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ABSTRACT

Dynamically typed languages such as JavaScript and Python are
increasingly popular, yet static typing has not been totally eclipsed:
Python now supports type annotations and languages like Type-
Script offer a middle-ground for JavaScript: a strict superset of
JavaScript, to which it transpiles, coupled with a type system that
permits partially typed programs. However, static typing has a cost:
adding annotations, reading the added syntax, and wrestling with
the type system to fix type errors. Type inference can ease the
transition to more statically typed code and unlock the benefits of
richer compile-time information, but is limited in languages like
JavaScript as it cannot soundly handle duck-typing or runtime eval-
uation via eval. We propose DeepTyper, a deep learning model
that understands which types naturally occur in certain contexts
and relations and can provide type suggestions, which can often
be verified by the type checker, even if it could not infer the type
initially. DeepTyper, leverages an automatically aligned corpus
of tokens and types to accurately predict thousands of variable
and function type annotations. Furthermore, we demonstrate that
context is key in accurately assigning these types and introduce a
technique to reduce overfitting on local cues while highlighting the
need for further improvements. Finally, we show that our model
can interact with a compiler to provide more than 4,000 additional
type annotations with over 95% precision that could not be inferred
without the aid of DeepTyper.
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1 INTRODUCTION

Programming language use in real-world software engineering
varies widely and the choice of a language often comes with strong
beliefs about its design and quality [24]. In turn, the academic com-
munity has devoted increasing attention to evaluating the practical
impact of important design decisions like the strength of the type
system, the trade-off between static/compile-time and dynamic/run-
time type evaluation. The evidence suggests that static typing is
useful: Hanenberg et al. showed in a large scale user-study that
statically typed languages enhance maintainability and readability
of undocumented code and ability to fix type and semantic errors
[17], Gao et al. found that having type annotations in JavaScript
could have avoided 15% of reported bugs [14], and Ray et al. em-
pirically found a modestly lower fault incidence in statically typed
functional languages in open-source projects [27].

At the same time, some of the most popular programming lan-
guages are dynamically, relatively weakly typed: Python, propelled
by interest in deep learning, has risen to the top of the IEEE Spec-
trum rankings [3]; JavaScript (JS) has steadily increased its foothold
both in and out of web-development, for reasons including the
comprehensive package ecosystem of NodeJS. Achieving the ben-
efits of typing for languages like JS is the subject of much re-
search [8, 22]. It is often accomplished through dynamic analysis
(such as Jalangi [29]), as static type inference for these languages is
made complex by features such as duck-typing and JS’s eval().

Several languages, including TypeScript (TS), have been devel-
oped that propose an alternative solution: they enhance an existing
language with a type system that allows partial typing (allowing,
but not requiring, all variables to have type annotations), which
can be transpiled back to the original language. In this way, TS can
be used and compiled in the IDE, with all the benefits of typing, and
can be transpiled into “plain” JS so that it can be used anywhere
regular JS can. This lowers the threshold for typing existing code
while unlocking (at least partially) the benefits of compile-time type
checking.
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Figure 1: Loosely aligned example of JavaScript code and the TypeScript equivalent with corresponding type annotations.

While developers may benefit from typed dialects of JS such as
TS, the migration path from JS to TS is challenging as it requires
annotating existing codebases, which may be large. This is a time-
consuming and potentially error-prone process. Fortunately, the
growth of TS’ popularity in the open-source ecosystem gives us the
unique opportunity to learn type inference from real-world data: it
offers a dataset of JS-like code with type annotations, which can
be converted into an aligned training corpus of code and its corre-
sponding types. We use this data to train DeepTyper, which uses
deep learning on existing typed code to infer new type annotations
for JS and TS. It learns to annotate all identifiers with a type vector :
a probability distribution over types, which we use to propose types
that a verifier can check and relay to a user as type suggestions.

In this work, we demonstrate the general applicability of deep
learning to this task: it enriches conventional type inference with
a powerful intuition based on both names and (potentially exten-
sive) context, while also identifying the challenges that need to
be addressed in further research, mainly: established models (in
our case, deep recurrent neural networks) struggle to carry depen-
dencies, and thus stay consistent, across the length of a function.
When trained, DeepTyper can infer types for identifiers that the
compiler’s type inference cannot establish, which we demonstrate
by replicating real-world type annotations in a large body of code.
DeepTyper suggests type annotations with over 80% precision at
recall values of 50%, often providing either the correct type or
at least narrowing down the potential types to a small set. Our
contributions are three-fold:

(1) A learning mechanism for type inference using an aligned
corpus and differentiable type vectors that relax the task of
discrete type assignment to a continuous, real-valued vector
function.

(2) Demonstration of both the potential and challenges of using
deep learning for type inference, particularlywith a proposed
enhancement to existing RNNs that increases consistency
and accuracy of type annotations across a file.

(3) A symbiosis between a probabilistic learner and a sound
type inference engine that mutually enhances performance.
We also demonstrate a mutually beneficial symbiosis with
JSNice [28], which tackles a similar problem.

2 PROBLEM STATEMENT

A developer editing a file typically interacts with various kinds of
identifiers, such as names of functions, parameters and variables.
Each of these lives in a type system, which constrains operations
to take only operands on which they are defined. Knowledge of
the type at compile-time can improve the code’s performance and

allow early detection of faults [14, 17, 27]. A stronger type sys-
tem is also useful for software development tools, for instance
improving auto-completion accuracy and debugging information.
Although virtually every programming language has a type system,
type information can be difficult to infer at compile-time without
type annotations in the code itself. As a result, dynamically typed
languages such as JavaScript (JS) and Python are often at a dis-
advantage. At the same time, using type annotations comes with
a type annotation tax [14], paid when adding type annotations,
navigating around them while reading code, and wrestling with
type errors. Perhaps for these reasons, developers voted with their
keyboards at the beginning of 21st century and increasingly turned
to dynamically typed languages, like Python and JS.

