
What Effect does Distributed Version Control have on OSS Project Organization?

Peter C. Rigby∗, Earl T. Barr†, Christian Bird‡, Prem Devanbu§, Daniel M. German¶
∗Concordia University, Montreal, Canada
†University College London, London, UK
§University of California, Davis, USA
‡Microsoft Research, Redmond, USA
¶University of Victoria, Canada

peter.rigby@concordia.ca etbarr@ucl.uk cbird@microsoft.com ptdevanbu@ucdavis.edu dmg@cs.uvic.ca

Abstract—Many Open Source Software (OSS) projects are
moving form Centralized Version Control (CVC) to Distributed
Version Control (DVC). The effect of this shift on project
organization and developer collaboration is not well under-
stood. In this paper, we use a theoretical argument to evaluate
the appropriateness of using DVC in the context of two very
common organization forms in OSS: a dictatorship and a
peer group. We find that DVC facilitates large hierarchical
communities as well as smaller groups of developers, while
CVC allows for consensus-building by a peer group. We also
find that the flexibility of DVC systems allows for diverse styles
of developer collaboration. With CVC, changes flow up and
down (and publicly) via a central repository. In contrast, DVC
facilitates collaboration in which work output can flow sideways
(and privately) between collaborators, with no repository being
inherently more important or central. These sideways flows are
a relatively new concept. Developers on the Linux project, who
tend to be experienced DVC users, cluster around “sandboxes:”
repositories where developers can work together on a particular
topic, isolating their changes from other developers. In this
work, we focus on two large, mature OSS projects to illustrate
these findings. However, we suggest that social media sites like
GitHub may engender other original styles of collaboration
that deserve further study.

I. INTRODUCTION

Large, complex software systems must be modularized to
allow for effective collaboration among developers working
on related areas and to isolate developers from changes
that are unrelated to their work [1]. Version control (VC)
complements this modularity by allowing developers to work
independently and then merge their changes with other
developers’ changes [2]. The traditional, Centralized VC
(CVC) model is simple: developers work on a change and
then commit it to a central repository, merging and resolving
any conflicting changes. This centrality forces developers to
constantly deal with changes from a diverse set of developers
and limits the ability of developers to isolate their work
and collaborate with others. In contrast, with Distributed
VC (DVC), there is no inherently central repository. Each
developer has a full copy of the entire history of the system,
and developers are free to share changes between any
repository, provided that at some point the repositories had

a common ancestor [3]. However, certain repositories can
become organizationally important within the development
community. With this flexibility comes complex interactions
that have not been adequately studied by the software
engineering community. In this paper, we examine the styles
of project governance that DVC can support as well as the
ways in which small groups of developers cooperate on topic
specific (i.e., “sandbox”) repositories. The paper is organized
around two research questions:

Q1: How well does DVC support the two common
styles of OSS project governance? Most large, successful
OSS projects are structured around a single developer or
integrator (a “dictator”) or a group of trusted peers (an
oligarchy) [4]. Using these two governance models, we
compare DVC to CVC in terms of the number of exchanges
a developer must make to acquire the current version of the
system. We develop a hypothesis and test it in a case study
comparing Linux to FreeBSD.

Q2: What impact does DVC have on the way individ-
ual developers and small subgroups collaborate? With
a central repository developers must discuss and reach a
consensus on which changes to include. In contrast, with
DVC, each developer has the final say in what makes it
into his or her personal repository. Like-minded developers
can come together to work on a particular topic in relative
isolation. They collaborate in a development sandbox, a set
of branches that represents a project fork that can be used
by other developers or incorporated into the repository from
which “official” releases are made. We illustrate the concept
of sandboxes with examples from Linux.

