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AbstractðWith the growing number of large scale software 

projects, software development and maintenance demands 

the participation of larger groups. Having a thorough 

understanding of the group of developers is critical for  

improving development and maintenance quality and 

reducing cost.  In contrast to most commercial software 

endeavors, developers in open source software (OSS) projects 

enjoy more freedom to organize and contribute to a project in 

their own working style. Their interactions through various 

means in the project generate a latent developer social 

network (DSN). We have observed that developers and their  

relationships in these DSNs change continually under the 

influence of differences in the set of active developers and 

their changing activities. Revealing and understanding the 

structure and evolution of these social networks as well as 

their similarities and differences from other more general 

social networks (GSNs) is of value to our software engineering 

community, as it allows us to begin building an understanding 

of how well the findings from other fields based on GSNs 

apply to DSN.  In this paper, we compare DSNs with popular 

GSNs such as Facebook, Twitter, Cyworld (a large social 

network in South Korea), and the Amazon recommendation 

network. We found, for instance, that while most social 

networks exhibit power law degree distributions, our DSNs 

do not.  In addition, we also examine how DSNs evolve over 

time, highlighting how events within a project (such as a 

release of new software or the departure of prominent 

developers) impact the makeup of the DSNs, and observe the 

evolution of topological properties such as modularity and the 

paths of communities within these networks. 
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I.  INTRODUCTION 

Due to the great increase in the scale of software 
projects recently, software development and maintenance 
are highly social activities which have attracted study from 
many researchers [10, 19, 15]. As developers work together 
on software projects, they form implicit collaborative social 
networks [19].  Some researchers have begun to apply ideas 
from general social networks (GSNs) such as Facebook and 
twitter to these developer social networks (DSNs). For 
example, Begel et al. [19] proposed a social networking 
web service, codebook, containing pages with information 
about developers and artifacts in a style similar to Facebook.  
GSNs such as Facebook, Twitter, and Cyworld have 
enjoyed much success as they have leveraged and enhanced 
social relationships.  As researchers study developer 
collaboration networks, a natural question to ask is, “How 
similar are developer social networks to general social 

networks?”  As both DSNs and GSNs undergo more study, 
it is useful to know how similar DSNs are to GSNs.    

Unlike general social networks (GSNs), a developer 
social network (DSN) is an underlying network which only 
reveals itself after being extracted from an open source 
project. Developer social networks generally have stricter 
control over topics than GSNs. In GSNs such as Twitter 
and Facebook, participants are encouraged to post on any 
topic and express their views or feelings. However, 

developers in DSNs are restricted to contribute on project-
related topics. Meaningless or unrelated opinions can be 
grounds for being banned from the project. Therefore, we 
expect that DSNs will differ from GSNs in certain aspects. 
In contrast, developers are similar to participants in GSNs 
in some respects. Neither is forced to participate. 

 Much research exists on GSNs including Facebook [7], 
Twitter [6], and Cyworld [5], and there is pre-existing work 
examining DSNs in OSS projects [10, 15, 16].  However, 
since there has been no formal comparison of these two 
types of networks, it is unclear which properties are general 
and what is specific to these individual types of social 
networks. This paper presents a detailed comparison 
between DSNs and GSNs from multiple aspects including 
community structure. 

Community structure in social networks which has 
attracted considerable attention is an important aspect to 
consider when making the comparison between DSNs and 
GSNs. In 2002, Girvan and Newman [20] introduced the 
notion of community structure within networks as the 
division of a graph into subgraphs (called communities) in 
which the connections within the subgraphs are much 
denser than the connections between them.  They also 
defined a metric, termed modularity [9], for evaluating how 
well a graph can be partitioned into these communities.  A 
graph with high modularity has very well defined and tight 
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Figure 1. An example of community structure in networks. 



knit communities with few connections between them, 
while a low modularity graph has poor structure. The 
networks in Fig. 1 have the same amount of nodes and 
edges. However they have very different structures. The 
network in Fig. 1(a) displays strong community structure 
and has a high modularity 0.51 while the network in Fig. 
1(b) has weak community structure. There is not much 
difference between the densities of inter connections and 
intra connections in this network. It has a low modularity of 
0.176.  Identifying the optimal partition of nodes into 
communities is an NP-complete problem, but in the recent 
years much progress has been made in developing 
algorithms that work well in practice. Beyond this 
comparison we also provide a detailed study of DSNs 
themselves in terms of community evolution, providing a 
reference for researchers and developers. This study 
addresses several questions. We list them here. 

¶ Do DSNs display similar characteristics to GSNs?  
Which characteristic are distinct? 

¶ How does a DSN evolve over time? 

¶ Does a DSN have significant community structure, 
evidenced by tightly knit communities within a 
project? 

¶ What is the evolution of these communities in a 
DSN? Are there obvious patterns or trends evident 
in this evolution? Does the observed evolution 
correspond to key events in the project lifetime? 

To address the above questions, we begin with 
extracting DSNs. We take developers involved in the 
Mozilla Bug Tracking system

1
 as subjects of analysis since 

Mozilla is among the most popular and mature open source 
projects. In the DSNs, the nodes represent developers and 
the edges correspond to developers’ connections via shared 
bugs. 