2.1 A Middle Ground

Type annotations have not disappeared, however: adding (partial)
type annotations to dynamically typed programming languages
has become common in modern software engineering. Python 3.x
introduced type hints via its typings package, which is now
widely used, notably by the mypy static checker [2]. For JS, multiple
solutions exist, including Flow [1] and TypeScript [5]. Two of the
largest software houses — Facebook and Microsoft — have invested
heavily in these two offerings, which is a testament to the value
industry is now placing on returning to languages that provide
typed-backed assurances. These new languages differ from their
predecessors: to extend and integrate with dynamic languages, their
type systems permit programs to be partially annotated,1 not in
the sense that some of the annotations can be missing because
they can be inferred, but in the sense that, for some identifiers, the
correct annotation is unknown. When an identifier’s principal type
is unknown, these type systems annotate that identifier with an
implicit any, reflecting a lack of knowledge of the identifier’s type.
Their support for partial typing makes them highly deployable in
JS shops, but taking full advantage of them still requires paying the
annotation tax, and slowly replacing anys with type annotations.

One of these languages is TypeScript (TS): a statically typed
superset of JS that transpiles to JS, allowing it to be used as a drop-
in replacement for JS. In TS, the type system includes primitive
types (e.g. number, string) user-defined types (e.g. Promise,
HTMElement), combinations of these and any. TS comes with
compile-time type inference, which yields some of the benefits
of a static type system but is fundamentally limited in what it
can soundly infer due to JS features like duck-typing. Consider

1We avoid calling these type systems gradual because they violate the clause of the
gradual guarantee [30] that requires them to enforce type invariants, beyond those
they get “for free” from JS’ dynamic type system, at runtime.
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the JS code on the left-hand side of Figure 1: the type for p may
be inferred from the call to createElement, which returns an
HTMLElement.2 On the other hand, the type of cssText is al-
most certainly string, but this cannot soundly be inferred from
its usage here.3 For such identifiers, developers would need to add
type annotations, as shown in the TS code on the right.

2.2 Type Suggestion

To the developer wishing to transition from the code on the left to
that on the right in Figure 1, a tool that can recommend accurate
type annotations, especially where traditional type inference fails,
would be helpful. This type suggestion task of easing the transition
from a partially to a fully typed code-base is the goal of our work.
We distinguish two objectives for type suggestion:

(1) Closed-world type suggestion recommends annotations to the
developer from some finite vocabulary of types, e.g. to add
to declarations of functions or variables.

(2) Open-world type suggestion aims to suggest novel types to
construct that reflect computations in the developer’s code.

As a first step to assisting developers in annotating their code, we
restrict ourselves to the first task and leave the second to future
work. Specifically, our goal is to learn to recommend the (ca. 11,000)
most common types from a large corpus of code, including those
shown in Figure 1. To achieve this, we view the type inference
problem as a translation problem between un-annotated JS/TS and
annotated TS. We chose to base our work on TS because, as a
superset of JS, it is designed to displace JS in developers’ IDEs.
Thus, a growing body of projects have already adopted it (including
well known projects such as Angular and Reactive Extensions) and
we can leverage their code to train DeepTyper. We can use TS’
compiler to automatically generate training data consisting of pairs
of TS without type annotations and the corresponding types for
DeepTyper’s training.

Here, the fact that we are translating between two such closely
related languages is a strength of our approach, easing the align-
ment problem [9, 16] and vastly reducing the search space our
models must traverse.4 We train our translator, DeepTyper, on TS
inputs (Figure 1, right), then test it on JS (left) or partially annotated
TS files. DeepTyper suggests variable and function annotations,
consisting of return, local variable, and parameter types.

3 METHOD

To approach type inference with machine learning, we are inspired
by existing natural language processing (NLP) tasks, such as part-of-
speech (POS) tagging and named entity recognition (NER) [12, 20].
In those tasks, a machine learning model needs to infer the role of
a given word from its context. For example, the word “mail” can be
either a verb or a noun when viewed in isolation, but when given
context in the sentence “I will mail the letter tomorrow”, the part
of speech becomes apparent. To solve this ambiguity, NLP research
has focused on probabilistic methods that learn from data.

2 Provided the type of ownerDocument is Document, which may itself require an
annotation.
3Grammatically, it could e.g. be number.
4Vasilescu et al.’s work on deobfuscating JS also successfully leverages machine trans-
lation between two closely related languages [33].

Tasks like these are amenable to sequence-to-sequencemodels, in
which a sequence of tokens is transformed into a sequence of types
(in our case) [32]. Specifically, our task is a sequence of annotation
tasks, in which all elements st in an input sequence s1 . . . sN need
to be annotated. Therefore, when approaching this problem with
probabilistic machine learning, the modeled probability distribution
is P (τ0 . . . τN |s0 . . . sN ), where τi represents the type annotation
of si . In our case, the annotations are the types for the tokens in the
input, where we align tokens that have no type (e.g. punctuation,
keywords) with a special no-type symbol.

Although deriving type annotations has many similarities to POS
tagging and NER, it also presents some unique characteristics. First,
our tasks has a much larger set of possible type annotations. The
widely used Penn Treebank Project uses only 36 distinct parts-of-
speech tags for all English words, while we aim to predict more than
than 11,000 types (Section 4.2). Furthermore, NLP tasks annotate a
single instance of a word, whereas we are interested in annotating
a variable that may be used multiple times, and the annotations
ought to be consistent across occurrences.

3.1 A Neural Architecture for Type Inference

Similar to recent models in NLP, we turn to deep neural networks
for our type inference task. Recurrent Neural Networks (RNN) [9,
15, 19] have been widely successful at many natural language an-
notation tasks such as named entity recognition [12] and machine
translation [9]. RNNs are neural networks that work on sequences
of elements, such as words, making them naturally fit for our task.
The general family of RNNs is defined over a sequence of elements
s1 . . . sN as ht = RNN

(
xst , ht−1

)
where xst is a learned represen-

tation (embedding) of the input element st and ht−1 is the previous
output state of the RNN. The initial state h0 is usually set to a
null vector (0). Both x and h are high dimensional vectors, whose
dimensionality is tunable: higher dimensions allow the model to
capture more information, but also increase the cost of training and
may lead to overfitting.

