developer.
Association — For some individuals, we could not find
their location directly, but another person whose location we
had already determined indicated that they worked at the
same location, either in a blog entry or an email. Thus we
were able to determine the location by association.
SCM History — File logs from the source code manage-
ment system can also provide valuable clues for identifying
contributors. In one notable case for ECLIPSE, the CVS
user name for an unknown contributor was torres. Un-
fortunately, we were able to identify four people with the
last name of Torres that are associated with ECLIPSE and
were unable determine which person used the torres CVS
account. Upon examining the CVS logs, we found that the
vast majority of the files that torres committed to had to
do with SWT (The GUI toolkit in ECLIPSE). This additional
information allowed us to improve our search and we were
immediately able to determine which of the four corresponded
to the committer (in this case Elias Torres) along with his
blog which indicated his location.

For a number of sites, we were able to get the exact
address of the company. In cases where we were unable to
determine the organization that a developer was affiliated with
(or when the developer indicated that he was self-employed
or not employed) we had to settle for the city. For each
person we identified the city, state or province (where such
existed in the country), country, and company. From these,
we determined the latitude and longitude, used for time zone
data and distances between sites.

Using these methods, we identified the locations for the
top 77 contributors in FIREFOX and the top 100 contributors

to ECLIPSE. In both cases, the contributors account for over
95% of the contributions to the project.

C. Measures of Distribution

We include a number of measures of geographic and
organizational distribution.
Distribution Level

Similar to a prior study on distributed development in a
commercial setting [9], we categorized the level (which we
denote LEVEL) of geographic distribution for each component
based on the smallest geographic entity that we could trace
75% of the commits back to. Thus, if we could identify
one city from which 75% of the commits came from, we
categorized the component as distributed at the city level. If
not, we examined the different nations that contributed to the
binary and then the number of continents that contributed.
If we were unable to identify a continent that contributed at
least 75% of the commits, we categorized the component at
the worldwide level.

The threshold of 75% was chosen for two reasons. First,
prior studies [9], [18] used this threshold and using the
same value allows for an equitable comparison between
our findings and previous findings. Second, our measure is
discrete rather than continous and using a threshold of 100%
would allow just one commit to a component make LEVEL
jump from being distributed within a city to being distributed
worldwide. We did not want LEVEL to be susceptible to such
phenomena.
Spatial and Temporal Dispersion

Following the methodology of Cataldo and Nambiar [17],
we use the definition of Spatial Dispersion introduced
originally by O’leary and Cummings [24]. In the disper-
sion equations, N is the total number of developers that
contributed to a component, L is the set of locations of the
developers making contributions, and Ni and Nj are the
number of developers at locations i, j ∈ L respectively. For
our measure, SPATIAL, KMij is the distance in kilometers
between location i and location j.

SPATIAL =

∑
i,j∈L

KMij ·Ni ·Nj

N2−N
2

(1)

Similarly, in the definition of Temporal Dispersion, TEM-
PORAL, TZij is the absolute value of the timezone difference
between locations i and j in hours.

TEMPORAL =

∑
i,j∈L

TZij ·Ni ·Nj

N2−N
2

(2)

For both definitions of dispersion, if developers in only one
location made contributions to a component, the dispersion is
zero. Similar to Cataldo and Nambiar, we measured distances
between sites in the same city (when such resolution was
possible), but did not measure distances between buildings
at the same site.



Organizational Distribution
We define two organizational measures that draw on the

results of Nagappan et al. [18].
First, we identified the number of organizations that

contributed to a component as ORGANIZATIONS. Different
organizations may have different agendas in mind when
making contributions to an OSS project. Further, coordination
between developers in separate organizations is most likely
more difficult than coordination within an organization due to
shared culture, background, and in some cases, geographical
colocation. We therefore expect that components that are
contributed to by multiple organizations will exhibit higher
defect rates.

Second, ORGANIZATIONAL OWNERSHIP measures the
proportion of commits to a component contributed by the
“owning” organization (the organization that made the most
commits). If one organization has a high level of ownership,
we expect that the organization has a vested interest in its
success. Further, the organization may act as a point of
contact for the component. We hypothesize that this will lead
to fewer defects.