The structure of this paper is as follows. Section 2 
describes our approach for extracting and identifying the 
communities in DSNs. In Section 3, we study the 
topological characteristics of the developer social network. 
Section 4 presents the topological characteristic evolution 
of the DSN, and Section 5 investigates community 
evolution. Section 6 discusses some threats to validity, and 
Section 7 surveys related work. Finally, we conclude all 
lessons learned in Section 8. 

II. DEVELOPER SOCIAL NETWORK 

COMMUNITIES 

This section describes the methodology of extracting 
DSNs from Mozilla bug reports and their comments from 
2000 to 2009. From the DSNs, we identify communities, 
which are the basic units of our study in community 

evolution. We employ a well-known and widely used 
community identification algorithm, Louvain [11]. Finally, 
we evaluate our methodology by comparing identified 
communities with off-line birds-of-a-feather (BOF) 
meetings at the 2010 Mozilla Summit

2
. 

A. Extracting Developer Social Network 

Bird et al. examined the social interactions on developer 
mailing lists of Apache [16]. Xu et al. examined co-
membership in SourceForge projects [22].  Each of these 
networks is based on a particular form of relationship.  
However, we choose to examine DSNs in the context of 
bug tracking systems for two reasons.  First, the majority of 
bugs are short lived, indicating a strong temporal 
relationship.  Previous work has examined collaboration on 
source files, but using project membership or file 
contributions may indicate false relationships because both 
are long lived and the interactions may be distant 
temporally. Second, bugs are generally focused on one 
technical topic and fixed in a localized portion of the 
codebase.  Bird et al. found that mailing list discussions can 
include general topics such as process discussions that large 
majorities of the community participate in.  As our interest 
is modeling how developers work together, these 
discussions may represent noise in the data.  Individual 
bugs do not elicit comments from a large proportion of the 
developer base as some mailing list discussions do, and 
require more effort than simply replying to a message. 

Specifically, we extract the DSN by mining Mozilla bug 
reports and their comments. Since Mozilla developers are 
free to comment on any bug, the bug comments reflect 
developers’ interest. Our underlying assumption is that 
developers who share the same interest are related to each 
other. We express their relationships in an undirected graph. 

As an illustrative example, suppose we have three bug 
reports and four developers who commented on each bug 
report as shown in Fig. 2(a). Each symbol in a bug report 
indicates a comment in that bug report from the 
corresponding developer.  Based on their comment 

1http://bugzilla.mozilla.org     
2http://wiki.mozilla.org/Summit2010/Meetings                                                          
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Figure 2. An illustrative example of the approach for extracting DSNs 

from a bug tracking system. 
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TABLE I.   INFORMATION OF SUBJECTS 

Subject 
Dec. 2009 Oct. 2009 ~ 

Dec. 2009 

Jul. 2009~ 

Dec.2009 

Jan. 2009~ 

Dec. 2009 

Jan. 2008~ 

Dec. 2009 

Jan. 2006~ 

Dec. 2009 

Time Period 1 month 3 months 6 months 1 year 2 years 4 years 

# of developers 

(remained/total) 

387 

/2996 

558 

/6046 

836 

/10290 

1226 

/16318 

1950 

/31557 

2865 

/51692 

# of bug reports 10586 32223 56904 95721 160626 246331 

# of comments 37056 131569 267749 511777 968339 1610999 

TABLE II.   



relationships, we extract a developer network as shown in 
Fig. 2(b) indicating that developers who made comments on 
the same bugs are connected.  We create weighted edges 
between developers by assigning a weight to each edge 
equal to the number of bug reports that the two developers 
have both commented on. 

In the majority of open source projects (including 
Mozilla), bug reports are open to the public to encourage all 
users to report bugs and comment on the bugs. As a result, 
our developer network includes a large number of users 
who contributed to bug reports only a few times. While 
these contributions are of value to the community, we are 
most interested in examining the interactions of the core 
participants in the community - developers with direct code 
access and participants with a consistent history of activity 
working on bugs.  To remove the “casual” users, we 
eliminate edges with a weight of only one or two.  After this 
elimination process of edges, all nodes that no longer have 
any connected edges are removed from the graph. For 
example, after removing edges whose weight is equal or 
less than three and the resultant unconnected nodes in Fig. 
2(b), we are left with the unweighted graph shown in Fig. 
2(c).  

We extracted 26 DSNs from 496,692 bug reports and 
3,893,025 comments made by 106,123 developers in total. 
Six DSNs are extracted from different lengths of time, and 
the other twenty are extracted from a series of subsequent 
six month periods for examining DSN evolution. We 
provide detailed subject information analyzed regarding the 
different lengths of use in this paper in Table I. 
B. Identifying Communities 

After extracting DSNs from bug reports, we identify 
communities.  Understanding community structure is 
critical to understand the network [10] as it allows us to 
identify sets of developers who share the same interests and 
work on similar issues. To identify communities, we use the 
Louvain [11] algorithm which is widely used in the social 
network analysis literature [1]. Kwak et al. found that 
Louvain outperforms other community detection algorithms 
on most subjects [1]. The Louvain method is probabilistic 
and produces slightly different values of modularity for the 
same graph as the input ordering of nodes change [1]. To 
mitigate this issue, we generated 50 sets of the same data 
with randomly perturbed input orderings of nodes for every 
network and present all the results. 
C. Evaluation of Identified Communities 

Once we have identified the communities in the DSNs, 
we need to verify that they reflect real divisions of 
developers into their communities.  We validated the results 
in two ways. 