As we feed input tokens to the network in order, the vector x
for each token is its representation, while h is the output state of
the RNN based on both this current input and its previous state.
Thus, RNNs can be seen as networks that learn to “summarize” the
input sequence s1 . . . st with ht . There are many different imple-
mentations of RNNs; in this work, we use GRUs (Gated Recurrent
Unit) [9]. For a more extensive discussion of RNNs, we refer the
reader to Goodfellow et al. [15].

In general translation tasks (e.g. English to French), the length
and ordering of words in the input and output sequence may be
different. RNN-based translation models account for these changes
by first completely digesting the input sequence, then using their
final state (typically plus some attention mechanism [26]) to con-
struct the output sequence, token by token. In our case, however,
the token and type sequence are perfectly aligned, allowing us to
treat our suggestion task as a sequence annotation task, also used
for POS tagging and NER. In this setting, for every input token that
we provide to the RNN, we also expect an output type judgement.
Since the RNN does not have to digest the full input before mak-
ing type judgements, using this precise alignment can yield better
performance.
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var x = 0 ; var y = x ;
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Bi-directional GRU (650-dim)

Project to Type Vectors

+

Figure 2: Architecture of the neural network with an exam-

ple input and output, where connections between the layers

(at every token) are omitted for clarity. ‘num’ is short for

‘number’ and ‘-’ indicates a dummy type for non-identifier

tokens (which have no type). Note how, in DeepTyper, the

two occurrences of x have an additional custom connection

to improve consistency in type assignment.

To a first approximation, we can use an RNN for our sequence
annotation task where we represent the “type judgement” context
of the token st with τ̂t = ht . Then, to predict the type vector, i.e. a
probability distribution over every type τ in the type vocabulary,
we use an output layer to project the hidden state onto a vector
of dimension equal to the type vocabulary, followed by a softmax
layer to normalize it to a valid categorical probability distribution
over types. Each component of the type vector is then:

Pst (τ ) =
exp(τ̂Tt rτ + bτ )∑
τ ′ exp(τ̂Tt rτ ′ + bτ ′)

, (1)

where rτ is a representation learned for each type annotation τ ,
τ̂Tt rτ is the inner product of the two vectors and bτ a scalar bias for
each annotation. However, this approach ignores all the relevant
context to the right of st , i.e. information in st+1 . . . sN .5 For this
reason, we use an architecture called bidirectional RNNs (biRNN),
which combines two RNNs running in opposite directions, one
traversing the sequence forward and the other in reverse. The
representation of the context for a single token st becomes the
concatenation of the states of the forward (left-to-right) and reverse
(right-to-left) RNNs, i.e. we set τ̂t in Equation 1 to τ̂t = hbit =
[h→t , h

←
t ]: the concatenation of the hidden state h→t , the forward

RNN, and h←t , the reverse RNN at position t .
The network architecture we have described so far assumes that

the annotations we produce for each token are independent of each
other. This tends to be true in natural language but is not the case
for source code: a variable may be used multiple times throughout
the code, but its true type remains the same as at its declaration. If
we were to ignore the interdependencies among multiple tokens,
our annotations might turn out inconsistent between usages of
the same variable. Although the RNN might learn to avoid such
inconsistencies, in practice even long-memory RNNs such as GRUs
have quite limited memory that makes it hard to capture such
5Which is particularly important for this task; consider annotating x in var x = 0.

long-range dependencies.6 To address this problem, we propose a
consistency layer as an extension to the standard biRNN, where the
context representation for the token st is

τ̂t = hbit +
1
|V (t)|

∑
i ∈V (t )

hbii (2)

where V (t) is the set of all locations that are bound to the same
identifier as the one in location t . Specifically, we average over the
token representations after the first bidirectional layer and combine
these with the input to the second bidirectional layer, as shown in
Figure 2. By concatenating the output vector hbit with the average
representation of all the bound tokens, we encourage the model to
use long-range information from all usages of the identifier. Thus,
the model learns to predict types based on both its sequentially local
representation and the consensus judgement for all other locations
where this identifier occurs. We could restrict the non-local part
of Equation (2) to occurrences of the exact same variable only (e.g.
by running a def-use analysis), but we found that it is very rare for
two differently-typed, but same-named variables to occur in the
same file. We chose instead to average over all identifiers with the
same name, as this can provide more samples per identifier. Figure 2
shows the resulting network; we call this model DeepTyper.

Design Decisions. Our neural network encapsulates a set of de-
sign decisions and choices which we explain here. Using the biRNN
model allows us to capture a large (potentially unbounded) context
around each token. Capturing a large context is crucial for predict-
ing the type annotation of a variable, since it allows our model
to learn long-range statistical dependencies (such as between a
function’s type and its return statement). Additionally, including
the identifiers (e.g. variable names) allows the model to incorporate
probabilistic naming information to the type inference problem, a
concept that has not been well explored in the literature. Also, it
should be noted that viewing the input program as a sequence of
tokens is a design decision that trades off the potential to use richer
structural information (such as ASTs, dependency graphs) for the
advantage of using well-understood models for sequence tagging
whose training scales well with a large amount of data.

4 EVALUATION

Figure 3 gives an overview of our experimental setup. First, we
collect data from online open-source projects (Section 4.2). The
second step is initializing and training the deep learner (Section 3).
Finally, we evaluate our approach against, and in combination with,
a type inference engine, and we discuss how to use the trained
algorithm for general code fragments, demonstrated through a web
API. We conclude this section with an overview of the hardware
used and corresponding memory use and timing information.

4.1 Objective

As outlined in Section 2, the goal of this work is to suggest useful
type annotations from a fixed vocabulary for JavaScript (JS) and
TypeScript (TS) code. Here, we define “useful type annotations” as
those that developers have manually added in the TS code, and
which we remove to produce our training data. In TS, there are
6Attention mechanisms [26], could be used to partially relieve this issue, but this
extension is left to future work.
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Figure 3: Overview of the experimental setup, consisting of

three phases: data gathering, learning from aligned types,

and evaluation.

three categories of identifiers that allow optional7 type annotations:
function return types, function parameters and variables. Deep-
Typer learns to suggest these by learning to assign a probability
distribution over types, denoted a type vector, to each identifier
occurrence in a file. To improve training, we do not only learn to
assign types to definition sites, where the annotation would be
added, but to all occurrences of an identifier. This helps the deep
learner include more context in its type judgements and allows
us to enforce its additional consistency constraint as described in
Section 3.