D. Quality Analysis
In order to study the relationship of each of these measures

with failures, we use them as independent variables in a
linear regression model using pre and post-release bugs as
dependent variables. In addition, we also include control
variables in our models so as to control for the effects
of code metrics known to have a strong relationship with
failures [25]. We measure code size using lines of source
code which we refer to as LOC. CHURN is the sum of
the number of source lines added and deleted (a modified
line is counted as one line removed and one line added)
in a component between releases. Finally, COMPLEXITY,
measures the cyclomatic complexity of the code. LEVEL is
included in our model as a series of binary variables, as
it standard for categorical data [26]. We include NATION,
CONTINENT, and WORLDWIDE, only one of which can have
value of 1 for any component. Components developed in
one site have all of these variables set to 0, as same site
development is the baseline and included in the intercept.

Unfortunately, including all of the control variables, inde-
pendent variables (our distribution measures), and dependent
variables (pre and post-release defects) leads to potential
problems. First, the validity of linear regression results rests
on key assumptions holding. One of these assumptions is that
the residuals in the models are normally distributed [26]. In
all cases, we found that pre and post-release defects suffered
from skew and the residuals were not normally distributed. In
addition, some of our independent and control variables also
were skewed and caused similar problems. To mitigate this,
we performed a logarithm transformation on these variables
before using them in the regression models. We indicate
where this transformation was used in our discussion of
results in the following sections.

Second, we note that some independent or control variables
may be highly correlated. Models using these variables

will potentially overfit on the data, leading to a problem
known as multicollinearity [26]. We deal with this problem
by examining the Variance Inflation Factor (VIF) for our
linear models and removing variables with VIF values at
5 or above. As an example, in our models, we found that
COMPLEXITY was highly correlated with LOC in all models
(a not surprising result, given prior studies that also show
a relation between LOC and many code metrics [27]). We
therefore choose the best model that considers only one and
use LOC.

We hasten to point out that although regression has been
used with defect data to build accurate defect prediction
models (see, for example, extensive work by Weyuker and
Ostrand including [28]) our purpose is not to use regression
for defect prediction. Rather we use it to identify the
relationship, if any, between our measures of geographic
and organizational distribution and defects when controlling
for known factors.

V. FIREFOX RESULTS

We answer the three previously stated questions regarding
distributed development in FIREFOX in this section.

A. Organizational Distribution
We are first interested in how distributed FIREFOX is

along organizational boundaries. We used the organizational
affiliations of developers to determine what proportion of
FIREFOX development (measured by number of commits)
come from different organizations. Note that the organization
itself is not necessarily the contributor. For instance, Univer-
sity of Queensland and MIT indicate contributions made by
students of those respective universities. The category labeled
“self” represents people who identified themselves as self-
employed contractors or “Full Time Hackers” that were not
affiliated with any company. In addition, there were a number
of individuals that we were able to identify geographic
information for, but could not determine organizational
information about. These make up the “Unknown” category
and are not included in our organizational analysis.

Figure 2 shows the breakdown of contributions for release
2.0. We do not show breakdowns for release 1.5 because there
difference was minimal. Our data shows that Mozilla Corp
is the largest contributor to FIREFOX followed by Google.
However, there are a number of contributions made by other
companies with an interest in the browser market as well as
academic institutions.

Therefore, our answer to RQ1 is that while Mozilla
Corporation is by far the largest contributor to FIREFOX, a
diverse group of companies and organizations account for
more than half of the source code contributions.

B. Geographic Distribution
We also examined how FIREFOX is geographically dis-

tributed. We were not able to determine building information
for the developers in FIREFOX. Therefore we categorize the
geographic distribution of components into four levels: same
site, same nation, same continent, and worldwide.



(a) Contributions to FIREFOX from locations in Europe. Blue circles
indicate locations contributing to FIREFOX. The number of contributions is
proportional to the area of each circle.