First, we selected the developers with the highest node 
degree in the DSNs and examined the project to determine 
if these were leaders within the project. For example, we 
found that Gervase Markham, one of the highest degree 

nodes in our network, started to contribute to the Mozilla 
project in 1999 and is a leading developer in the Bugzilla 
project. Another example is Mike Beltzner, who is a 
famous Mozilla hacker. Gavin Sharp, another high degree 
node, is currently one of the most active developers in the 
Mozilla project. We verified 100 nodes in the network and 
found that all represented key Mozilla developers (they all 
made a large number of commits to the system and/or had a 
long history with the project, most spanning multiple years), 
validating that our DSNs do reflect reality. 

Next, we evaluated the similarity between the identified 
communities in our DSNs and real offline developer 
meetings. We used the birds-of-a-feather (BOF) meetings in 
the Mozilla Summit 2010. BOF meetings represent 
communities in reality since developers that take part in 
those meetings are those that have an interest in them. Since 
these meetings were held only last year (2010), we 
identified developer communities in a DSN created from 
recent bug reports (Jul. 2009 to Dec. 2009).  

The divisions on the top of Fig. 3 represent identified 
communities, and the divisions of the developers on the 
bottom represent BOF meetings.  We measured how many 
developers overlap between real BOF meetings and 
identified communities. For example, community A in Fig. 
3 consists of 70% of BOF X (the Thunderbird 
Fun/Product/Participation meeting), and 100% of BOF Y 
(the Thunderbird engineering/dev-process working session 
meeting). All of the developers from these two BOF 
meetings were placed in the same community by the 
Louvain algorithm. Since in Mozilla Summit 2010, they 
held many small BOF meetings, our identified communities 
include more than one BOF meeting. However the vast 
majority of BOF meetings belong to one community. This 
indicates that while BOF meetings may indicate a finer 
division of developers than our communities, our method 
rarely divides known groups of developers.  We conclude 
that our identified communities reflect real groups of 
developers with similar interests and concerns. Furthermore, 
we consulted a Mozilla developer, Channy Yun, about our 
identified communities, and he confirmed that they reflect 
real Mozilla developer structures. 

III. DEVELOPER SOCIAL NETWORK VS 

GENERAL SOCIAL NETWORK 

This section compares DSNs to various GSNs in 
various domains including Facebook, Cyworld, and Twitter 
by measuring commonly used social network metrics such 
as Power Law, Degree of Separation, Modularity, and 
Community Size. Basic information of all used GSNs are 
shown in Table II. 

In addition, we compare DSNs extracted from different 
lengths of time, which include the most recent 1 month, 3 
months, 6 months, 1 year, 2 years, 4 years (all ending in 
Dec. 2009) For brevity, we name DSNs extracted from 
different periods as length-DSN (e.g. 1-month DSN, 3-
month DSN, … , 4-year DSN). 
A. Power Law 

Various networks (e.g., WWW [18], social [6]) display 
a power-law node degree distribution, having only a few 
nodes with very high degree and a large number of nodes 
with low degree. When plotted on a log-log plot, a power 
law generally follows a straight line.  This property of 
networks is indicative of the existence of a small number of 
“hubs” in the network that act as influential nodes and 

 
Figure 3. Mapping between identified communities and BOF meetings. 

Radius is proportional to number of developers. 

 



information brokers and a large number of peripheral 
members with few connections [23]. 

We start our comparison of DSNs with GSNs by 
investigating the degree distribution. Most GSNs have a 
power law degree distribution with an exponent, r, between 
-2 and -3 [6]. For example, the exponent for blogosphere is 
-2.38 for the Weblogging Ecosystems Workshop collection 
[4] which attests the existence of key bloggers who have a 
high number of blogging friends. This also holds true for 
Twitter which has a power law distribution in both in- and 
out-degree with the same exponent -2.4. What is more 
interesting is that some networks like Cyworld, a famous 
large scale South Korean social network service, show two 
different scaling regions, a rapid decay (r~-5) and a heavy 
tail (r~-2) [5]. We applied the approach of analyzing power 
law distributed data introduced by Clauset et al [24] to 
obtain the power law distribution exponent for each DSN. 
Based on the visualization in Fig. 4, we found that only a 
small portion of the curve can be fit to a power-law 
distribution. Therefore, we conducted the quantitative 
power law fit test introduced by Clauset et al. [24] to test 
whether the DSN degree distribution is different from a 
power law distribution to a statistically significant degree. 
The p-value, which is the likelihood that the DSN degree 
distribution actually does follow a power-law (the null 
hypothesis), was less than 0.1 for all DSNs in Fig. 4, 
indicating that none follow a power law distribution.  

We therefore conclude that different from GSNs, DSNs 
do not have a power law degree distribution, irrespective of 
length of time. However, the degree distributions in DSNs 
have some properties similar to those in GSNs. DSNs also 
have a large portion of developers with low degree and a 
small portion of developers with high degree. Moreover the 
portion of high degree nodes is relative small in DSNs.  