The model is presented with the code as sequential data, with
each token aligned with a type. Each token and type are encoded in
their respective vocabularies (see Section 4.2) as a one-hot vector
(with a one at the index of the correct token/type and zeros oth-
erwise). The type may be a (deterministically assignable) no-type
for tokens such as punctuation and keywords; we do not train the
algorithms to assign these. Given a sequence of tokens, the model
is tasked to predict the corresponding sequence of types.

At training time, the model’s accuracy is measured in terms of
the cross-entropy between its produced type vector and the true,
one-hot encoded type vector. At test time, the model is tasked with
inferring the correct annotations at the locations where developers
originally added type annotations that we removed to produce our
aligned data. Although the model infers types for all occurrences
of every identifier (because of the way it is trained), we report our
results on the true original type annotations both because this is
the most realistic test criterion and to avoid confusion.8

We evaluate the model primarily in terms of prediction accuracy:
the likelihood that the most activated element of the type vector
is the correct type. We focus on assigning non-any types (recall
that any expresses uncertainty about a type), since those will be
most useful to a developer. We furthermore distinguish between
evaluating the accuracy at all identifier locations (including non-
definition sites, as we do at training time) and inferring only at
those positions where developers actually added type annotations
in our dataset. For more details, see Section 4.4.

7Here, any is implicit if no annotation is added.
8In brief, across all identifiers, DeepTyper reaches accuracies close to that of the
compiler’s type inference and a hybrid of the two was able to yield superior results.

Table 1: Statistics of the dataset used in this study.

Category Projects Files Tokens

Train 620 49,850 17,955,121
Held-out 78 7,854 3,918,175
Test 78 4,650 1,884,385

4.2 Data

Data Collection. We collected the 1,000 top starred open-source
projects on Github that predominantly consisted of TypeScript
code on February 28, 2018; this is a similar approach to Ray et al.’s
study of programming languages [27]. Each project was parsed
with the TypeScript compiler tsc, which infers type information
(possibly any) for all occurrences of each identifier. We removed
all files containing more than 5,000 tokens for the sequences to fit
within a minibatch used in our deep learner. This removed only
a small portion of both files (ca. 0.9%) and tokens (ca. 11%). We
also remove all projects containing only TypeScript header files,
which especially includes all projects from the ‘DefinitelyTyped’
eco-system. After these steps, our dataset contains 776 TypeScript
projects, with statistics listed in Table 1.

Our dataset was randomly split by project into 80% training data,
10% held-out (or validation) data and 10% test data. Among the
largest projects included were Karma-Typescript (a test framework
for TS), Angular and projects related to Microsoft’s VS Code. We
focus only on inter-project type suggestion, because we believe
this to be the most realistic use of our tool. That is, the model is
trained on a pre-existing set of projects and then used to provide
suggestions in a different/new project that was not seen during
training. Future work may study an intra-project setting, in which
the model can benefit from project-specific information, which will
likely improve type suggestion accuracy.

Token and Type Vocabularies. As is common practice in natural
language processing, we estimate our vocabularies on the training
split and replace all the rare tokens (in our case, those seen less than
10 times) and all unseen tokens in the held-out and test data with
a generic UNKNOWN token. Note that we still infer types for these
tokens, even though their name provides no useful information
to the deep learner. To reduce vocabulary size, we also replaced
all numerals with ‘0’, all strings with “s" and all templates with
a simple ‘template‘, none of which affects the types of the code.
The type vocabulary is similarly estimated on the types of the
training data, except that rare types (again, those seen less than 10
times in the training data) and unseen types are simply treated as
any. The number of tokens and types strongly correlates with the
complexity of the model, so we set the vocabulary cut-off as low as
was possible while still making training feasible in reasonable time
and memory. The resulting vocabularies consist of 40,195 source
tokens and 11,830 types.

Aligning Data. To create an oracle and aligned corpus, we use
the compiler to add type annotations to every identifier. We then
remove all type annotations from the TS code, in order to create
code that more closely resembles JS code. Note that this does not
always produce actual JS code since TS includes a richer syntax
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beyond just type annotations.We create two types of oracle datasets
from this translation:

(1) ALL identifier data (training): we create an aligned cor-
pus between tokens and types, in which every occurrence
of every identifier has a type annotation from the compiler.
This is the type of oracle data that we use for training. This
data likely includes more types than a developer would want
to annotate, since many could be inferred by the compiler.

(2) GOLD, annotation-only data (testing): we align only the
types that developers annotated with the declaration site
where the annotation was added. All other tokens are aligned
with a no-type. This provides the closest approximation of
the annotations that developers care about and serves as our
test data.

4.3 Experiments and Models

DeepTyper. We study the accuracy and behavior of deep learning
networks when applied to type inference across a range of metrics
(see Section 4.4). Our proposed model enhances a conventional
RNN structure with a consistency layer as described in Section 3
and is denoted DeepTyper. We compare this model against a plain
RNN with the same architecture minus the consistency layer.

For our RNNs, we use 300-dimensional token embeddings, which
are trained jointly with the model, and two 650-dimensional hidden
layers, implemented as a bi-directional network with two GRUs
each (Section 3). This allows information to flow forward and back-
ward in the model and improves its accuracy. Finally, we use drop-
out regularization [31] with a drop-out probability of 50% to the
second hidden layer and apply layer-normalization after the embed-
ding layer. As is typical in NLP tasks like this, the token sequence
is padded with start- and end-of-sentence tags (with no-type) as
cues for the model.