(b) Contributions to content event handling in FIREFOX from locations
across the world. Blue circles indicate locations contributing to FIREFOX.

Figure 1: Maps of FIREFOX development

FIREFOX 2.0 Contributions
Organization Commits Percentage

Mozilla Corporation 9551 47.6%
Google 2102 10.4%
MIT 1716 8.5%
Nokia 758 3.8%
Intel 705 3.5%
Netscape 631 3.1%
IBM 334 1.7%
XForms 277 1.4%
Sun 209 1.0%
Korean Adv. Inst. of Tech. 148 0.8%
Macalester Univ. 104 0.5%
Univ. of Queensland 94 0.5%
8×8 79 0.4%
Thales 72 0.4%
University of Tartu 54 0.3%
Red Hat 8 0.0%
Self 710 3.5%
Unknown 1525 7.6%

Figure 2: Contributions to FIREFOX 2.0 by organization.
“Self” and “Unknown” are listed at the bottom because
each individual in these categories comprise his or her
own organization. Total sums to 95% because we did not
determine information for the 100+ developers contributing
the remaining 5%.

As Figure 4 shows, FIREFOX is quite geographically
distributed. Unsurprisingly, California is the geographic
region that makes the largest number of contributions. This is
due to the fact that Mozilla Corp, Google, Sun, Netscape/AOL
and Redhat all have offices and in some cases, headquarters,
in the the California Bay Area, near San Francisco. Despite
this, we see that contributions are made from a number
of countries throughout the globe, with a focus in North
America and Europe. Note that each location depicted may
include multiple sites. For instance, there are two unique
sites in Ontario, Canada, and three in Israel.

40438

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Contributions to Firefox by Location 

Figure 4: Contributions to FIREFOX by location.

While almost half of the contributions for FIREFOX come
from the California Bay Area, the other half is distributed
worldwide, with a focus on Europe and North America.

We also visualized contributions geographically. For ex-
ample, Figure 1a shows a map of Europe with FIREFOX
development sites indicated as blue circles. The area of each
circle is proportional to the number of commits to FIREFOX
from that location.

When broken down by component, the level of geographic
distribution is varied. For instance, the map in Figure 1b
shows development for the code that handles events within
displayed internet content. The development of this module
was split across three continents and 16 different countries/s-
tates. At the other extreme is the inter-process communication
code, which was developed almost exclusively within Mozilla
Corp in the Bay Area of California.

Figure 5 shows the breakdown across both major releases
in FIREFOX. FIREFOX appears to be very distributed even at
the component level. Almost half of the components were
categorized as spanning at least two sites and one third span
multiple continents (i.e., at the world level).

Interestingly, there appears to be a dichotomy in geographic
distribution. Modules are mostly either categorized as same
site or worldwide.



Release 1.5 Release 2.0
Factor Pre-release Post-release Pre-release Post-release

Intercept -1.14 (� 0.01) -0.78 (� 0.01) -1.22 (� 0.01) -0.69 (� 0.01)
LOC 0.08 (� 0.01) 0.08 (� 0.01) 0.12 (� 0.01) 0.07 (� 0.01)
CHURN 0.11 (� 0.01) 0.06 (� 0.01) 0.12 (� 0.01) 0.05 (� 0.01)
SPATIAL 0.04 (� 0.01) 0.01 (0.21) 0.03 (0.01) 0.01 (0.05)
NATION 0.62 (� 0.01) 0.33 (� 0.01) 0.09 (0.53) 0.10 (0.31)
CONTINENT -0.18 (0.19) 0.03 (0.68) 0.23 (0.03) 0.02 (0.76)
WORLDWIDE 0.29 (� 0.01) 0.16 (0.02) 0.28 (� 0.01) 0.04 (0.56)
ORGANIZATIONAL OWNERSHIP 0.41 (0.04) 0.21 (0.11) 0.31 (0.08) 0.19 (0.13)

adjusted R2 0.44 (� 0.01) 0.31 (� 0.01) 0.44 (� 0.01) 0.23 (� 0.01)

Figure 3: The linear regression model results for effects of distributed development on quality in FIREFOX. Bold values are
statistically significant and p-values are shown in parentheses

Levels of Distribution of Modules in FIREFOX
Rel. Site Nation Continent WorldWide

1.5 353 (53%) 72 (11%) 41 (6%) 202 (30%)
2.0 354 (50%) 43 (6%) 59 (8%) 249 (35%)

Figure 5: The number of modules at each level of distribution
for FIREFOX.