B. Degree of Separation 

Degree of separation, the shortest distance between any 
two nodes of a network, has become a crucial metric for 

analyzing the social structure ever since Stanley Milgram 
reported the famous “six-degrees of separation” experiment 
in 1969 [12]. With the emergence of social networks, 
degree of separation has been well studied in various social 
networks including Cyworld and Twitter [5, 6]. The total 
number of registered users in Cyworld was 12 million as of 
November 2005, when Ahn et al. reported that the average 
path length between 90% of nodes in Cyworld was less than 
6 [5]. Kwak et al. found that the average path length of 
Twitter is 4.12 [6]. For 70.5% of node pairs, the path length 
is 4 or shorter and for 97.6% it is 6 or shorter. 

Since the scale of DSNs is smaller than that of GSNs, 
we employed the Floyd-Warshall algorithm [13] to obtain 
the distribution of the shortest path length between any two 
nodes. Compared to the Breadth-First algorithm which is 
used in the Twitter and Cyworld analyses, the Floyd-
Warshall algorithm is more efficient for smaller scale 
networks.  

The average path length in DSNs varies from 2.9 to 3.4. 

The developers in 1-month DSN are farthest from each 

other. For 91.9 % of pairs of nodes in it, the path length is 5 
or shorter. In the rest of the DSNs, the path length is 4 or 
shorter for at least 90% of pairs of nodes. In addition, we 
see a slight downward trend in the average path length 
when the length of period increases. This result is not 
surprising. Although there are additional developers, there 
will also be many more connections in DSNs over time. 
Overall, the developers in DSNs are closer to each other 
than participants in GSNs such as Twitter and Cyworld.  

Like GSNs, DSNs also have the so-called “small world” 
property which means most pairs of developers are 
connected within a few hops in the same way as pairs of 
participants’ in GSNs. Moreover, the average path length in 
DSNs is much shorter than that of Cyworld and Twitter. 
We speculate that this might be due to the fact that users on 
Cyworld and Twitter have a wider choice of topics while 
developers in DSN are restricted to participate in a narrower 
range of topics, therefore increasing the likelihood of shared 
interests.  

TABLE III.  INFORMATION OF GSNS 

 WWE Twitter  Cyworld[5]  Cyworld[1]  Facebook Amazon FL GL Hugged 

#  of nodes 143736 87897 12048186 11537961 63730 409687 16800000 617864 116376 

# of edges 707761 829247 190589667 177566730 817090 2464630 73300 277540 51343 

TABLE IV.   

 

Figure 4. Topological characteristics of DSN. The y-axis presents the 

complementary cumulative distribution function (CCDF), and the x-

axis presents the degree of a node. 

 
Figure 5. Degree of Separation for various DSNs and GSNs. 
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C. Modularity 

Modularity, ὗ, is the standard measure [1, 3, 10, 11] 
used to quantify the strength of a community structure. 
Higher modularity indicates that there are clearly defined 
communities (teams) within the network. Modularity was 
introduced by Newman and Girvan in their original 
community structure paper [9] and for some partition of a 
graph into communities, its definition is: 

     ὗ В Ὡ ὥ                                    (1) 

where Ὡ is the proportion of the edges between nodes 
within community Ὥ over all edges in the graph, and  ὥ is 
the proportion of all edges that cross the community 
boundary.  When the value of modularity is 0, the 
community structure is no stronger than that of a randomly 
generated network; there are no communities within the 
network. The Maximum value of modularity is 1. We 
employ modularity in an effort to understand the 
community structure of DSNs more easily.  In our context, 
the modularity indicates if there is a clear division of the 
Mozilla developer population into teams or if the project is 
fairly integrated with developers coordinating on bugs in an 
unorganized fashion. 

Kwak et al. [1] obtained the modularity of 12 social 
networks including Facebook and Cyworld, showing that 
except for the now famous Zachary’s Karate Club (a small 
network that has become a de facto benchmark in 
community structure work), social networks have 
significant community structure since their values of 
modularity are all above 0.3 [6].  In practice, 0.3 is a 
threshold above which a naturally occurring network is said 
to be highly modular [9].  

In this section, we examine whether DSNs have as 
strong a community structure as other GSNs by applying 
the Louvain algorithm on all DSNs in Fig. 6. As mentioned 
in Section 2.2, Louvain produces slightly different results 
on the same network with different input orderings of nodes, 
so we examined the results for 50 different orderings for 
each subject DSN. Overall, modularity values are always 
above 0.3 for the DSNs. With the length of time period 
increasing, the modularity shows a fluctuant decrease. The 
highest modularity was obtained in the 1-month DSN, 
where the median value was 0.57. 

We conclude that similar to GSNs, DSNs have 
significant community structure, as reflected by their 
modularity. 
D. Community Size 

Within a network with community structure (i.e. high 
modularity), the community size refers to the total number 
of nodes within a community. The community size is a key 

quantitative characteristic of community structure in a 
network as it indicates if communities are disparate or 
uniform in their division of a network [17]. 