II. METHOD AND PROJECTS

We use Linux to evaluate hypotheses and questions re-
garding advanced DVC usage because the Linux kernel
project has never used a CVC and its developers are gen-
erally very experienced with the DVC git. As a contrast to
Linux, we select FreeBSD, which at the time of our analysis
used CVS and has now transitioned to SVN, both CVCs.
While both projects are UNIX kernels, we do not compare
these projects technically or in terms of productivity, since

such comparisons are fraught with confounds. Instead, we
use them to provide preliminary answers to our research
questions. We analyzed version control data across a 3.5 year
period starting in 2005 for Linux and 2003 for FreeBSD.

The Linux kernel is organized as a hierarchy or chain-
of-trust. At the top of the chain, the “benevolent” dictator,
Torvalds, ultimately controls what is put into an “official”
release. Beneath Torvalds are a small number of his “lieu-
tenants” whom he trusts. Each lieutenant is responsible for a
section of the project (e.g. Miller maintains the networking
aspects of Linux) or a previous release of Linux. In turn,
these lieutenants trust a small group of individuals. Code
flows from less well-known individuals through a series of
progressively more trusted individuals. As the code moves
up through the chain-of-trust, each individual vets and signs
off on it1.

The FreeBSD project is organized as a foundation or
group of peers [5]. Developers who have demonstrated their
aptitude can be voted into the foundation and receive commit
access to the central VC repository. Within the foundation,
consensus and voting determine policy and resolve con-
troversial decisions. Developers, who do not have commit
access, must convince at least one of the core developers
to commit their code. In effect, FreeBSD is an oligarchy in
which core developers have a vote, while developers outside
of the core group can only voice their opinion.

III. GOVERNANCE: CENTRALIZATION VS.
DISTRIBUTION

We argue the following conjectures regarding VC and
project governance:

1) DVC better serves a centralized (dictatorship) social
structure.

2) CVC better serves a decentralized (community of peers)
social structure.

In this discussion, n is the number of programmers
actively working on a project. A pull occurs anytime a
programmer requests and merges another programmer’s
changes into his or her working copy or repository. A push
occurs when a programmer adds changes to a repository
they do not own. An exchange is a push or a pull. In
Figure 1, we examine the number of exchanges required
for a programmer to obtain the most recent changes under
different combinations of VC and governance.

In Figure 1a, a programmer needs only pull once to get the
most recent code base when using CVC. Figure 1b examines
the use of DVC in a peer setting. Since every programmer
has their own copy of the project, in the worst case (i.e.,
when every programmer makes changes) a programmer must
make n−1 exchanges to acquire the most recent code base.
The number of pulls in a peer group using DVC grows
with the number of programmers. For a small group, n− 1
pulls may not be prohibitive, but once the group grows too

1Email exchange, 2004, http://lkml.org/lkml/2004/5/23/10.

large, the effort required to stay up to date will become
unmanageable or, at best, tedious and time-consuming.

The exploding pull problem disappears in a project with
a strong hierarchy, centered on a dictator who is a star
programmer or integrator, as Figure 1d depicts. We use hp

to denote the “lieutenants” of the programmer p in the hier-
archy shown in Figure 1d (i.e. the developers immediately
below p in the hierarchy). This hierarchical social structure
restricts the number of other programmers with whom p
makes exchanges. Thus, p only needs to pull changes from
each of his lieutenants and from the dictator D, resulting
in hp + 1 exchanges. By definition, the dictator has the
most recent changes published outside of p’s hierarchy.
Hierarchies form to keep the number of individuals one
has to deal with on a human level [6]. Furthermore, a
strict hierarchy is a tree, which by definition does not have
any redundant edges. In practice, as a project grows, h
remains much smaller than the fully connected graph —
h+ 1� n− 1.

The number of exchanges differs for the dictator. In
Figure 2a, the dictator obtains and reviews changes from all
other programmers, yielding n− 1 exchanges to ensure that
his repository is up-to-date when using CVC. Like the peer
scenario using DVC (Figure 1b), this does not scale well. In
contrast, a dictator needs only pull and review changes from
those immediately beneath him, hD, in the hierarchy when
utilizing DVC, depicted in Figure 2b. This structure relies
on a chain-of-trust in the hierarchy, such that the dictator’s
lieutenants are trusted to review and make decisions about
changes that flow through them to the dictator (as occurs in
the Linux kernel). This means the number of exchanges the
dictator requires to obtain the most recent changes remains
constant as the community of programmers grows.