We also investigated the differences between the modules
categorized as same site and different continents. On average,
modules categorized at the “Worldwide” level are larger, have
more commits, and more distinct contributing developers. For
instance both the average and median number of commits for
modules developed on multiple continents were over three
times higher than that of modules developed primarily in
one site. A Mann-Whitney test showed that the difference
between the two sets is statistically significant (p� 0.01).

This is in stark contrast to our previous study on Windows
Vista development. Although geographically distributed bina-
ries in Vista had, on average, more contributing developers,
these binaries did not differ from their collocated counterparts
in terms of size, complexity, or churn.

We therefore conclude that in answer to RQ2, Large
proportions of FIREFOX modules are developed at the same
site and on different continents. However, same-site modules
are smaller, have less commits, and less contributors.

C. Effects of Distribution on Quality

Finally, we evaluate the effect that distribution has on
software quality in FIREFOX. We used linear regression to
measure the relationship of pre and post-release bugs in FIRE-
FOX with the previously defined measures of distribution.

We used the same methodology when examining FIREFOX.
The distribution of bugs in modules within FIREFOX is
heavily right skewed; most plugins have between 5 and
20 postrelease bugs, but there is a long tail. We therefore
applied a log transformation to the number of bugs prior to
regression. In addition, LOC, CHURN, SPATIAL, TEMPO-
RAL, ORGANIZATIONS were also transformed due to skew.

We also found that LOC and COMPLEXITY were highly
correlated leading to VIF values above 10. We also removed
ORGANIZATIONS (correlated with TEMPORAL, SPATIAL, and
CHURN) and TEMPORAL (correlated with ORGANIZATIONS
and SPATIAL) due to high VIF. After applying these changes,
the residuals on the resulting models followed a normal
distribution, indicating that the results are valid.

We built models for pre and post-release defects for
releases 1.5 and 2.0. The summary results of our regression
models for FIREFOX are shown in ??. Each column represents
the coefficients and p-values (in parentheses) for statistical
significance for one regression model. We use a standard
cutoff of 0.05 for significance. Coefficients in bold indicate
that the independent variable had a statistically significant
relationship with defects. The sign of the coefficient indicates
if defects went up (positive) or down (negative) as the value
for the measure increased. Due to log transformations of
dependent and independent variables, comparisons between
coefficients are not straightforward. We therefore examine
the direction and statistical significance of the geographic
and organizational factors to determine if they are related to
quality. In all cases where statistically significant, the measure
of distribution had a positive relationship with defects.
The one measure that is surprising is ORGANIZATIONAL
OWNERSHIP, as we had expected that higher values would
lead to fewer defects. Interestingly, bivariate spearman rank
correlations of ORGANIZATIONAL OWNERSHIP varied from
−0.32 to −0.54, indicating an inverse relationship. Once
controlling for all other factors, however, this relationship
reverses.

The results are somewhat mixed. In general, distribution
measures are more significant during prior to release than
after. Higher values of SPATIAL and worldwide distribution
were associated with more defects in both prior to both
releases. In contrast, the post-release defects in version
2.0 showed no significant relationship with any distribution
measures after controlling for LOC and CHURN.

We therefore conclude for RQ3 that modules in FIREFOX
that are geographically distributed show only a slight



ECLIPSE Contributions by Organization
Organization Commits Percentage

IBM 846500 91.6%
MIT 13174 1.4%
Self 11761 1.3%
BEA 2141 0.2%
Univ. of Victoria 1902 0.2%
Adv. Sys. Concepts 1729 0.2%
Prosyst 901 0.1%

Figure 6: Contributions to ECLIPSE from release 1.0 through
release 3.3 by organization.

increase in failures and organizational distribution has no
statistically significant effect in most cases.