Nazir et al. [7] compared the community sizes of three 
game applications in Facebook: Fighters’ Club (FC), Get 
Love (GL), and Hugged. All three games have more than 
10,000 users. The biggest community for FC accounts for 
72.6% of the total users, while the biggest communities in 
GL and Hugged account for less than 10% of the users. 
They also found that FC has a biased distribution of 
community size, but communities from both GL and 
Hugged have similar wider community size spreads.  
Similarly, Clauset et al. [8] studied the community size in 
the Amazon.com network which has more than 400,000 
users. The biggest community accounted for 28% users of 
the entire network. They found that the community size 
distribution of Amazon.com network follows a power law.  
Following a similar methodology, we measured the 
community sizes of DSNs in different length of periods 
ranging from 1 month to 4 years. Again, we ran the 
Louvain algorithm 50 times dividing the DSNs into sub-
communities and computed the sizes of communities in the 
division for each DSN.  

Fig. 7(a) shows the inter-quartile box-plots of the 
community size distributions. The sizes of the communities 
are small regardless of the length of time period. For 
instance, the biggest communities in 1-month and 4-year 
DSNs only have 83 and 718 developers respectively. The 
biggest community of the DSNs accounts for 21% ~ 36% of 
the users and the ten biggest communities account for more 
than 99% of the users for all DSNs. The community size 
median is small and varies from 23 to 55. The distributions 
of community size display a similar property to a power law 
distribution, with a few big communities but many small 
communities.  

A DSN has many similar characteristics to a GSN in 
terms of community size. First, several big communities 
account for almost all users in the network. The ten biggest 
communities account for 87% of users in Amazon.com 
while that accounts even more in DSNs. Second, the 
biggest community accounts for similar percentage of users, 
28% in Amazon, 21%~36% in DSNs. Fig. 7(b) plots the 
size distribution of the ten biggest communities after 
normalizing by the total size of the network. The 
distributions are surprisingly similar despite the fact that 
they differ in size by orders of magnitude. 

 
Figure 7. Community size distribution.  Normalized community size is 

measured in terms of proportions of all nodes in the graph since Amazon 
is much larger. 

 
Figure 6. Modularity for DSNs of dif ferent time durations 



E. Analysis Summary 

We summarize the DSN analysis results. 

¶ Unlike GSNs, DSNs do not follow a power law 
degree distribution. However, DSNs do have other 
similar properties to GSNs such as having a large 
portion of nodes with low degree and only a small 
portion of nodes with high degree. 

¶ Similar to GSNs, DSNs also have the small world 
property of low degree of separation.  However, 
DSNs have a “smaller” world property. 

¶ DSNs and GSNs both have strong community 
structure, with modularity values above 0.3.  

¶ The size of communities in DSNs is small 
compared to that in most GSNs. We also find that 
DSNs have a widespread community size 
distribution and their biggest community accounts 
for 21% to 36% of the total developers.  

¶ Regardless of time period (except 1-month DSN), 
DSNs have very similar social network properties 
including degree of separation, modularity, and 
community size.  In addition, we found that the 6-
month DSN is a representative of all time durations 
beyond 6 months. 

IV. DEVELOPER SOCIAL NETWORK EVOLUTION 

We have characterized the differences and similarities 
of DSNs to GSNs.  In this section, we turn to an 
examination of the evolution of social network properties 
over time. Here we are also only interested in participants 
with a consistent history of activity working on bugs. 
A. Identifying the Length of Unit Period 

The first step in observing DSN evolution is to decide 
the basic time period unit. We can observe DSN changes 
for every month, every year, etc. Based on our observations 
described in Section 3.5, we use 6 months as a 
representative period and observe how the DSN changes 
every 6 months. In our figures, we divide each year into 
first half of the year (using an “fh” suffix) and second half 
of the year (“sh”). 
B. Developer Changes 

We first observe developer changes. Fig. 8 shows the 
number of new developers and old developers for every 6 
month period.  For each column, the gray bar indicates the 
number of developers that are new in that time period and 
black, the number of developers active in this time period 
that have been active in an earlier time period. The total 
number of developers falls into the range of [500, 1200] 
except for the first period (i.e., the first half year of 2000). 

We also observe that the total number of developers 
increases until 2002. After that, there is a sharp fall-off 
around 2004 dropping from 1,093 developers to 533.  

Fig. 8 also shows new developers continually joining 
the DSN. From 2000 to 2004, new developers account for 
more than 39% of the developers in the DSN. Fig, 8 shows 
a similar sharp fall in the percentage of new joining around 
2004.  We have found evidence that this is related to the 
Firefox 1.0 release in September 2004. A number of 
influential developers who developed Netscape/Mozilla left 
the community soon after. For example, Blake Ross, a core 
developer, began his new company after the release. 
Similarly, a few core developers including Ben Goodger 
and Katsuhiko Momoi joined Google in 2005. We define a 
“core” developer to be someone that has direct source code 
commit privileges, contributes non-trivial amounts of code 
to multiple parts of the system, and has been active in the 
community for a period of years. We note that these 
developers who had an influence on the community also 
had corresponding high degree in the DSN and were 
important members of their communities, indicating that 
these social network measures are indicative of real world 
impact. 

From the above observation, we find that the behaviors 
of influential people often affect other developers in the 
DSN. The drastic drop in total number of developers in the 
DSN may be due to the departure of these influential 
developers. 