We train the deep learner for 10 epochs with a minibatch size
of up to five thousand tokens, requiring ca. 4,100 minibatches per
epoch. We use a learning configuration that is typical for these
tasks in NLP settings and fine-tuned our hyper-parameters using
our validation data. We use an Adam optimizer [23]; we initialize
the learning rate to 10−3 and reduce it every other epoch until it
reaches 10−4 where it remains stable; we set momentum to 1/e
after the first 1,000 minibatches and clip total gradients per sample
to 15. Validation error is computed at every epoch and we select
the model when this error stabilizes; for both of our RNN models,
this occurred around epoch 5.

TSC + CheckJS. In the second experiment, we compare our deep
learning models against those types that the TypeScript compiler
(tsc) could infer (after removing type annotations), when also
equipped with a static type-inference tool for JavaScript named
CheckJS.9 CheckJS reads JavaScript and provides best effort type
inference, assigning any to those tokens to which it cannot assign
a more precise type. Since TSC+CheckJS (hereafter typically ab-
breviated “CheckJS”) has access to complete compiler and build
information of the test projects (while DeepTyper is evaluated in an
inter-project setting), our main aim is not to outperform CheckJS
but rather to demonstrate how probabilistic type inference can

9see https://github.com/Microsoft/TypeScript/wiki/Type-Checking-JavaScript-Files

complement CheckJS by providing plausible, verifiable recommen-
dations precisely where the compiler is uncertain.

JSNice. In our final experiment, we compare the deep learner’s
performance with that of JSNice [28]. JSNice was proposed as a
method to (among others) learn type annotations for JavaScript
from dependencies between variables, so we thought it instructive
to compare and contrast performances. A perfect comparison is not
possible as JSNice differs from our work in several fundamental
ways: (1) it focuses on JavaScript code only whereas our model
is trained on TypeScript code with a varying degree of similarity
to plain JavaScript, (2) it assigns a limited set of types, includ-
ing number, string, Object, Array, a few special cases of
Object such as Element and Document, and ? (unsure), and
(3) it requires compiler information (e.g. dependencies, scoping),
whereas our approach requires just an aligned corpus and is other-
wise language-agnostic.

4.4 Metrics

We evaluate our models on the accuracy and consistency of their
predictions. Since a prediction is made at each identifier’s occur-
rence, we first evaluate each occurrence separately. We measure the
rank of the correct prediction and extract top-K accuracy metrics.
We evaluate the various models’ performances on real-world type
annotations (the GOLD data). Unless otherwise stated, we only
focus on suggesting the non-any types in our aligned datasets,
since inferring any is generally not helpful. The RNN also emits a
probability with its top prediction, which can be used to reflect its
“confidence” at that location. This can be used to set a minimum
confidence threshold, below which DeepTyper’s suggestions are
not presented. Thus, we also show precision/recall results when
varying this confidence threshold for DeepTyper. Finally, we are
interested in how consistent the model is in its assignment of types
to identifiers across their definition and usages in the code. LetX be
the set of all type-able identifiers that occur more than once in some
code of interest. For DT : X → N, let DT (x) denote the number of
types DeepTyper assigns to x , across all of its appearances. Ideally,
∀x ∈ X ,DT (x) = 1; indeed, this is a constraint that standard type
inference obeys. Like all stochastic approaches, DeepTyper is not
so precise. Let Y , {x | DT (x) > 1,∀x ∈ X }. Then the type incon-
sistency measure of a type inference approach, like DeepTyper, that
does not necessarily find the principal type of a variable across all
of its uses, is: |Y |

|X | .

4.5 Experimental Setup

The deep learning code was written in CNTK [4]. All experiments
are conducted on an NVIDIA GeForce GTX 1080 Ti GPU with 11GB
of graphics memory, in combination with an 6-core Intel i7-8700
CPU with 32GB of RAM. Our resulting model requires ca. 500MB of
RAM to be loaded into memory and can be run on both a GPU and
CPU. It can provide type annotations for (reasonably sized) files in
well under 2 seconds.

Our algorithm is programmatically exposed through a web API
(Figure 4) that allows users to submit JavaScript or TypeScript files
and annotates each identifier with its most likely types, subject to a

157

https://github.com/Microsoft/TypeScript/wiki/Type-Checking-JavaScript-Files


Deep Learning Type Inference ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Figure 4: A screen-shot of our web interface on the example

from Figure 1.

Table 2: Accuracy results of various models, where Deep-

Typer includes the proposed consistency layer (Section 3)

and naïve assigns each identifier the MLE distribution of

types given that identifier from the training data.

Model Top-k Accuracy

GOLD@1 GOLD@5

Naïve 37.5% 78.9%
Plain RNN 55.0% 81.1%
DeepTyper 56.9% 81.1%

confidence threshold. All our code for training and evaluating Deep-
Typer is released on https://github.com/DeepTyper/DeepTyper.

5 RESULTS

We present our results in three phases, as per Section 4.3. We first
study how well deep learning algorithms are suited for type infer-
ence in general, and study the notion of consistency specifically.
Then, we compare DeepTyper’s performance with that of the Type-
Script compiler plus CheckJS, showing furthermore how the models
can be complementary. Finally, we present a comparison (and com-
bination) on plain JS functions with JSNice [28], which tackles a
similar, if narrower task.

5.1 Deep Learning for Type Inference

We first show the overall performance of the deep learning models
on the test data, including both the plain RNN and our variant,
DeepTyper, which is enhanced with a consistency layer. Table 2
shows the prediction accuracy (top 1 and 5) of the true types w.r.t.
the models in the 78 test projects on the GOLD dataset (Section 4.2).
We include a naïve model, which assigns each identifier the type
distribution that it has at training time. This model achieves an
acceptable accuracy without accounting for any identifier context,
giving us a notion of what portion of the task is relatively simple.
Xu et al. report a similar result for Python code [34], although
we stress that this is not an implementation of their model (See
Section 7). DeepTyper substantially outperforms it by including
contextual information and achieves a top-1 accuracy of nearly 60%
and top-5 accuracy of over 80% across the GOLD dataset.