VI. ECLIPSE RESULTS

We now present our results after performing a similar
analysis on the ECLIPSE project

A. Organizational Distribution
Our data shows that IBM is the overwhelming contributor

to ECLIPSE. Figure 6 shows the contributions to ECLIPSE
across all releases. When broken down by release (not shown),
IBM contributed 89% to 93% of the commits to each release,
and in total, IBM contributed 91% of the commits to ECLIPSE.
While it is generally recognized that IBM is the major backer
of the ECLIPSE project, the level of development support
(and clearly control) has not been quantified. The data is
so extreme that no further quantitative analysis is needed
to conclude that IBM contributes to ECLIPSE more than all
other entities combined.

We therefore conclude for RQ1 that ECLIPSE is not
organizationally distributed. IBM accounts for over 91%
of the development that occurs in ECLIPSE.

B. Development Sites
A disproportionate number of contributions to ECLIPSE

come from a small number of geographical locations. Nearly
half of the source code changes originate from one IBM
site in Ottawa Canada and 75% can be traced back to just
three sites. The graph in Figure 7 illustrates the percentage
of contributions that were made from various sites. San
Francisco and Cambridge are the only locations of those
shown in the pie chart that are not completely represented
by an IBM facility (there are a number of non-IBM sites
aggregated into “Other”). Ottowa, Toronto, Portland, and
Winnipeg all represent IBM facilities.

A small number of development sites account for the
majority of source code contributions in ECLIPSE. 49%
of contributions come from just one site and 76% of the
contributions can be traced back to just three.

When we look at the granularity of components (in
ECLIPSE, plugins), the development is even less distributed.
For instance, when we examine development for the JUnit
code (a java testing framework) in the JDT component (Java

0%

10%

20%

30%

40%

50%

60%

Contributions to Eclipse by location 

Figure 7: Contributions to ECLIPSE by location.

Development Tools) of ECLIPSE. The IBM site in Switzerland
accounts for 96% of the commits in JUnit (3,094 total
commits), and the other 4% of the commits come from
Ottawa, Cambridge, Winnipeg, and Portland (all IBM sites).

We found that as a whole system ECLIPSE is distributed
worldwide, but is dominated by just three sites on two
continents. However, when examined at the level of individual
components, they are not very geographically distributed at
all. The numbers of plugins that were not categorized as same
site were quite small. Figure 9 shows the breakdown across
six major releases in ECLIPSE. There were few cases where
a component is distributed across multiple continents; only
1% of the plugins in release 3.3 had non-trivial contributions
coming from both Europe and North America.

Similar to our organizational results for ECLIPSE, we
conclude for RQ2 that the vast majority of plugins in
ECLIPSE are not geographically distributed.

C. Effects of Distribution on Quality

As with FIREFOX, we used linear regression to measure
the relationship of pre and post-release bugs in ECLIPSE with
levels of distribution. Given the low number of distributed
plugins (some releases had only 4), some of the regression
models lacked enough samples for statistical power.

The distribution of defects in plugins in ECLIPSE is heavily
right skewed, meaning that while most plugins have between
10 and 50 defects, there is again a long tail and a few plugins
have hundreds of defects. When testing for multicollinearity,
we had to remove ORGANIZATIONAL OWNERSHIP and
TEMPORAL. In order to fit residual normality assumptions,
we performed a log transformation on LOC, CHURN,
and ORGANIZATIONS. We summarize the results of our
regression analysis in Figure 8. Statistically significant values
at 0.05 are in bold and at 0.10 are in italics. We also include
adjusted R2 values for the models.