C. Degree Distribution Evolution 

We also observe the evolution of degree distribution 
since the degree distribution is a key property of a network 
(e.g. indicating if a small number of developers play a 
disproportionately important role). As we did in Section 3.1, 
we also tested the power law distribution hypotheses for all 
DSNs in Fig. 9.  The p-values for 14 DSNs are less than 0.1 
while for the other 6 DSNs the p-values are greater than 0.1, 
indicating that over two thirds of the DSNs differ from 
GSNs in that respect.  For those which were not statistically 
different from a power-law, their large p-values might be 
due to lack of enough sample data [24].  Although DSNs do 
not display a power law degree distribution over time, they 
always have a large portion of nodes with low degree and a 
small proportion of nodes with high degree over time.   

 

Figure 9. Degree distribution of DSNs over time 
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Figure 8. Number of active developers over time 
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D. Degree of Separation Evolution 

Fig. 10 shows the degree of separation evolving over 
periods. Overall, the average path length increases slowly 
from 2.45 to 3.02 over the 10 years. Although the distance 
between developers increases a small amount over time, 
developers are always quite close to each other in the DSNs. 
More than 93% pairs of developers are within four hops of 
each other over the whole time period. We conjecture that 
the small increase is due to the large amount of newly 
incoming bug reports (e.g., on average, 24,964 per period). 
Over time, the rate of bug reporting and commenting has 
increased. However, there is no such increase in the number 
of developers every period. The probability of two 
developers commenting on the same bug report at random 
decreases over time, which might lead to the increase of 
average path lengths. This is true for all but three periods: 
the first half year of 2001, 2005 and 2007.  In conclusion, 
the increase in average path length is small and oscillates 
within a very narrow range above 2.7 after 2004. Thus, we 
consider it fairly constant over the long term (i.e., the 
average path length approaches a fairly stable level). 
E. Modularity Evolution 

We next examine modularity within the DSNs.  Fig. 11 
presents boxplots of the modularity for each period which 
consists of 20 experiments, each containing 50 runs with 
perturbed input node order.  It displays a fluctuant increase 
in the modularity over periods from the first half year of 
2000 to the second half year of 2009. The lowest 
modularity value is 0.20 (e.g. median of modularity values 
obtained from 2000sh-DSN) while the highest modularity 
value is 0.52 (e.g. median of modularity values obtained 
from 2009fh-DSN).  All DSNs extracted before June 2003 
have a modularity value below 0.3 indicating a more 
integrated community [8]. In contrast, the modularity 
values of all DSNs obtained after July 2003 are above 0.3 
and we see a general upward trend over time, implying that 
the community has split into more well-defined teams over 
time. 

We observe that the modularity increases over time. 
Since there is no mandated structure, the organization of the 
project and architecture of the code may be somewhat 
volatile as the project gradually and organically converges 
to a stable and accepted structure. Baldwin [21] found that 
the restructuring of the Netscape codebase (from which 
Mozilla originated) had both architectural (the code became 

more modular) and organizational (more newcomers began 
joining the project) impact afterwards.  In addition, the 
Mozilla Foundation, which exists to support and provide 
leadership for Mozilla project, was officially launched on 
July 15, 2003. This likely contributes to the increase in 
modularity after 2003. Overall, we conclude that DSN 
modularity shows a clear increasing trend, indicating that 
teams are becoming more well-defined within the Mozilla 
project. 

F. Community Size Distribution Evolution 

Fig. 12 presents the community size distribution 
evolution over 10 years starting from 2000. The biggest 
community accounts for 20% - 43% of the developers in the 
DSNs, and the size of the median community falls into the 
range [14, 141] fluctuating over time instead of increasing 
or decreasing.  

Based on this observation together with the fact that the 
total number of developers in DSNs for each period is less 
than 1,200, the community sizes in the DSNs are generally 
small (most below 75 members), with few changes over 
time. We see much more variance at the beginning of the 
project, when developer turnover was higher, than we do in 
the latter half of the project.  We conclude that although 
community sizes initially were quite unstable, they have 
remained fairly consistent over the last 5 years.  Again, this 
confirms that a team structure is apparent in the Mozilla 
project. 

G. Analysis Summary 

We summarize the conclusions from our evolution 
analysis below: 

¶ The sharp change of the developer numbers around 
2004 implies a big adjustment in Mozilla following 
the Firefox 1.0 release. Afterwards, the number of 
active developers is stable over time. 

 
Figure 10. Evolution of Degree of Separation in Mozilla DSNs 

0 2 4 6 8 10 12 14 16 18

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Degree of Separation Evolution

Distance between two developers

P
ro

b
a

b
ili

ty

2000fh  APL(2.45)

2000sh APL(2.46)
2001fh  APL(2.43)

2001sh APL(2.51)
2002fh  APL(2.53)
2002sh APL(2.63)

2003fh  APL(2.72)
2003sh APL(2.82)

2004fh  APL(2.86)
2004sh APL(2.88)
2005fh  APL(2.81)

2005sh APL(2.81)
2006fh  APL(2.90)

2006sh APL(2.91)
2007fh  APL(3.11)

2007sh APL(2.77)
2008fh  APL(2.85)
2008sh APL(2.90)

2009fh  APL(2.99)
2009sh APL(3.02)

 
Figure 11. Modularity evolution  

 

Figure 12. Evolution of community sizes in Mozilla over time  
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¶ DSNs have a large proportion of nodes with low 
degree and a very small proportion of nodes with 
high degree over time. 

¶ In DSNs, the average path length slowly increases 
over time, but never grows to the size of GSNs, as 
over 90% of pairs of developers remain connected 
within three hops. 

