
Understanding a Developer Social Network and its

Evolution
*

Qiaona Hong, Sunghun Kim, S.C. Cheung
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

{qiaona, hunkim, scc}@cse.ust.hk

Christian Bird

Microsoft Research

cbird@microsoft.com

AbstractðWith the growing number of large scale software

projects, software development and maintenance demands

the participation of larger groups. Having a thorough

understanding of the group of developers is critical for

improving development and maintenance quality and

reducing cost. In contrast to most commercial software

endeavors, developers in open source software (OSS) projects

enjoy more freedom to organize and contribute to a project in

their own working style. Their interactions through various

means in the project generate a latent developer social

network (DSN). We have observed that developers and their

relationships in these DSNs change continually under the

influence of differences in the set of active developers and

their changing activities. Revealing and understanding the

structure and evolution of these social networks as well as

their similarities and differences from other more general

social networks (GSNs) is of value to our software engineering

community, as it allows us to begin building an understanding

of how well the findings from other fields based on GSNs

apply to DSN. In this paper, we compare DSNs with popular

GSNs such as Facebook, Twitter, Cyworld (a large social

network in South Korea), and the Amazon recommendation

network. We found, for instance, that while most social

networks exhibit power law degree distributions, our DSNs

do not. In addition, we also examine how DSNs evolve over

time, highlighting how events within a project (such as a

release of new software or the departure of prominent

developers) impact the makeup of the DSNs, and observe the

evolution of topological properties such as modularity and the

paths of communities within these networks.

Keywords-developer social network;community detection

I. INTRODUCTION

Due to the great increase in the scale of software
projects recently, software development and maintenance
are highly social activities which have attracted study from
many researchers [10, 19, 15]. As developers work together
on software projects, they form implicit collaborative social
networks [19]. Some researchers have begun to apply ideas
from general social networks (GSNs) such as Facebook and
twitter to these developer social networks (DSNs). For
example, Begel et al. [19] proposed a social networking
web service, codebook, containing pages with information
about developers and artifacts in a style similar to Facebook.
GSNs such as Facebook, Twitter, and Cyworld have
enjoyed much success as they have leveraged and enhanced
social relationships. As researchers study developer
collaboration networks, a natural question to ask is, “How
similar are developer social networks to general social

networks?” As both DSNs and GSNs undergo more study,
it is useful to know how similar DSNs are to GSNs.

Unlike general social networks (GSNs), a developer
social network (DSN) is an underlying network which only
reveals itself after being extracted from an open source
project. Developer social networks generally have stricter
control over topics than GSNs. In GSNs such as Twitter
and Facebook, participants are encouraged to post on any
topic and express their views or feelings. However,

developers in DSNs are restricted to contribute on project-
related topics. Meaningless or unrelated opinions can be
grounds for being banned from the project. Therefore, we
expect that DSNs will differ from GSNs in certain aspects.
In contrast, developers are similar to participants in GSNs
in some respects. Neither is forced to participate.

 Much research exists on GSNs including Facebook [7],
Twitter [6], and Cyworld [5], and there is pre-existing work
examining DSNs in OSS projects [10, 15, 16]. However,
since there has been no formal comparison of these two
types of networks, it is unclear which properties are general
and what is specific to these individual types of social
networks. This paper presents a detailed comparison
between DSNs and GSNs from multiple aspects including
community structure.

Community structure in social networks which has
attracted considerable attention is an important aspect to
consider when making the comparison between DSNs and
GSNs. In 2002, Girvan and Newman [20] introduced the
notion of community structure within networks as the
division of a graph into subgraphs (called communities) in
which the connections within the subgraphs are much
denser than the connections between them. They also
defined a metric, termed modularity [9], for evaluating how
well a graph can be partitioned into these communities. A
graph with high modularity has very well defined and tight

*This research is partially supported by a grant from the Research

Grants Council of Hong Kong (Project No. 612108).

(a) (b)

Figure 1. An example of community structure in networks.

knit communities with few connections between them,
while a low modularity graph has poor structure. The
networks in Fig. 1 have the same amount of nodes and
edges. However they have very different structures. The
network in Fig. 1(a) displays strong community structure
and has a high modularity 0.51 while the network in Fig.
1(b) has weak community structure. There is not much
difference between the densities of inter connections and
intra connections in this network. It has a low modularity of
0.176. Identifying the optimal partition of nodes into
communities is an NP-complete problem, but in the recent
years much progress has been made in developing
algorithms that work well in practice. Beyond this
comparison we also provide a detailed study of DSNs
themselves in terms of community evolution, providing a
reference for researchers and developers. This study
addresses several questions. We list them here.

¶ Do DSNs display similar characteristics to GSNs?
Which characteristic are distinct?

¶ How does a DSN evolve over time?

¶ Does a DSN have significant community structure,
evidenced by tightly knit communities within a
project?

¶ What is the evolution of these communities in a
DSN? Are there obvious patterns or trends evident
in this evolution? Does the observed evolution
correspond to key events in the project lifetime?

To address the above questions, we begin with
extracting DSNs. We take developers involved in the
Mozilla Bug Tracking system

1
 as subjects of analysis since

Mozilla is among the most popular and mature open source
projects. In the DSNs, the nodes represent developers and
the edges correspond to developers’ connections via shared
bugs.