5.1.1 Consistency. In Table 2, DeepTyper yields higher prediction
accuracy than the plain RNN. As we stated in Section 3, we quali-
tatively found that the plain RNN model yielded poor consistency
between its assignments of types to multiple usages of the same
identifier. We quantify this concern with the inconsistency metric

Table 3: Accuracy on the 10 most common, and all other

types, with ‘any’ included for reference

Type Count Top-K Accuracy

top-1 top-5

Top 10 total 9,946 71.1% 95.6%
Others total 5,158 29.6% 53.2%
any* 8,452 66.8% 97.2%

*included only for reference; suggesting any is typically not helpful to developers.

described in Section 4.4. By this metric, the plain RNN assigns an
inconsistent type 17.3% of the time. Our consistency layer has the
effect of taking into account the average type assignment for each
identifier in a function and achieves a modest, but significant con-
sistency error reduction of around 2 percentage points, to 15.4%.
Importantly, it does not accomplish this by sacrificing performance
(as it might by gravitating to common types), but instead slightly
boosts prediction accuracy as shown above. This shows promise for
further investigation into adding global information to these models
(Section 6). Thus, we use the DeepTyper model in our experiments
going forward.

5.1.2 Performance Characteristics. A few, common types, account
for most of the type annotations in the TypeScript data. We study
the discrepancies between the predictability of the 10 most com-
mon types vs. the ca. 11,000 other types in Table 3. We also include
prediction statistics of the any type for reference, which was by far
the most common type in the training data,10 but was substantially
less common among the real annotations shown here. Since all iden-
tifiers are implicitly typed as any unless another type is provided,
recommending this type is not clearly useful. However, developers
do evidently explicitly annotate some identifiers as any, so that
accuracy on this task may still be useful for a type suggestion tool;
this deserves further investigation.

Excluding any, the top 10 types account for most of the typed
tokens. Among the most common types are the primitives string,
number and boolean, as well as several object types: Array,
Promise andHTMLElement. As can be seen, predicting the rarer
types is substantially harder for DeepTyper, but it manages a usable
top-5 accuracy nonetheless. This is especially true at locations
where the model is most confident, as we discuss next.

5.1.3 Recommendation. The deep learning algorithm emits a prob-
ability for each type assignment, which allows the use of a threshold
to determine which suggestions are likely to be correct (Section 4.4).
Figure 5 shows the trade-off in precision and recall when varying
this threshold. Precision first exceeds 80% at a threshold of 90%,
yielding a recall rate of ca. 50%. At a threshold of 99%, precision
exceeds 95% at a still respectable recall rate of ca. 14.9%. At this level,
DeepTyper could add more than 2,000 of the ca. 15,000 annotations
we extracted across the 78 test projects with very high precision.

10This indicates that a great many identifiers could not be typed more specifically by
the compiler, or were too rare to be included in the vocabulary
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Figure 5: Recall vs. Precision of DeepTyper as a recom-

mender on the test data subject to probability thresholds (of

the top suggestion) that reflect the model’s confidence.

5.2 Conventional Type Inference

We compare our results with those obtained by running the Type-
Script compiler with CheckJS (see Section 4.3) on each project in the
test corpus. Our main interest is a hybrid model: when the compiler
has access to each test project’s complete build information, its type
judgements are sound (although CheckJS may contribute a small
number of unsound, heuristic predictions). The cases where it is
unsure and defaults to any are locations where the deep learner
may be able to contribute, since it ‘understands’ what types are
natural in various locations. Thus, the hybrid model first assigns
each variable its CheckJS type. When CheckJS assigns any to an
identifier and DeepTyper is sufficiently confident in its suggestion,
the hybrid switches to DeepTyper’s suggested type. Per Figure 5,
we use confidence thresholds of 90%, 99% and 99.9% to achieve a
balance between high precision (preferred in this setting) and recall.

We also report, as a percentage of all prediction points, how
often DeepTyper correctly changes an any into a more specific
type (Hits) and how often DeepTyper incorrectly suggests a type
when CheckJS was either correct, or had soundly resorted to any
(Misses). Crucially, these “Misses” are not sources of unsound-
ness! In a proper suggestion tool, any suggested type annotation
can first be passed through the type checker and ruled out if it is
unsound. Although this feedback loop was too costly to run for our
automated evaluation, we manually investigated several incorrect
annotations and found that ca. half of these could be ruled out
by the compiler as unsound, whereas the remainder was sound,
even if incorrect. This includes cases where DeepTyper’s type was
too broad: HTMLElement where HTMLButtonElement was
expected, or different from what the user expected, but correct
in the context, like cssText : number would be in Figure 1.
Thus, we conclude that (1) any tool based on our model need not
introduce any unsound annotations, and (2) the “Misses” column
overstates how many incorrect annotations a user would actually
encounter when also employing a type checker. Nonetheless, the
balance between “Hits” and “Misses” gives an indication of the
precision/effort trade-off at various thresholds.

The top-1 accuracy (CheckJS gives only one suggestion) for the
three models is shown in Table 4, which for reference also shows

Table 4: Accuracy of the three models (where DT is Deep-

Typer and CJ is the TypeScript compiler with CheckJS en-

abled) on both datasets. “Hits” reflects when DT overrules

CJ and improves accuracy; “Misses” where it worsens accu-

racy. “Setting” specifies whether only CheckJS’ ‘any’ cases
or all types can be overruled by DeepTyper, and the mini-

mum confidence for DeepTyper to act. Results for CJ and

DT by themselves are shown independent of threshold for

clarity (and are thus identical in their columns).