¶ The modularity of DSNs increase steadily over 
time, indicating communities that become more 
tight-knit. 

¶ DSN communities are usually small without 
notable size change over time. 

V. COMMUNITY EVOLUTION 

In this section, we change our focus to examine how the 
communities within the Mozilla DSNs evolve over time.  
A. Community Evolution Patterns 

Lin et al. [2] proposed a community evolution 
taxonomy including five patterns: derivation, merge, split, 
extinct, and emerges. We refined these patterns and added 
interpretation of each pattern in the context of DSNs in 
table III.  We identified all of these patterns in the 
community evolution for the DSNs as shown in Fig. 13. 

B. Evolution Map 

To observe community evolution, we need to trace 
communities over time. To this end, we use community 
similarity between two consecutive periods. Given a set of 
communities ὅὴ ὅ ὴ  in time period ὴ for Ὧ
ρȣὑ, where ὑ is the number of communities in period ὴ, 
we first compute the percentage of common nodes over the 
size of the smaller community for all possible pairs of 

communities ὅ ὴȟὅᶻὴ ρ . This is to determine 

which communities in the next time period are similar in 
makeup to each community in the current time period.  
Then we determine the closest community set ὅᶻὴ ρ  
for each ὅ ὴ by setting a threshold ‐ πȢσ to filter out 
irrelevant communities. We refer to such a community set 
as a post community set of ὅ ὴ. Similarly, we refer the 

closest evolution community set ὅᶻ ὴ ρ  as the prior 
community set of  ὅ ὴ.  

Each node in Fig. 13 represents a community, and each 
edge represents an evolution relationship between two 
communities. For example, an edge starting from 
community A and directed towards community B indicates 
that community B evolved from community A.  In Fig. 13, 
communities detected in the same half year are aligned 
horizontally.  

Overall, there are far more isolated nodes before 2005 
than after, which indicates that more communities had weak 
stability before 2005. This might be due to lack of 
organization of developers. Firefox is arguably the most 
successful of the Mozilla projects and its 1.0 release was in 
September 2004. Mozilla Thunderbird made its 1.0 release 
soon after, in December 2004.  This is consistent with our 
earlier developer evolution analysis, where we saw that 
developer turnover decreased dramatically after these 
releases. We examine several representative paths shown in 
Fig. 13. 

Firefox (the bold_unfilled_circle path). The Firefox 
path in Fig. 13 shows the communities that contain several 
known Firefox developers including Gavin Sharp, Mike 
Beltzner, Ria Klaassen, and Mike Conner. These four 

Firefox developers eventually reached prominence and their 
node degrees were all among the top 10. They appear in 
communities along the path that of bold outlined circles, 
based on our conjecture that this path characterizes the 
activity of Firefox. 

Bugzilla (the gray_filled_circle path). The Bugzilla 
path is long lived, evolving from 2001 to 2009. According 
to our observations, this path displays the evolution of the 
Bugzilla project. There is one short branch starting from the 
second half of 2008 which comprises the black filled circles. 
This short branch is related to the development of the 
Camino project. 

Rhino (the dashed path). The sizes of all communities 
along this path are small. Based on the activities of 
developers in this path, we deduce that it is related to the 
development of the Rhino project. Norris Boyd, Rhino’s 
creator, appears in most of these communities. 

Security (the shadow_circle path). This path 
represents the evolution of the security community as many 
active developers in this path are members of the security 
group. There are a few branches that connect to this path, 
implying that developers in this group are also interested in 
other projects. This result is consistent with the fact that 
security is an issue affecting all projects. 

We use several community evolution instances in Fig. 
13 to illustrate whether the patterns observed reflect reality. 
The Expand instance labeled in the Firefox path coincides 
with the 3.0 release of Firefox on June 17, 2008. Many 

TABLE III  COMMUNITY EVOLUTION PATTERNS AND THEIR IMPLICATIONS 

ON DSNS. 

Patterns Description 

Expand 

Expanding is when a community increases 

in size and its prior community set 

comprises only one community. This 

indicates that newcomer developers are 

being attracted to this community. 

Shrink 

Shrinking is when a community decreases in 

size and its prior community set comprises 

only one community. This is evidence that 

the community’s developers are leaving the 

project or they are joining other 

communities. 

Merge 

Merging describes when a community has at 

least two communities in its prior 

community set. This indicates at least two 

communities that have shared bugs and, 

therefore, common interests. 

Split 

Splitting is when a community has at least 

two communities in its post community set. 

This pattern shows that an interest 

discrepancy occurred in the single 

community. 

Extinct 

Extinction is when the post community set 

of a community contains no community. this 

implies that developers have left or 

completely scattered to a number of other 

communities  

Emerge 

Emergence is when the prior community set 

of a community contains no community. 

This may signify the emergence of a new 

interest or area of bugs.  

 



developers joined the Firefox community after this event 
through dealing with Firefox 3.0 bugs. The Shrink instance 
labeled in the Bugzilla path occurs at the same time as 
Bugzilla 2.16, the version that lasted the longest between 
releases.  This high level of stability may have either caused 
or resulted from developers leaving.  The Split instance 
labeled in the Security path is coincident with the release of 
Firefox 2.0.  During this release, some security developers 
mainly focused on Firefox 2.0, while others stayed in the 
original security path. The subsequent Merge instance 
labeled in the Security path reflects the fact that after 
dealing with security problems in Firefox 2.0, those who 
focused on that codebase returned to their original 
community. 