Again, the results are somewhat mixed. Each measure
shows a statistically significant effect in some releases and
not in others. Some releases don’t show a significant effect of
geographic distribution on software quality at certain levels.
However, often this is due to small sample sizes. For instance,
the 3.3 release shows no effect of worldwide distribution on



2.0 2.1 3.0 3.1 3.2 3.3
Factor Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post

LOC 0.29 0.18 0.23 0.24 0.37 0.30 0.28 0.24 0.29 0.14 0.21 0.29
CHURN 0.54 0.35 0.44 0.30 0.32 0.24 0.40 0.24 0.44 0.41 0.41 0.20
NATION -0.42 -0.05 1.22 0.98 1.41 1.24 1.46 0.75 0.42 0.28 0.16 0.30
CONTINENT 2.16 1.54 1.28 1.30 1.02 0.83 1.34 0.35 0.24 0.04 0.21 -0.18
WORLDWIDE 0.62 1.54 0.21 -0.31 -0.14 0.51 0.59 1.00 0.11 0.50 0.50 0.93
ORGANIZATIONS 0.74 1.04 0.80 0.43 -0.22 0.12 -0.74 0.04 -0.70 -1.03 -0.64 -0.42

adjusted R2 0.82 0.65 0.69 0.64 0.61 0.60 0.69 0.55 0.73 0.68 0.67 0.57

Figure 8: The linear regression model results for effects of distributed development on quality in ECLIPSE.

Levels of Distribution of Plugins in ECLIPSE
Rel. Site Nation Continent Worldwide

3.3 138 (86%) 9 (6%) 11 (7%) 2 (1%)
3.2 138 (81%) 7 (4%) 22 (13%) 4 (2%)
3.1 133 (87%) 7 (5%) 8 (5%) 5 (3%)
3.0 105 (78%) 3 (2%) 21 (16%) 5 (4%)
2.1 73 (78%) 4 (4%) 7 (8%) 9 (10%)
2.0 55 (76%) 6 (8%) 9 (13%) 4 (3%)
All 642 (82%) 36 (5%) 78 (10%) 29 (3%)

Figure 9: The number of modules at each level of distribution
for ECLIPSE.

quality, but that is likely because although the distributed
components did have more pre- and post-release bugs, only
2 plugins were distributed worldwide. This represents only
1% of the plugins in 3.3.

Although not shown in the figure, the magnitude of the
increase in bugs was also significant. In all cases where
distribution was significant, the average number of bugs
for the distributed plugins was at least 50% more than
the collocated plugins; in many cases they had twice as
many bugs or more. Given the small number of plugins that
were distributed worldwide, this does not always represent a
statistically significant result.

Thus our findings for RQ3 are that all measures of
geographic and organizational distribution increase failures,
but the effects are not consistent across releases.

VII. THREATS TO VALIDITY

One threat to construct validity is that we may not
capturing all defects for these projects. We only include bugs
that have been closed because the location of the source of
an unclosed bug is impossible to determine without manual
inspection. We argue that fixed bugs are the most important
to the project (being important enough to warrant being
fixed), and are a reasonable proxy for software quality. A
prior study [29] found that there is some bias in ECLIPSE
bug data relative to bug severity and experience of the bug
closer. We have not examined potential bias in organizational
or geographic dispersion.

A potential threat to external validity is that we do not
capture the ecosystems surrounding both FIREFOX and

ECLIPSE. There are a number of external plugins that exist
for ECLIPSE and FIREFOX that were developed by separate
open source and commercial organizations. For ECLIPSE we
only study the core platform and plugins. This represents the
functionality that a developer gets when downloading one of
the standard versions (we include all plugins that occur in all
standard versions, as each release of ECLIPSE has multiple
downloadable sets of plugins) ECLIPSE from the project
web site. Similarly, we do not include any FIREFOX addons
in our analysis. While this means that we do not capture
all development relative to these projects, this decision was
based on the fact that we are interested in the core product.
Developers of third-party plugins and addons may have little
or no similarity at all.

The impact of organizational and geographic factors on
improvement of the baseline failure models is related to
the features used in the original models. We had to make
decisions regarding what metrics to include in our baseline
models and included size and churn because these have
been shown to consistently have a strong relationship to
failures [25], [30]. Other factors were either difficult to
compute (firefox is written in many languages so any source
analysis would be difficult) or have shown inconsistent
results in different domains (e.g., number of contributors
to a software entity [31], [32]).