The structure of this paper is as follows. Section 2
describes our approach for extracting and identifying the
communities in DSNs. In Section 3, we study the
topological characteristics of the developer social network.
Section 4 presents the topological characteristic evolution
of the DSN, and Section 5 investigates community
evolution. Section 6 discusses some threats to validity, and
Section 7 surveys related work. Finally, we conclude all
lessons learned in Section 8.

II. DEVELOPER SOCIAL NETWORK

COMMUNITIES

This section describes the methodology of extracting
DSNs from Mozilla bug reports and their comments from
2000 to 2009. From the DSNs, we identify communities,
which are the basic units of our study in community

evolution. We employ a well-known and widely used
community identification algorithm, Louvain [11]. Finally,
we evaluate our methodology by comparing identified
communities with off-line birds-of-a-feather (BOF)
meetings at the 2010 Mozilla Summit

2
.

A. Extracting Developer Social Network

Bird et al. examined the social interactions on developer
mailing lists of Apache [16]. Xu et al. examined co-
membership in SourceForge projects [22]. Each of these
networks is based on a particular form of relationship.
However, we choose to examine DSNs in the context of
bug tracking systems for two reasons. First, the majority of
bugs are short lived, indicating a strong temporal
relationship. Previous work has examined collaboration on
source files, but using project membership or file
contributions may indicate false relationships because both
are long lived and the interactions may be distant
temporally. Second, bugs are generally focused on one
technical topic and fixed in a localized portion of the
codebase. Bird et al. found that mailing list discussions can
include general topics such as process discussions that large
majorities of the community participate in. As our interest
is modeling how developers work together, these
discussions may represent noise in the data. Individual
bugs do not elicit comments from a large proportion of the
developer base as some mailing list discussions do, and
require more effort than simply replying to a message.

Specifically, we extract the DSN by mining Mozilla bug
reports and their comments. Since Mozilla developers are
free to comment on any bug, the bug comments reflect
developers’ interest. Our underlying assumption is that
developers who share the same interest are related to each
other. We express their relationships in an undirected graph.

As an illustrative example, suppose we have three bug
reports and four developers who commented on each bug
report as shown in Fig. 2(a). Each symbol in a bug report
indicates a comment in that bug report from the
corresponding developer. Based on their comment

1http://bugzilla.mozilla.org
2http://wiki.mozilla.org/Summit2010/Meetings

BugReport1

David: Bob: Jack: Bill:

BugReport2 BugReport3

(a)

Bob

Jack

(c) (b)

David Bill

2

1

4

2 2

Figure 2. An illustrative example of the approach for extracting DSNs

from a bug tracking system.

Jack Bob
2

BugReport4

TABLE I. INFORMATION OF SUBJECTS

Subject
Dec. 2009 Oct. 2009 ~

Dec. 2009

Jul. 2009~

Dec.2009

Jan. 2009~

Dec. 2009

Jan. 2008~

Dec. 2009

Jan. 2006~

Dec. 2009

Time Period 1 month 3 months 6 months 1 year 2 years 4 years

of developers

(remained/total)

387

/2996

558

/6046

836

/10290

1226

/16318

1950

/31557

2865

/51692

of bug reports 10586 32223 56904 95721 160626 246331

of comments 37056 131569 267749 511777 968339 1610999

TABLE II.

relationships, we extract a developer network as shown in
Fig. 2(b) indicating that developers who made comments on
the same bugs are connected. We create weighted edges
between developers by assigning a weight to each edge
equal to the number of bug reports that the two developers
have both commented on.

In the majority of open source projects (including
Mozilla), bug reports are open to the public to encourage all
users to report bugs and comment on the bugs. As a result,
our developer network includes a large number of users
who contributed to bug reports only a few times. While
these contributions are of value to the community, we are
most interested in examining the interactions of the core
participants in the community - developers with direct code
access and participants with a consistent history of activity
working on bugs. To remove the “casual” users, we
eliminate edges with a weight of only one or two. After this
elimination process of edges, all nodes that no longer have
any connected edges are removed from the graph. For
example, after removing edges whose weight is equal or
less than three and the resultant unconnected nodes in Fig.
2(b), we are left with the unweighted graph shown in Fig.
2(c).

We extracted 26 DSNs from 496,692 bug reports and
3,893,025 comments made by 106,123 developers in total.
Six DSNs are extracted from different lengths of time, and
the other twenty are extracted from a series of subsequent
six month periods for examining DSN evolution. We
provide detailed subject information analyzed regarding the
different lengths of use in this paper in Table I.
B. Identifying Communities

After extracting DSNs from bug reports, we identify
communities. Understanding community structure is
critical to understand the network [10] as it allows us to
identify sets of developers who share the same interests and
work on similar issues. To identify communities, we use the
Louvain [11] algorithm which is widely used in the social
network analysis literature [1]. Kwak et al. found that
Louvain outperforms other community detection algorithms
on most subjects [1]. The Louvain method is probabilistic
and produces slightly different values of modularity for the
same graph as the input ordering of nodes change [1]. To
mitigate this issue, we generated 50 sets of the same data
with randomly perturbed input orderings of nodes for every
network and present all the results.
C. Evaluation of Identified Communities

Once we have identified the communities in the DSNs,
we need to verify that they reflect real divisions of
developers into their communities. We validated the results
in two ways.