A. Case Study

Perhaps it is not surprising that OSS developers are taking
to DVC with such enthusiasm [3]; most projects have a
very small number of developers and usually one developer
does most of the coding [7], a natural dictatorship. Here,
we examine our conjectures in the context of Linux and
FreeBSD, two large, successful, mature projects. Given the
descriptions of these projects (See Section II), we hypothe-
size that Linux, which uses a DVC, is organized in a more
hierarchical manner than FreeBSD, which uses CVC.

To quantitatively test this hypothesis, we use Krack-
hardt’s [8] measure of graph hierarchy and modify it to
take the magnitude of the relationship into account. Our data
source is the VC commit logs where we use “sign-off” or
“reviewed by” tags as evidence of a hierarchical relationship.

For any pair of developers, let x be the number of times
developer X has signed off on or reviewed developer Y ,
and let y be the number of times developer Y has signed
off on or reviewed developer X . For every pair of developers
where x > 0 ∨ y > 0, the following defines the degree of

http://lkml.org/lkml/2004/5/23/10

C

p

1 exchange

(a) Peers using CVC

p

21

n − 1 exchanges

n − 1

(b) Peers using DVC

D

p

1 exchange

(c) Dictatorship using CVC

D

p

1

1 exchange

hp exchanges

hp

(d) Dictatorship using DVC

Figure 1: Exchanges required for the programmer p to obtain the most recent changes in a peer group or dictatorship for
both CVC and DVC.

D

21

n − 1 exchanges

(a) Dictatorship using CVC

D

1

hD exchanges

hD

(b) Dictatorship using DVC

Figure 2: Exchanges needed for a dictator to update his
repository from the rest of the development team using CVC
and DVC.

hierarchy:

h =
|x− y|
x+ y

. (1)

For a pure hierarchy, h = 1 and for a pure peer group
h = 0. In a pure hierarchy, no individual will review or sign-
off on any individual above them in the hierarchy. If Linux
is a pure hierarchy, nobody would ever sign-off Torvalds’
work. In contrast, in a peer group, a pair of individuals would
sign-off on each other’s work. On the continuum from pure
hierarchies and pure peer groups, the metric examines the
degree to which relationships between pairs of developers
are hierarchical.

Results: We now employ the hierarchy metric h to
evaluate, in the context of this case study, whether our
hypothesis holds.

The number of purely hierarchical pairs of developers
(i.e. h = 1) dominates both distributions: 73% for FreeBSD
and 94% for Linux. However it is clear that FreeBSD has
far fewer purely hierarchical developer pairs. Although OSS

projects typically have a small number of core developers
that do most of the work, there is a much larger group
of developers that submit a small number of contributions.
These developers do not have the authority to sign-off on
code in either Linux or FreeBSD [5].

We examine pairs of developers who have reviewed each
other at least once (i.e. have a reciprocal relationship).
Figure 3 shows that, conditioned on reciprocal relationships,
FreeBSD, whose median is h = 0.75 is again less hierarchi-
cal than Linux at h = .96. A Wilcoxon test indicates that
this result is statistically significant at p� .001.

In light of these findings, we revise our hypothesis.
1) Hierarchical relationships dominate OSS projects.

Large OSS projects are oligarchies or dictatorships that
have a large number of external developers who do not
have sign-off authority. This hypothesis is supported by
previous literature on project structure [5], [9].

2) Socially central projects using DVC (Linux) are or-
ganized in a more hierarchical manner than socially
distributed projects using CVC (FreeBSD).