Setting Accuracy Hits Misses

CJ DT Hybrid

any, 90% 10.5% 56.9% 37.6% 27.1% 1.22%
any, 99% idem. idem. 20.6% 10.2% 0.07%
any, 99.9% idem. idem. 12.2% 1.80% 0.00%
all, 90% idem. idem. 38.5% 28.2% 1.41%
all, 99% idem. idem. 21.1% 10.7% 0.09%
all, 99.9% idem. idem. 12.3% 1.85% 0.00%

a second set of results where DeepTyper is allowed to alter “all”
type judgements (not just anys) when it is sufficiently confident.
Although the models proved complementary on our training data,
CheckJS could not to beyond DeepTyper here on the real developer
annotations at test time. This strongly indicates that developers add
annotations predominantly in those places where the type inference
tool could not infer the correct type. It also stresses the relevance
of our tool: in those cases where developers would need it most, it
yields a top-1 accuracy of over 50% (and, referring back to Table 2, a
top-5 accuracy of over 80%). Furthermore, the hybrid model proves
useful at higher confidence rates by reducing DeepTyper’s incorrect
types: at a 90% threshold, DeepTyper can contribute more than
4,000 types with over 95% precision to CheckJS’ own type inference!
Allowing DeepTyper to correct all types vs. just any does not
appear to be particularly more rewarding in terms of Hits/Misses
trade-off. In all cases, setting a higher threshold tends to improve
the true positive rate of DeepTyper, which is in line with the
precision/recall trade-off seen earlier. Since developers migrating
their code are most likely to appreciate very precise suggestions
first, DeepTyper has the potential to be a cost-effective aide.

5.3 Comparison With JSNice

JSNice was introduced as an approach for (among others) type
inference on JavaScript using statistics from dependency graphs
learned on a large corpus [28]. As discussed in Section 4.3, its
approach is complementary to ours, so we thought it instructive to
compare their performance with that of DeepTyper as well. Note
that we are again using the original DeepTyper model here, not
the “Hybrid” model from the previous section. Because JSNice is
available to use via a web form, we manually entered JavaScript
functions and recorded the results.

We selected JavaScript functions uniformly at random from pub-
lic projects on GitHub that were in the top 100 JavaScript projects
ranked by number of stars (similar to Ray et al. [27]). To avoid trivial
functions, we selected functions that take at least one parameter
and that return a value or have at least one declared variable in
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Table 5: Comparison of DeepTyper, JSNice, and Hybrid of

both across thirty randomly selected JavaScript functions.

Correct Partial Incorrect Unsure

JSNice [28] 51.9% 1.9% 0.9% 45.4%
DeepTyper ≥ 0% 55.6% 2.8% 6.5% 35.2%
DeepTyper ≥ 50% 51.9% 0.9% 2.8% 44.4%
DeepTyper ≥ 90% 35.2% 0.0% 0.0% 64.8%
Hybrid ≥ 0% 71.3% 3.7% 4.6% 20.4%
Hybrid ≥ 50% 70.4% 1.9% 1.9% 25.9%
Hybrid ≥ 90% 64.8% 1.9% 0.9% 32.4%

their body. Thus each function requires two type annotations at
the very least. Because the evaluation had to be performed manu-
ally, we examined thirty JavaScript functions.11 For each function
we manually determined the correct types to use as an oracle for
evaluation and comparison, assigning any if no conclusive type
could be assigned. As a result, we identified 167 annotations (on
function return types, local variables, parameters and attributes) of
which 108 were clearly not any types.

Again, we focus on predicting only the non-any types, since
these are most likely to be helpful to the user. Cases in which JSNice
predicted ? or Object, and cases where DeepTyper predicted any
or was not sufficiently confident are all treated as “Unsure”. We
again show results for various confidence thresholds for DeepTyper
(across a slightly lower range than before, to better match the
“Unsure” rate of JSNice) and include another hybrid model, in which
DeepTypermay attempt to “correct” any cases in which both JSNice
was uncertain (or did not annotate a type at all) and DeepTyper is
sufficiently confident. The results are shown in Table 5.

At the lowest threshold, DeepTyper gets both more types correct
and wrong than JSNice, whereas at the highest threshold it makes
no mistakes at all while still annotating more than one-third of
the types correctly. JSNice made one mistake, in which it assigned
a type that was too specific given the context.12 We also count
“partial” correctness, in which the type given was too specific, but
close to the correct type. This includes cases in which both JSNice
and DeepTyper suggest HTMLElement instead of Element.

Overall, DeepTyper’s and JSNice’s performances are very similar
on this task, despite DeepTyper having been trained primarily on
TypeScript code, using a larger type vocabulary and not requir-
ing any information about the snippet beyond its tokens. The two
approaches are also remarkably complementary. JSNice is almost
never incorrect when it does provide a type, but it is more often un-
certain, not providing anything, whereas DeepTyper makes more
predictions, but is incorrect more often than JSNice. A Hybrid ap-
proach in which JSNice is first queried and DeepTyper is used
if JSNice cannot provide a type shows a dramatic improvement
over each approach in isolation and demonstrates that JSNice and
DeepTyper work well in differing contexts and for differing types.
When using a 90% confidence threshold, the Hybrid model boosts
the accuracy by 12.9% points (51.9% to 64.8%) while introducing
11The source of these functions and the functions themselves will be released after
anonymity is lifted
12We found several more such cases among variables who’s true type was deemed
any and are thus not included in this table.

no additional incorrect or partially correct annotations. At the 0%
threshold, the Hybrid model is more than 15% points more likely
to be correct than either model separately, while introducing fewer
errors than DeepTyper would by itself.

Qualitatively, we find that DeepTyper particularly outperforms
JSNice when the type is intuitively clear from the context, such
as for cssText in Figure 1. It expresses high confidence (and
corresponding accuracy) in tokens who’s name include cues to-
wards their type (e.g. “name” for string) and/or are used in id-
iomatic ways (e.g. concatenation with another string, or invok-
ing element-related methods on HTMLElement-related types).
JSNice often declares uncertainty on these because of a possibly
ambiguous type (e.g. string concatenation does not imply that the
right-hand argument is a string, and other classes may have
declared similarly named methods). Vice versa, when JSNice does
infer a type, it is very precise: whereas DeepTyper often gravitates
to a subtype or supertype (especially any, if a variable is used in
several far-apart places) of the true type, JSNice was highly accu-
rate when it did not declare uncertainty and was able to include
information (such as dataflow connections) from across the whole
function, regardless of size. Altogether, our results demonstrate
that these two methods excel at different locations, with JSNice
benefiting from its access to global information and DeepTyper
from its powerful learned intuition.