First, we selected the developers with the highest node
degree in the DSNs and examined the project to determine
if these were leaders within the project. For example, we
found that Gervase Markham, one of the highest degree

nodes in our network, started to contribute to the Mozilla
project in 1999 and is a leading developer in the Bugzilla
project. Another example is Mike Beltzner, who is a
famous Mozilla hacker. Gavin Sharp, another high degree
node, is currently one of the most active developers in the
Mozilla project. We verified 100 nodes in the network and
found that all represented key Mozilla developers (they all
made a large number of commits to the system and/or had a
long history with the project, most spanning multiple years),
validating that our DSNs do reflect reality.

Next, we evaluated the similarity between the identified
communities in our DSNs and real offline developer
meetings. We used the birds-of-a-feather (BOF) meetings in
the Mozilla Summit 2010. BOF meetings represent
communities in reality since developers that take part in
those meetings are those that have an interest in them. Since
these meetings were held only last year (2010), we
identified developer communities in a DSN created from
recent bug reports (Jul. 2009 to Dec. 2009).

The divisions on the top of Fig. 3 represent identified
communities, and the divisions of the developers on the
bottom represent BOF meetings. We measured how many
developers overlap between real BOF meetings and
identified communities. For example, community A in Fig.
3 consists of 70% of BOF X (the Thunderbird
Fun/Product/Participation meeting), and 100% of BOF Y
(the Thunderbird engineering/dev-process working session
meeting). All of the developers from these two BOF
meetings were placed in the same community by the
Louvain algorithm. Since in Mozilla Summit 2010, they
held many small BOF meetings, our identified communities
include more than one BOF meeting. However the vast
majority of BOF meetings belong to one community. This
indicates that while BOF meetings may indicate a finer
division of developers than our communities, our method
rarely divides known groups of developers. We conclude
that our identified communities reflect real groups of
developers with similar interests and concerns. Furthermore,
we consulted a Mozilla developer, Channy Yun, about our
identified communities, and he confirmed that they reflect
real Mozilla developer structures.

III. DEVELOPER SOCIAL NETWORK VS

GENERAL SOCIAL NETWORK

This section compares DSNs to various GSNs in
various domains including Facebook, Cyworld, and Twitter
by measuring commonly used social network metrics such
as Power Law, Degree of Separation, Modularity, and
Community Size. Basic information of all used GSNs are
shown in Table II.

In addition, we compare DSNs extracted from different
lengths of time, which include the most recent 1 month, 3
months, 6 months, 1 year, 2 years, 4 years (all ending in
Dec. 2009) For brevity, we name DSNs extracted from
different periods as length-DSN (e.g. 1-month DSN, 3-
month DSN, … , 4-year DSN).
A. Power Law

Various networks (e.g., WWW [18], social [6]) display
a power-law node degree distribution, having only a few
nodes with very high degree and a large number of nodes
with low degree. When plotted on a log-log plot, a power
law generally follows a straight line. This property of
networks is indicative of the existence of a small number of
“hubs” in the network that act as influential nodes and

Figure 3. Mapping between identified communities and BOF meetings.

Radius is proportional to number of developers.

information brokers and a large number of peripheral
members with few connections [23].

We start our comparison of DSNs with GSNs by
investigating the degree distribution. Most GSNs have a
power law degree distribution with an exponent, r, between
-2 and -3 [6]. For example, the exponent for blogosphere is
-2.38 for the Weblogging Ecosystems Workshop collection
[4] which attests the existence of key bloggers who have a
high number of blogging friends. This also holds true for
Twitter which has a power law distribution in both in- and
out-degree with the same exponent -2.4. What is more
interesting is that some networks like Cyworld, a famous
large scale South Korean social network service, show two
different scaling regions, a rapid decay (r~-5) and a heavy
tail (r~-2) [5]. We applied the approach of analyzing power
law distributed data introduced by Clauset et al [24] to
obtain the power law distribution exponent for each DSN.
Based on the visualization in Fig. 4, we found that only a
small portion of the curve can be fit to a power-law
distribution. Therefore, we conducted the quantitative
power law fit test introduced by Clauset et al. [24] to test
whether the DSN degree distribution is different from a
power law distribution to a statistically significant degree.
The p-value, which is the likelihood that the DSN degree
distribution actually does follow a power-law (the null
hypothesis), was less than 0.1 for all DSNs in Fig. 4,
indicating that none follow a power law distribution.

We therefore conclude that different from GSNs, DSNs
do not have a power law degree distribution, irrespective of
length of time. However, the degree distributions in DSNs
have some properties similar to those in GSNs. DSNs also
have a large portion of developers with low degree and a
small portion of developers with high degree. Moreover the
portion of high degree nodes is relative small in DSNs.

B. Degree of Separation

Degree of separation, the shortest distance between any
two nodes of a network, has become a crucial metric for

analyzing the social structure ever since Stanley Milgram
reported the famous “six-degrees of separation” experiment
in 1969 [12]. With the emergence of social networks,
degree of separation has been well studied in various social
networks including Cyworld and Twitter [5, 6]. The total
number of registered users in Cyworld was 12 million as of
November 2005, when Ahn et al. reported that the average
path length between 90% of nodes in Cyworld was less than
6 [5]. Kwak et al. found that the average path length of
Twitter is 4.12 [6]. For 70.5% of node pairs, the path length
is 4 or shorter and for 97.6% it is 6 or shorter.