Our conjectures compare pure DVC to pure CVC. How-
ever, on all projects there is a need for individual collab-
oration as well as some form of centralization from which
official product releases can be made. Most DVC systems,
like git or Hg, can be set up so that a publicly shared central
repository can be pushed to by each developer’s personal
repository. We suspect that the choice of version control
system will not cause a project to change its governance
structure. Future work is necessary to understand the value
of this mixed VC configuration.

IV. DEVELOPMENT SANDBOXES

Fogel, a prominent Subversion developer, states that DVC
is much more difficult for people to grasp than CVC2.
We believe that this is because changes to a CVC always
move through the central repository (i.e. ‘up’ and ‘down’),
while on a DVC changes can move between individual
developers or between a repository shared by a group of

2Email, 2006, http://svn.haxx.se/dev/archive-2007-06/0780.shtml.

http://svn.haxx.se/dev/archive-2007-06/0780.shtml

●●

●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●

●●●

●●●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●

●●●

●●●●●●●●●●

●●●●

●●●

●●●●●●

●●●●●

●●●●●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●

●●●

●●●●●●●●●●●●●●●

●●●

●●●●●

●●●●

●●●●●●

●●

●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●

●●●●●

●●●●

●●●●●●

●●

●●●

●●

●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●

●●●●●

●●●●●●●●●

●●●●●

●●

●●●

●●●●●●●

●●●

●●●●●

●●

●●●

●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●

●●●●●

●●●

●●

●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●

●●●●●●

●●●●●●●●●●●●●●

●●●

●●●●●●

●●●●●●●●●●●●

●●

●●●

●●

●●●●●●●●●●●●●

●●●●

●●●

●●●●●

●●●●●●●●●●●●●●

●●●●●

●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●

●●●

●●●●●●●

●●●●●
●●●

●●●

●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●

●●●●

●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●

●●●●●

●●●●●●●●

●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●

●●●●●

●●●

●●●●

●●●

●●

●●●●●●

●●●●●●●●●●●●●

●●

●●●●●●●●●●●

●●●●●●●●●●

●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●●●

●●●●

●●●●●●

●●

●●●●●●

●●●●

●●●●●●●●●●●●

●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●

●●●●

●●●

●●●●●●●●●●●●

●●

●●●●●●●●●

●●●●

●●●●●●●●●

●●●●●●●●●●●●●

●●

●●●

●●●●

●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●●●●●●

●●

●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●

●●

●●●●●●●●

●●●●●●

●●●

●●

●●●

●●

●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●

●●●●●●●

●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●

●●

●●●●●●

●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●

●●●●●●●●●

●●

●●●●●

●●●●●●

●●●

●●●●

●●●●●●

●●●●●●●●●●

●●●

●●

●●●

●●●●●●

●●●

●●●●●●●●

●●●●●

●●●

●●

●●●

●●●

●●●●●●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●

●●●

●●

●●

●●●●●●●●●

●●

●●●●●

●●●●●●●●●●●●●●●

●●●●
●●●
●●●●

●●●

●●

●●●●●●●●●●●

●●●●●●●●●

●●

●●●

●●●●●●●●●●●●

●●

●●●●●●●●

●●●●●●

●●●●●●

●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●

●●●

●●●●●

●●

●●●●●●●●●●●●●

●●

●●●●●●●●●●●●

●●

●●●

●●

●●●

●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●

Free BSD Linux

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D
eg

re
e

of
 h

ie
ra

rc
hy

Figure 3: Peer group vs. Hierarchy.

developers. These “sideways” exchanges represent collabo-
ration between small, task-focused groups of developers.

In previous work, Bird et al. [10] found that OSS devel-
opers naturally group themselves into task based groups who
disband after the task is completed. However, they did not
find evidence that these developers, who use CVC, created
branches to work on these tasks. Instead, developers working
in similar areas of the system collaborated via related threads
on the developer mailing lists. The FreeBSD project uses this
style of collaboration with all committers working together
on a single repository [5].