C. Analysis Summary 

Some of the interesting findings made during our 
analysis include: 

¶ The community evolution in the DSNs contains all 
five patterns found by Lin et al. [2]. 

¶ The community evolution in DSNs displays various 
paths which correspond to historical evolution of 
various sub projects in Mozilla and activity of core 
developers in Mozilla’s history. 

¶ At the beginning of an open source project the 
communities are fairly dynamic, but we observe 
that as time progresses, developers tend to “settle 
down” into fixed groups. 

VI. THREATS TO VALIDITY 

Here we enumerate possible threats to validity in our 
study along with methods used to mitigate these threats. 

In order to remove casual users, we removed nodes with 
edge weights of only one or two.  We use this as indication 
that they do not have high levels of activity and are not key 
members of the community.  While this means that we 
remove some members from our analysis, their low 
connectivity implies that these participants have little 
impact on the properties of DSNs that we have examined.  

We also tried to determine a suitable length of time for 
observing the DSNs by inspecting four metrics: power law, 
degree of separation, modularity, and community size. 
While it is possible that different time periods may yield 
different results, we cover a comprehensive range of time 
periods. 

Next, we examined some paths in the community 
evolution of the DSN and made the connection between 
these paths and both core developers and actual events by 
analyzing basic information of related bugs, checking 
information from Mozilla’s website, and consulting 
developers in Mozilla. While it is possible that this 
evaluation may miss some key events, this method has been 
used frequently in the past with positive results [10].  

In this work, we have only conducted analysis on the 
Mozilla project. We chose Mozilla because it is mature, 
large, considered successful, and has been well studied in 
prior research, allowing the reader to integrate our results 
with the findings of others. It is possible that these results 
on Mozilla may not generalize to other developer social 
networks. However, our methodology for analysis could 
easily be used with other projects such as Eclipse. 

VII. RELATED WORK 
There has been prior work on analyzing the static and 

dynamic properties of various networks. Due to space 
constraints, we survey the work related to our own. 

Crowston and Howison [15] built social links between 
developers based on their co-occurrence information in bug 
reports. Their work aims to study the communication 
centralization problem in OSS teams. Our study also used 
the co-occurrence information of developers in bug reports 
to build social network among developers.  However we 
aim to study both static and dynamic global properties of 
DSNs.  Additionally the scale of the subject used in our 
work is much larger than theirs. 

Bird et al. [16] extracted social networks from mailing 
list archives and empirically studied the differences 
between developers and non-developers from a social 
network metrics perspective. They also investigated the 
correlation between development activity and social 
network status of developers. In later work [10] they 
identified the community structure from the same social 
networks and demonstrated that their division of project 
was representative of the collaboration behavior of 
developers in OSS projects. Our work is complementary to 
this study by examining the community evolution patterns 
in DSNs and observing the individual community evolution 
paths. Additionally we conducted a study of the static 
properties of DSNs over periods of different lengths of time 
to in an effort to determine valid time durations for studying 
the dynamics of DSNs.  

Lo et al. [5] extracted high-level statistics and detailed 
topological graph patterns from a developer collaboration 
network extracted from SourceForge.Net.  Although we 

 
Figure 13. Community evolution path.  The radius is proportional to the 

number of developers. 



also study statistical properties of developer networks, we 
focus on investigating community structure and its 
evolution. We also conducted a comparison between DSNs 
and GSNs which is valuable when borrowing ideas from 
GSNs to apply on DSNs. 

VIII. CONCLUSIONS AND FUTURE WORK 
We have conducted a comprehensive analysis on DSNs 

based on a large project (in terms of both time and people). 
Our analysis on the static properties of DSNs indicates that 
DSNs extracted from a bug tracking system bear some 
resemblance to GSNs but also show key differences from 
them. In addition, our results give strong evidence of the 
community structure within DSNs. Second our study on the 
dynamic properties of DSNs shows that DSNs maintain 
small world characteristics over time. Our investigation of 
activity over the past 10 years indicates a gradual 
enhancement of community structure in DSNs. Furthermore, 
we observed the community evolution pattern in DSNs, 
examined the evolution paths of a number of projects 
within Mozilla, and found correspondence with key 
historical events in these projects.  

Our study also provides new insights for developer 
social networking services like Codebook [19]. For 
example, our study found that the degree distribution of 
DSNs do not follow a power law. This should be taken into 
consideration when applying features that are affected by 
degree distribution such as "Facebook ads" in Facebook.  
In addition, our study shows that DSNs have a "smaller 
world" than GSNs. By taking the advantage of this fact, 
DSN services like Codebook may improve functions such 
as "Finding People and Artifacts". In addition, our 
comprehensive study of the community structure of DSNs 
showed that community structure exists and tends to 
stabilize over time. This knowledge enables researchers that 
use or examine DSNs to take advantage of these 
communities. This can be used, for example, for explicitly 
identifying "teams" in analysis of task resolution or for 
broadcasting information to a relevant subset of the 
community. Other potential research topics such as 
studying the effects brought about by key events including 
leadership changes within each community could be 
further explored based on our study as well. 
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