Since the scale of DSNs is smaller than that of GSNs,
we employed the Floyd-Warshall algorithm [13] to obtain
the distribution of the shortest path length between any two
nodes. Compared to the Breadth-First algorithm which is
used in the Twitter and Cyworld analyses, the Floyd-
Warshall algorithm is more efficient for smaller scale
networks.

The average path length in DSNs varies from 2.9 to 3.4.

The developers in 1-month DSN are farthest from each

other. For 91.9 % of pairs of nodes in it, the path length is 5
or shorter. In the rest of the DSNs, the path length is 4 or
shorter for at least 90% of pairs of nodes. In addition, we
see a slight downward trend in the average path length
when the length of period increases. This result is not
surprising. Although there are additional developers, there
will also be many more connections in DSNs over time.
Overall, the developers in DSNs are closer to each other
than participants in GSNs such as Twitter and Cyworld.

Like GSNs, DSNs also have the so-called “small world”
property which means most pairs of developers are
connected within a few hops in the same way as pairs of
participants’ in GSNs. Moreover, the average path length in
DSNs is much shorter than that of Cyworld and Twitter.
We speculate that this might be due to the fact that users on
Cyworld and Twitter have a wider choice of topics while
developers in DSN are restricted to participate in a narrower
range of topics, therefore increasing the likelihood of shared
interests.

TABLE III. INFORMATION OF GSNS

 WWE Twitter Cyworld[5] Cyworld[1] Facebook Amazon FL GL Hugged

of nodes 143736 87897 12048186 11537961 63730 409687 16800000 617864 116376

of edges 707761 829247 190589667 177566730 817090 2464630 73300 277540 51343

TABLE IV.

Figure 4. Topological characteristics of DSN. The y-axis presents the

complementary cumulative distribution function (CCDF), and the x-

axis presents the degree of a node.

Figure 5. Degree of Separation for various DSNs and GSNs.

0 2 4 6 8 10 12 14 16 18

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Degree of Separation

Distance between two developers

P
ro

b
a

b
il
it
y

1-month DSN

3-month DSN

6-month DSN

1-year DSN

2-year DSN

4-year DSN

twitter(8000 sample)

cyworld(3000 sample)

C. Modularity

Modularity, ὗ, is the standard measure [1, 3, 10, 11]
used to quantify the strength of a community structure.
Higher modularity indicates that there are clearly defined
communities (teams) within the network. Modularity was
introduced by Newman and Girvan in their original
community structure paper [9] and for some partition of a
graph into communities, its definition is:

 ὗ В Ὡ ὥ (1)

where Ὡ is the proportion of the edges between nodes
within community Ὥ over all edges in the graph, and ὥ is
the proportion of all edges that cross the community
boundary. When the value of modularity is 0, the
community structure is no stronger than that of a randomly
generated network; there are no communities within the
network. The Maximum value of modularity is 1. We
employ modularity in an effort to understand the
community structure of DSNs more easily. In our context,
the modularity indicates if there is a clear division of the
Mozilla developer population into teams or if the project is
fairly integrated with developers coordinating on bugs in an
unorganized fashion.

Kwak et al. [1] obtained the modularity of 12 social
networks including Facebook and Cyworld, showing that
except for the now famous Zachary’s Karate Club (a small
network that has become a de facto benchmark in
community structure work), social networks have
significant community structure since their values of
modularity are all above 0.3 [6]. In practice, 0.3 is a
threshold above which a naturally occurring network is said
to be highly modular [9].

In this section, we examine whether DSNs have as
strong a community structure as other GSNs by applying
the Louvain algorithm on all DSNs in Fig. 6. As mentioned
in Section 2.2, Louvain produces slightly different results
on the same network with different input orderings of nodes,
so we examined the results for 50 different orderings for
each subject DSN. Overall, modularity values are always
above 0.3 for the DSNs. With the length of time period
increasing, the modularity shows a fluctuant decrease. The
highest modularity was obtained in the 1-month DSN,
where the median value was 0.57.

We conclude that similar to GSNs, DSNs have
significant community structure, as reflected by their
modularity.
D. Community Size

Within a network with community structure (i.e. high
modularity), the community size refers to the total number
of nodes within a community. The community size is a key

quantitative characteristic of community structure in a
network as it indicates if communities are disparate or
uniform in their division of a network [17].

Nazir et al. [7] compared the community sizes of three
game applications in Facebook: Fighters’ Club (FC), Get
Love (GL), and Hugged. All three games have more than
10,000 users. The biggest community for FC accounts for
72.6% of the total users, while the biggest communities in
GL and Hugged account for less than 10% of the users.
They also found that FC has a biased distribution of
community size, but communities from both GL and
Hugged have similar wider community size spreads.
Similarly, Clauset et al. [8] studied the community size in
the Amazon.com network which has more than 400,000
users. The biggest community accounted for 28% users of
the entire network. They found that the community size
distribution of Amazon.com network follows a power law.
Following a similar methodology, we measured the
community sizes of DSNs in different length of periods
ranging from 1 month to 4 years. Again, we ran the
Louvain algorithm 50 times dividing the DSNs into sub-
communities and computed the sizes of communities in the
division for each DSN.