VIII. CONCLUSION

We have presented the first study that characterizes both
organizational and geographically distributed development
and examined the effects of these factors on software quality
in two large scale, successful open source projects.

FIREFOX development is quite distributed both geographi-
cally and organizationally, although approximately half of
all commits come from Mozilla Corp. organizationally and
half come from Californa geographically. Only half of all
modules have 75% of their changes originating from one city.
Modules that are geographically distributed tend to be larger,
more complex, and have more contributors. They also exhibit
more defects even when controlling for size and churn.

ECLIPSE differs in that it has very low organizational dis-
tribution. At the system level, ECLIPSE is also geographically
distributed, but this is due to a small number of IBM sites
scattered around the world. At the component level, there



is very little distribution (i.e., almost every component is
developed largely in one location). Geographically distributed
components have many more defects that those that don’t
(though not always statistically significant), although the
effects of distribution have lessened in later releases. Those
components that are organizationally distributed have less
defects in the few cases that are statistically significant.

This paper combined with previous studies of geograph-
ically and organizationally distributed projects serves to
build a body of knowledge regarding the growing field of
distributed software development. Clearly, there is continued
work to be done in order to understand the contexts, processes,
and individual factors that influence distributed development
and its relationship to important outcomes. This is an area
that needs continued study, as distributed development is
becoming an increasingly used approach and there is still
much to be learned about how they differ from collocated
development.

REFERENCES

[1] E. S. Raymond, “The revenge of the hackers,” in Open Sources:
Voices from the Open Source Revolution, C. DiBona, S. Ockman, and
M. Stone, Eds. O’Reilly and Associates, 1999. [Online]. Available:
http://www.oreilly.com/catalog/opensources/book/raymond2.html

[2] W. Scacchi, “Understanding requirements for developing open source
software systems,” IEE Proceedings - Software Engineering, vol. 149,
no. 1, 2002.

[3] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” Software Engineering,
IEEE Transactions on, vol. 31, no. 6, pp. 429–445, 2005.

[4] A. Mockus, J. D. Herbsleb, and R. T. Fielding, “Two Case Studies
of Open Source Software Development: Apache and Mozilla,” ACM
Trans. on Software Engineering and Methodology, vol. 11, no. 3, July
2002.

[5] P. Rigby, D. German, and M.-A. Storey, “Open Source Software Peer
Review Practices: A Case Study of the Apache Server,” in Proceedings
of the International Conference on Software Engineering, 2008.

[6] E. Shihab, Z. M. Jiang, and A. E. Hassan, “On the use of Internet Relay
Chat (IRC) meetings by developers of the GNOME GTK+ project,” in
Proceedings of the 2009 6th IEEE International Working Conference
on Mining Software Repositories. IEEE Computer Society, 2009.

[7] D. S. Pattison, C. Bird, and P. T. Devanbu, “Talk and work: a
preliminary report,” in Proceedings of the Working Conference on
Mining Software Repositories, 2008.

[8] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu, “Chapels
in the bazaar? latent social structure in oss,” in 16th ACM SigSoft
International Symposium on Foundations of software engineering,
2008, pp. 24–35.

[9] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy, “Does
distributed development affect software quality?: an empirical case
study of Windows Vista,” Communications of the ACM, vol. 52, no. 8,
2009.

[10] F. Shull, J. Carver, S. Vegas, and N. Juristo, “The role of replications
in empirical software engineering,” Empirical Software Engineering,
vol. 13, no. 2, pp. 211–218, 2008.

[11] D. Spinellis, “Global Software Development in the FreeBSD Project,”
in Proceedings of the 2006 international workshop on Global software
development for the practitioner, 2006.

[12] R. Tang, A. Hassan, and Y. Zou, “Techniques for identifying the country
origin of mailing list participants,” in 16th Working Conference on
Reverse Engineering, 2009.

[13] G. Robles, S. Duenas, and J. Gonzalez-Barahona, “Corporate involve-
ment of libre software: Study of presence in debian code over time,”
Open Source Development, Adoption and Innovation, 2007.