6 DISCUSSION

6.1 Learning Type Inference

Type inference is traditionally an exact task, and for good reason:
unsound type inference risks breaking valid code, violating the
central law of compiler design. However, sound type inference
for some programming languages can be greatly encumbered by
features of the language design (such as eval() in JS). Although the
TypeScript compiler with CheckJS achieved good accuracy in our
experiments in which it had access to the full project, it could still
be improved substantially by probabilistic methods, particularly at
the many places where it only inferred any. With partial typing
now an option in languages such as TypeScript and Python, there
is a need for type suggestion engines, that can assist programmers
in enriching their code with type information, preferably in a semi-
automatic way.

A key insight of our work is that type inference can be learned
from an aligned corpus of tokens and their types, and such an aligned
corpus can be obtained fully automatically from existing data. This
is similar to recent work by Vasilescu et al., who use a JavaScript
obfuscator to create an aligned corpus of real-world code and its
obfuscated counter-part, which can then be reversed to learn to de-
obfuscate [33], although they did not approach this as a sequence
tagging problem. This type of aligned corpus (e.g. text annotated
with parse tags, named entities) is often a costly resource in natural
language processing, requiring substantial manual effort, but comes
all-but free in many software related tasks, primarily because they
involve formal languages for which interpreters and compilers exist.
As a result, vast amounts of training data can be made available
for tasks such as these, to great benefit of models such as the deep
learners we used.
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6.2 Strengths and Weaknesses of the RNN

We have shown that RNN-based models can learn a remarkably
powerful probabilistic notion of types through differentiable type
vectors. This probabilistic perspective on types is a necessity for
training these models and raises an interesting challenge: at once
the models can deliver a highly accurate source of type guesses,
while at the same time not being able to make any guarantees
regarding the soundness of even its most confident annotations.
For instance, if the RNN sees the phrase “var x = 0”, it may
deem the (clearly correct) type ‘number’ for ‘x’ highly accurate,
but not truth (i.e. assign it a probability very close to 1). A hybrid
approach provides a solution: when DeepTyper offers plausible and
natural type annotation suggestions, the type checker can verify
these, thus preserving soundness, similar to how a programmer
might annotate code. It is also interesting to ask if we can teach deep
learning algorithms some of these abilities. Provable correctness
is not out of the scope of these models, as was demonstrated for
neural program inference using recursion [11].

DeepTyper’s probabilistic nature also leads to an intriguing kind
of “type drift", also visible in our web tool, in which the probabilities
in a variable’s type vector change throughout its definition and
use in the code, even though its true type is fixed. We partially
mitigated this limited awareness of the global accuracy of its type
assignments by equipping the model with information that is lexi-
cally far away and saw gains in consistency and performance. Still,
a substantial number of consistency errors remain, allowing room
for improvement over the deep learners used in this work if global
and local optimization can be balanced. Such a combination need
not come from deep learning alone: the global model may be a sym-
biosis with a static type checker, or a method such as conditional
random fields [28].

6.3 Extensions

The aligned corpus in our work is one between TypeScript code and
the types for each identifier in this code. As such, our work only
scratches the surface of what this free Rosetta Stone could give!
Type inference is only one step in the compilation process andmany
other parts of TypeScript’s enhancements over JavaScript could be
learned, including type definitions, classes, public/private modifiers,
etc.. Even fully transpiling TypeScript to JavaScript can be used to
create an aligned corpus (although no longer token-aligned, and
with a fair degree of boiler-plate code) that we may, in due time, be
able to exploit to learn to convert entire files. This methodology is
not bound to our current language either; an obvious extension is
to partially typed Python code, but similar tasks in many languages
(e.g. inferring nullity) may well be highly amenable to a comparable
approach.

7 RELATEDWORK

Type inference is a widely studied problem in programming lan-
guage research. Inferring types for dynamic languages has become
an important research area in light of the widespread use of lan-
guages such as JavaScript and Python, and recent moves to allow
partial typing of these [6, 13, 34].

Probabilistic type inference, i.e. the use of probabilistic reasoning
for inferring types has received recent attention. JSNice [28] infers

primitive types of JavaScript code by learning from a corpus. JSNice
builds a dependency network among variables and learns statistical
correlations that predict the type. In contrast to this work, our
deep learner considers a much wider context than is defined by
JSNice’s dependency network and aims to predict a larger set of type
annotations. The work of Xu et al. [34] uses probabilistic inference
for Python and defines a probabilistic method for fusing information
frommultiple sources such as attribute accesses and variable names.
However, this work does not include a learning component but
rather uses a set of hand-picked weights on probabilistic constraints.
Both these works rely on factor graphs for type inference, while, in
this work, we avoid the task of explicitly building such a graph by
directly exploiting the interaction of a strong deep neural network
and a pre-existing type checker.

Applying machine learning to source code is not a new idea.
Hindle et al. [18] learned a simple n-gram language model of code
to assist code completion. Raychev et al. [28] developed a proba-
bilistic framework for predicting program properties, such as types
or variable names. Other applications include deobfuscation [10],
coding conventions [7, 28] and migration [21, 25]. Vasilescu et al.

specifically employ machine learning to an aligned corpus within
the same language, using an obfuscator to learn de-obfuscation of
JavaScript [33]. Their work is closely related to ours, although our
approach works both within TypeScript and can enhance JavaScript
code into TypeScript code because the latter is a superset of the
former. Furthermore, our work learns to translate information be-
tween domains: from tokens to their types, whereas de-obfuscation
is only concerned with translation between identifiers.

8 CONCLUSION

Our work set out to study to what extent type annotations can
be learned from the underlying code and whether such learners
can assist programmers to lower the annotation tax. Our results
are positive: we showed that deep learners can achieve a strong,
probabilistic notion of types given code that extends across projects
and to both TypeScript and plain JavaScript code. We also high-
light their present flaws and hope to inspire research into further
improvements. Even more promising is that DeepTyper proved
to be complementary to a compiler’s type inference engine on an
annotation task, even when the latter had access to complete build
information. Jointly, they could predict thousands of annotations
with high precision. Our tool is also complementary with JSNice
[28] on plain JavaScript functions, which shows that our model
is learning new, different type information from prior work. Our
findings demonstrate potential for learning traditional software
engineering tasks, type inference specifically, from aligned corpora.
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