Fig. 7(a) shows the inter-quartile box-plots of the
community size distributions. The sizes of the communities
are small regardless of the length of time period. For
instance, the biggest communities in 1-month and 4-year
DSNs only have 83 and 718 developers respectively. The
biggest community of the DSNs accounts for 21% ~ 36% of
the users and the ten biggest communities account for more
than 99% of the users for all DSNs. The community size
median is small and varies from 23 to 55. The distributions
of community size display a similar property to a power law
distribution, with a few big communities but many small
communities.

A DSN has many similar characteristics to a GSN in
terms of community size. First, several big communities
account for almost all users in the network. The ten biggest
communities account for 87% of users in Amazon.com
while that accounts even more in DSNs. Second, the
biggest community accounts for similar percentage of users,
28% in Amazon, 21%~36% in DSNs. Fig. 7(b) plots the
size distribution of the ten biggest communities after
normalizing by the total size of the network. The
distributions are surprisingly similar despite the fact that
they differ in size by orders of magnitude.

Figure 7. Community size distribution. Normalized community size is

measured in terms of proportions of all nodes in the graph since Amazon
is much larger.

Figure 6. Modularity for DSNs of dif ferent time durations

E. Analysis Summary

We summarize the DSN analysis results.

¶ Unlike GSNs, DSNs do not follow a power law
degree distribution. However, DSNs do have other
similar properties to GSNs such as having a large
portion of nodes with low degree and only a small
portion of nodes with high degree.

¶ Similar to GSNs, DSNs also have the small world
property of low degree of separation. However,
DSNs have a “smaller” world property.

¶ DSNs and GSNs both have strong community
structure, with modularity values above 0.3.

¶ The size of communities in DSNs is small
compared to that in most GSNs. We also find that
DSNs have a widespread community size
distribution and their biggest community accounts
for 21% to 36% of the total developers.

¶ Regardless of time period (except 1-month DSN),
DSNs have very similar social network properties
including degree of separation, modularity, and
community size. In addition, we found that the 6-
month DSN is a representative of all time durations
beyond 6 months.

IV. DEVELOPER SOCIAL NETWORK EVOLUTION

We have characterized the differences and similarities
of DSNs to GSNs. In this section, we turn to an
examination of the evolution of social network properties
over time. Here we are also only interested in participants
with a consistent history of activity working on bugs.
A. Identifying the Length of Unit Period

The first step in observing DSN evolution is to decide
the basic time period unit. We can observe DSN changes
for every month, every year, etc. Based on our observations
described in Section 3.5, we use 6 months as a
representative period and observe how the DSN changes
every 6 months. In our figures, we divide each year into
first half of the year (using an “fh” suffix) and second half
of the year (“sh”).
B. Developer Changes

We first observe developer changes. Fig. 8 shows the
number of new developers and old developers for every 6
month period. For each column, the gray bar indicates the
number of developers that are new in that time period and
black, the number of developers active in this time period
that have been active in an earlier time period. The total
number of developers falls into the range of [500, 1200]
except for the first period (i.e., the first half year of 2000).

We also observe that the total number of developers
increases until 2002. After that, there is a sharp fall-off
around 2004 dropping from 1,093 developers to 533.

Fig. 8 also shows new developers continually joining
the DSN. From 2000 to 2004, new developers account for
more than 39% of the developers in the DSN. Fig, 8 shows
a similar sharp fall in the percentage of new joining around
2004. We have found evidence that this is related to the
Firefox 1.0 release in September 2004. A number of
influential developers who developed Netscape/Mozilla left
the community soon after. For example, Blake Ross, a core
developer, began his new company after the release.
Similarly, a few core developers including Ben Goodger
and Katsuhiko Momoi joined Google in 2005. We define a
“core” developer to be someone that has direct source code
commit privileges, contributes non-trivial amounts of code
to multiple parts of the system, and has been active in the
community for a period of years. We note that these
developers who had an influence on the community also
had corresponding high degree in the DSN and were
important members of their communities, indicating that
these social network measures are indicative of real world
impact.

From the above observation, we find that the behaviors
of influential people often affect other developers in the
DSN. The drastic drop in total number of developers in the
DSN may be due to the departure of these influential
developers.

C. Degree Distribution Evolution

We also observe the evolution of degree distribution
since the degree distribution is a key property of a network
(e.g. indicating if a small number of developers play a
disproportionately important role). As we did in Section 3.1,
we also tested the power law distribution hypotheses for all
DSNs in Fig. 9. The p-values for 14 DSNs are less than 0.1
while for the other 6 DSNs the p-values are greater than 0.1,
indicating that over two thirds of the DSNs differ from
GSNs in that respect. For those which were not statistically
different from a power-law, their large p-values might be
due to lack of enough sample data [24]. Although DSNs do
not display a power law degree distribution over time, they
always have a large portion of nodes with low degree and a
small proportion of nodes with high degree over time.