In contrast, experienced users of DVC on the Linux
project create separate repositories through which they can
work on a particular topic and later have the code promoted
to a release branch when it is finished. The “MAINTAIN-
ERS” file for Linux contains 62 official, public git reposito-
ries that cover 647 specific topics related to kernel develop-
ment. 555 individuals maintain these topics. Many of these
repositories represent long-lived development priorities (See
Table I for example topics). These repositories are typically
maintained by a single individual; however, they represent
only a small number of the available Linux repositories. For
example, on the social media based GitHub site we see that
there are 416 separate forks of Torvalds’Linux repository3.
A further 3400 individuals are registered to receive updates
when his repository changes.

Linux is modularized in two ways. Like FreeBSD the
system is modularized in the directory hierarchy [1]. Unlike
FreeBSD, Linux also isolates development into sandboxes:
repositories dedicated to a particular topic.

V. CONCLUSIONS AND FUTURE WORK

We reported preliminary results relating to DVC’s effect
on project governance and collaboration among developers.
Our conjectures and case study suggest that strongly hier-
archical projects benefit from DVC, while peer groups tend
to need a central repository to reach consensual decisions.
However, most projects will lie somewhere on the continuum

3https://github.com/torvalds/linux accessed November 2011.

Topic Repository Maintainers

SCSI SUBSYSTEM 3 1
KERNEL BUILD 2 1
GFS2 FILE SYSTEM 2 1
NETWORKING [IPv4/IPv6] 1 6
9P FILE SYSTEM 1 3
· · · · · · · · ·
Total: 647 62 555

Table I: A sample of topics and sandboxes in Linux.

between the pure hierarchy and the pure peer group. Within
this larger governance structure, DVC allow specialized
subgroups to collaborate in a distributed manner on specific
problems (i.e. in a sandbox), while still maintaining a
repository that is used for integration and releases.

DVC has the potential to make releasing, developing,
and coordinating large software projects much less rigid
than its exclusively centralized predecessor. Future work
is necessary to understand GitHub and other online social
media environments that provide a simple and integrated
way to fork repositories allowing individuals and projects
of any size to collaborate in innovate ways.

REFERENCES

[1] I. T. Bowman, R. C. Holt, and N. V. Brewster, “Linux as a
case study: Its extracted software architecture,” in 21st ICSE,
1999, pp. 555–563.

[2] A. Sarma, Z. Noroozi, and A. Van der Hoek, “Palantı́r: raising
awareness among configuration management workspaces,” in
25th ICSE, 2003, pp. 444–454.

[3] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M.
German, and P. Devanbu, “The promises and perils of mining
git,” in 6th Conf on Mining Software Repositories, 2009.

[4] J. Berkus, “The 5 types of open source projects,” 2007, http:
//www.powerpostgresql.com/5 types.

[5] T. Dinh-Trong and J. Bieman, “The FreeBSD Project: A
Replication Case Study of Open Source Development,” IEEE
ToSEM, vol. 31, no. 6, pp. 481–494, 2005.

[6] H. Simon, Administrative behavior: A study of decision-
making processes in administrative organizations. Free
Press, 1997.

[7] S. Krishnamurthy, “Cave or Community? An Empirical Ex-
amination of 100 Mature Open Source Projects,” First Mon-
day, vol. 7, no. 6-3, 2002.

[8] D. Krackhardt, “Graph theoretical dimensions of informal
organizations,” pp. 89–111, 1994.

[9] K. Crowston, J. Howison, K. Crowston, and J. Howison, “Hi-
erarchy and centralization in free and open source software
team communications,” Knowledge, Technology, and Policy,
vol. 18, no. 4, pp. 65–85, 2006.

[10] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu,
“Latent social structure in open source projects,” in 16th FSE.
ACM, 2008, pp. 24–35.

https://github.com/torvalds/linux
http://www.powerpostgresql.com/5_types
http://www.powerpostgresql.com/5_types

	Introduction
	Method and Projects
	Governance: Centralization vs. Distribution
	Case Study

	Development Sandboxes
	Conclusions and Future Work
	References