[14] G. Robles and J. Gonzalez-Barahona, “Geographic location of develop-
ers at sourceforge,” in Proceedings of the 2006 international workshop
on Mining software repositories. ACM, 2006, pp. 144–150.

[15] M. Cataldo and J. Herbsleb, “Factors leading to integation failures
in global feature oriented development: An empirical analysis,”
in Proceedings of the 33rd international conference on Software
engineering. ACM, 2011.

[16] N. Ramasubbu, M. Cataldo, R. Balan, and J. Herbsleb, “Configuring
global software teams: A multi-company analysis of project produc-
tivity, quality, and profits,” in Proceedings of the 33rd international
conference on Software engineering. ACM, 2011.

[17] M. Cataldo and S. Nambiar, “On the relationship between process
maturity and geographic distribution: an empirical analysis of their
impact on software quality,” in Proceedings of ACM SIGSOFT
symposium on The foundations of software engineering, 2009.

[18] N. Nagappan, B. Murphy, and V. Basili, “The influence of orga-
nizational structure on software quality: an empirical case study,”
in Proceedings of the 30th international conference on Software
engineering, 2008.

[19] M. Cataldo, P. Wagstrom, J. Herbsleb, and K. Carley, “Identification of
coordination requirements: implications for the Design of collaboration
and awareness tools,” Proc. of the 20th conference on Computer
supported cooperative work, 2006.

[20] G. Boetticher, T. Menzies, and T. Ostrand, “PROMISE Repository
of Empirical software engineering databases.” West Virginia
University, Dept. of Computer Science, 2007. [Online]. Available:
http://promisedata.org/repository

[21] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” in Proceedings of the 2nd International Workshop on Mining
Software Repositories, 2005.

[22] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan,
“Mining email social networks,” in Proceedings of the 3rd International
Workshop on Mining Software Repositories, 2006.

[23] Billy Biggs, Personal Interview, August 2009.

[24] M. O’Leary and J. Cummings, “The spatial, temporal, and configura-
tional characteristics of geographic dispersion in teams,” Mis Quarterly,
vol. 31, no. 3, pp. 433–452, 2007.

[25] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict com-
ponent failures,” in Proceedings of the 28th international conference
on Software engineering, 2006.

[26] P. Allison, Multiple regression: A primer. Pine Forge Pr, 1999.

[27] G. Jay, J. Hale, R. Smith, D. Hale, N. Kraft, and C. Ward, “Cyclomatic
complexity and lines of code: empirical evidence of a stable linear
relationship,” Journal of Software Engineering and Applications, no. 2,
2009.

[28] E. Weyuker, T. Ostrand, and R. Bell, “Using developer information
as a factor for fault prediction,” in Proceedings of the International
Workshop on Predictor Models in Software Engineering, 2007.

[29] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. Devanbu, “Fair and Balanced? Bias in Bug-Fix Datasets,” in
Proceedings of the ACM SIGSOFT Symposium on The Foundations of
Software Engineering. ACM, 2009.

[30] R. Bell, T. Ostrand, and E. Weyuker, “Does measuring code change
improve fault prediction?” in Proceedings of the 7th International
Conference on Predictive Models in Software Engineering. ACM,
2011, p. 2.

[31] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, “Do too many cooks spoil
the broth? using the number of developers to enhance defect prediction
models,” Empirical Softw. Engg., vol. 13, no. 5, pp. 539–559, 2008.

[32] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t
touch my code! examining the effects of ownership on software quality,”
in Proceedings of the ACM SIGSOFT Symposium on The Foundations
of Software Engineering, 2011.

http://www.oreilly.com/catalog/opensources/book/raymond2.html
http://promisedata.org/repository

	Introduction
	Prior Work
	Research Questions
	Data Collection and Analysis
	Data Collection
	Locating Developers
	Measures of Distribution
	Quality Analysis

	Firefox Results
	Organizational Distribution
	Geographic Distribution
	Effects of Distribution on Quality

	Eclipse Results
	Organizational Distribution
	Development Sites
	Effects of Distribution on Quality

	Threats to Validity
	Conclusion
	References