Figure 9. Degree distribution of DSNs over time

Cumulative Degree Distribution Evolution

Degree

P
ro

b
a

b
il
it
y
(d

e
g

re
e

>
=

x
)

10
0

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

10
0

2000fh

2000sh
2001fh

2001sh
2002fh
2002sh

2003fh
2003sh

2004fh
2004sh
2005fh

2005sh
2006fh

2006sh
2007fh

2007sh
2008fh
2008sh

2009fh
2009sh

Figure 8. Number of active developers over time

2
0
0
0
fh

2
0
0
0
s
h

2
0
0
1
fh

2
0
0
1
s
h

2
0
0
2
fh

2
0
0
2
s
h

2
0
0
3
fh

2
0
0
3
s
h

2
0
0
4
fh

2
0
0
4
s
h

2
0
0
5
fh

2
0
0
5
s
h

2
0
0
6
fh

2
0
0
6
s
h

2
0
0
7
fh

2
0
0
7
s
h

2
0
0
8
fh

2
0
0
8
s
h

2
0
0
9
fh

2
0
0
9
s
h

0
4

0
0

8
0

0
1

2
0

0 Developer Size Evolution

Time

N
u

m
b

e
r

o
f
D

e
v
e

lo
p

e
r

Old Developer
New Developer

D. Degree of Separation Evolution

Fig. 10 shows the degree of separation evolving over
periods. Overall, the average path length increases slowly
from 2.45 to 3.02 over the 10 years. Although the distance
between developers increases a small amount over time,
developers are always quite close to each other in the DSNs.
More than 93% pairs of developers are within four hops of
each other over the whole time period. We conjecture that
the small increase is due to the large amount of newly
incoming bug reports (e.g., on average, 24,964 per period).
Over time, the rate of bug reporting and commenting has
increased. However, there is no such increase in the number
of developers every period. The probability of two
developers commenting on the same bug report at random
decreases over time, which might lead to the increase of
average path lengths. This is true for all but three periods:
the first half year of 2001, 2005 and 2007. In conclusion,
the increase in average path length is small and oscillates
within a very narrow range above 2.7 after 2004. Thus, we
consider it fairly constant over the long term (i.e., the
average path length approaches a fairly stable level).
E. Modularity Evolution

We next examine modularity within the DSNs. Fig. 11
presents boxplots of the modularity for each period which
consists of 20 experiments, each containing 50 runs with
perturbed input node order. It displays a fluctuant increase
in the modularity over periods from the first half year of
2000 to the second half year of 2009. The lowest
modularity value is 0.20 (e.g. median of modularity values
obtained from 2000sh-DSN) while the highest modularity
value is 0.52 (e.g. median of modularity values obtained
from 2009fh-DSN). All DSNs extracted before June 2003
have a modularity value below 0.3 indicating a more
integrated community [8]. In contrast, the modularity
values of all DSNs obtained after July 2003 are above 0.3
and we see a general upward trend over time, implying that
the community has split into more well-defined teams over
time.

We observe that the modularity increases over time.
Since there is no mandated structure, the organization of the
project and architecture of the code may be somewhat
volatile as the project gradually and organically converges
to a stable and accepted structure. Baldwin [21] found that
the restructuring of the Netscape codebase (from which
Mozilla originated) had both architectural (the code became

more modular) and organizational (more newcomers began
joining the project) impact afterwards. In addition, the
Mozilla Foundation, which exists to support and provide
leadership for Mozilla project, was officially launched on
July 15, 2003. This likely contributes to the increase in
modularity after 2003. Overall, we conclude that DSN
modularity shows a clear increasing trend, indicating that
teams are becoming more well-defined within the Mozilla
project.

F. Community Size Distribution Evolution

Fig. 12 presents the community size distribution
evolution over 10 years starting from 2000. The biggest
community accounts for 20% - 43% of the developers in the
DSNs, and the size of the median community falls into the
range [14, 141] fluctuating over time instead of increasing
or decreasing.

Based on this observation together with the fact that the
total number of developers in DSNs for each period is less
than 1,200, the community sizes in the DSNs are generally
small (most below 75 members), with few changes over
time. We see much more variance at the beginning of the
project, when developer turnover was higher, than we do in
the latter half of the project. We conclude that although
community sizes initially were quite unstable, they have
remained fairly consistent over the last 5 years. Again, this
confirms that a team structure is apparent in the Mozilla
project.

G. Analysis Summary

We summarize the conclusions from our evolution
analysis below:

¶ The sharp change of the developer numbers around
2004 implies a big adjustment in Mozilla following
the Firefox 1.0 release. Afterwards, the number of
active developers is stable over time.

Figure 10. Evolution of Degree of Separation in Mozilla DSNs

0 2 4 6 8 10 12 14 16 18

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Degree of Separation Evolution

Distance between two developers

P
ro

b
a

b
ili

ty

2000fh APL(2.45)

2000sh APL(2.46)
2001fh APL(2.43)

2001sh APL(2.51)
2002fh APL(2.53)
2002sh APL(2.63)

2003fh APL(2.72)
2003sh APL(2.82)

2004fh APL(2.86)
2004sh APL(2.88)
2005fh APL(2.81)

2005sh APL(2.81)
2006fh APL(2.90)

2006sh APL(2.91)
2007fh APL(3.11)

2007sh APL(2.77)
2008fh APL(2.85)
2008sh APL(2.90)

2009fh APL(2.99)
2009sh APL(3.02)

Figure 11. Modularity evolution

Figure 12. Evolution of community sizes in Mozilla over time

0
.2

0
0
.3

0
0
.4

0
0
.5

0

2
0
0
0
fh

2
0
0
0
s
h

2
0
0
1
fh

2
0
0
1
s
h

2
0
0
2
fh

2
0
0
2
s
h

2
0
0
3
fh

2
0
0
3
s
h

2
0
0
4
fh

2
0
0
4
s
h

2
0
0
5
fh

2
0
0
5
s
h

2
0
0
6
fh

2
0
0
6
s
h

2
0
0
7
fh

2
0
0
7
s
h

2
0
0
8
fh

2
0
0
8
s
h

2
0
0
9
fh

2
0
0
9
s
h

Modularity Evolution

Time

M
o

d
u

la
ri

ty

Modularity Evolution

¶ DSNs have a large proportion of nodes with low
degree and a very small proportion of nodes with
high degree over time.

¶ In DSNs, the average path length slowly increases
over time, but never grows to the size of GSNs, as
over 90% of pairs of developers remain connected
within three hops.

¶ The modularity of DSNs increase steadily over
time, indicating communities that become more
tight-knit.

¶ DSN communities are usually small without
notable size change over time.

V. COMMUNITY EVOLUTION

In this section, we change our focus to examine how the
communities within the Mozilla DSNs evolve over time.
A. Community Evolution Patterns

Lin et al. [2] proposed a community evolution
taxonomy including five patterns: derivation, merge, split,
extinct, and emerges. We refined these patterns and added
interpretation of each pattern in the context of DSNs in
table III. We identified all of these patterns in the
community evolution for the DSNs as shown in Fig. 13.

B. Evolution Map

To observe community evolution, we need to trace
communities over time. To this end, we use community
similarity between two consecutive periods. Given a set of
communities ὅὴ ὅ ὴ in time period ὴ for Ὧ
ρȣὑ, where ὑ is the number of communities in period ὴ,
we first compute the percentage of common nodes over the
size of the smaller community for all possible pairs of

communities ὅ ὴȟὅᶻὴ ρ . This is to determine

which communities in the next time period are similar in
makeup to each community in the current time period.
Then we determine the closest community set ὅᶻὴ ρ
for each ὅ ὴ by setting a threshold ‐ πȢσ to filter out
irrelevant communities. We refer to such a community set
as a post community set of ὅ ὴ. Similarly, we refer the

closest evolution community set ὅᶻ ὴ ρ as the prior
community set of ὅ ὴ.

Each node in Fig. 13 represents a community, and each
edge represents an evolution relationship between two
communities. For example, an edge starting from
community A and directed towards community B indicates
that community B evolved from community A. In Fig. 13,
communities detected in the same half year are aligned
horizontally.

Overall, there are far more isolated nodes before 2005
than after, which indicates that more communities had weak
stability before 2005. This might be due to lack of
organization of developers. Firefox is arguably the most
successful of the Mozilla projects and its 1.0 release was in
September 2004. Mozilla Thunderbird made its 1.0 release
soon after, in December 2004. This is consistent with our
earlier developer evolution analysis, where we saw that
developer turnover decreased dramatically after these
releases. We examine several representative paths shown in
Fig. 13.

Firefox (the bold_unfilled_circle path). The Firefox
path in Fig. 13 shows the communities that contain several
known Firefox developers including Gavin Sharp, Mike
Beltzner, Ria Klaassen, and Mike Conner. These four

Firefox developers eventually reached prominence and their
node degrees were all among the top 10. They appear in
communities along the path that of bold outlined circles,
based on our conjecture that this path characterizes the
activity of Firefox.

Bugzilla (the gray_filled_circle path). The Bugzilla
path is long lived, evolving from 2001 to 2009. According
to our observations, this path displays the evolution of the
Bugzilla project. There is one short branch starting from the
second half of 2008 which comprises the black filled circles.
This short branch is related to the development of the
Camino project.

Rhino (the dashed path). The sizes of all communities
along this path are small. Based on the activities of
developers in this path, we deduce that it is related to the
development of the Rhino project. Norris Boyd, Rhino’s
creator, appears in most of these communities.

Security (the shadow_circle path). This path
represents the evolution of the security community as many
active developers in this path are members of the security
group. There are a few branches that connect to this path,
implying that developers in this group are also interested in
other projects. This result is consistent with the fact that
security is an issue affecting all projects.

We use several community evolution instances in Fig.
13 to illustrate whether the patterns observed reflect reality.
The Expand instance labeled in the Firefox path coincides
with the 3.0 release of Firefox on June 17, 2008. Many

TABLE III COMMUNITY EVOLUTION PATTERNS AND THEIR IMPLICATIONS

ON DSNS.

Patterns Description

Expand

Expanding is when a community increases

in size and its prior community set

comprises only one community. This

indicates that newcomer developers are

being attracted to this community.

Shrink

Shrinking is when a community decreases in

size and its prior community set comprises

only one community. This is evidence that

the community’s developers are leaving the

project or they are joining other

communities.

Merge

Merging describes when a community has at

least two communities in its prior

community set. This indicates at least two

communities that have shared bugs and,

therefore, common interests.

Split

Splitting is when a community has at least

two communities in its post community set.

This pattern shows that an interest

discrepancy occurred in the single

community.

Extinct

Extinction is when the post community set

of a community contains no community. this

implies that developers have left or

completely scattered to a number of other

communities

Emerge

Emergence is when the prior community set

of a community contains no community.

This may signify the emergence of a new

interest or area of bugs.

developers joined the Firefox community after this event
through dealing with Firefox 3.0 bugs. The Shrink instance
labeled in the Bugzilla path occurs at the same time as
Bugzilla 2.16, the version that lasted the longest between
releases. This high level of stability may have either caused
or resulted from developers leaving. The Split instance
labeled in the Security path is coincident with the release of
Firefox 2.0. During this release, some security developers
mainly focused on Firefox 2.0, while others stayed in the
original security path. The subsequent Merge instance
labeled in the Security path reflects the fact that after
dealing with security problems in Firefox 2.0, those who
focused on that codebase returned to their original
community.

C. Analysis Summary

Some of the interesting findings made during our
analysis include:

¶ The community evolution in the DSNs contains all
five patterns found by Lin et al. [2].

¶ The community evolution in DSNs displays various
paths which correspond to historical evolution of
various sub projects in Mozilla and activity of core
developers in Mozilla’s history.

¶ At the beginning of an open source project the
communities are fairly dynamic, but we observe
that as time progresses, developers tend to “settle
down” into fixed groups.

VI. THREATS TO VALIDITY

Here we enumerate possible threats to validity in our
study along with methods used to mitigate these threats.

In order to remove casual users, we removed nodes with
edge weights of only one or two. We use this as indication
that they do not have high levels of activity and are not key
members of the community. While this means that we
remove some members from our analysis, their low
connectivity implies that these participants have little
impact on the properties of DSNs that we have examined.

We also tried to determine a suitable length of time for
observing the DSNs by inspecting four metrics: power law,
degree of separation, modularity, and community size.
While it is possible that different time periods may yield
different results, we cover a comprehensive range of time
periods.

Next, we examined some paths in the community
evolution of the DSN and made the connection between
these paths and both core developers and actual events by
analyzing basic information of related bugs, checking
information from Mozilla’s website, and consulting
developers in Mozilla. While it is possible that this
evaluation may miss some key events, this method has been
used frequently in the past with positive results [10].

In this work, we have only conducted analysis on the
Mozilla project. We chose Mozilla because it is mature,
large, considered successful, and has been well studied in
prior research, allowing the reader to integrate our results
with the findings of others. It is possible that these results
on Mozilla may not generalize to other developer social
networks. However, our methodology for analysis could
easily be used with other projects such as Eclipse.

VII. RELATED WORK
There has been prior work on analyzing the static and

dynamic properties of various networks. Due to space
constraints, we survey the work related to our own.

Crowston and Howison [15] built social links between
developers based on their co-occurrence information in bug
reports. Their work aims to study the communication
centralization problem in OSS teams. Our study also used
the co-occurrence information of developers in bug reports
to build social network among developers. However we
aim to study both static and dynamic global properties of
DSNs. Additionally the scale of the subject used in our
work is much larger than theirs.

Bird et al. [16] extracted social networks from mailing
list archives and empirically studied the differences
between developers and non-developers from a social
network metrics perspective. They also investigated the
correlation between development activity and social
network status of developers. In later work [10] they
identified the community structure from the same social
networks and demonstrated that their division of project
was representative of the collaboration behavior of
developers in OSS projects. Our work is complementary to
this study by examining the community evolution patterns
in DSNs and observing the individual community evolution
paths. Additionally we conducted a study of the static
properties of DSNs over periods of different lengths of time
to in an effort to determine valid time durations for studying
the dynamics of DSNs.

Lo et al. [5] extracted high-level statistics and detailed
topological graph patterns from a developer collaboration
network extracted from SourceForge.Net. Although we

Figure 13. Community evolution path. The radius is proportional to the

number of developers.

also study statistical properties of developer networks, we
focus on investigating community structure and its
evolution. We also conducted a comparison between DSNs
and GSNs which is valuable when borrowing ideas from
GSNs to apply on DSNs.

VIII. CONCLUSIONS AND FUTURE WORK
We have conducted a comprehensive analysis on DSNs

based on a large project (in terms of both time and people).
Our analysis on the static properties of DSNs indicates that
DSNs extracted from a bug tracking system bear some
resemblance to GSNs but also show key differences from
them. In addition, our results give strong evidence of the
community structure within DSNs. Second our study on the
dynamic properties of DSNs shows that DSNs maintain
small world characteristics over time. Our investigation of
activity over the past 10 years indicates a gradual
enhancement of community structure in DSNs. Furthermore,
we observed the community evolution pattern in DSNs,
examined the evolution paths of a number of projects
within Mozilla, and found correspondence with key
historical events in these projects.

Our study also provides new insights for developer
social networking services like Codebook [19]. For
example, our study found that the degree distribution of
DSNs do not follow a power law. This should be taken into
consideration when applying features that are affected by
degree distribution such as "Facebook ads" in Facebook.
In addition, our study shows that DSNs have a "smaller
world" than GSNs. By taking the advantage of this fact,
DSN services like Codebook may improve functions such
as "Finding People and Artifacts". In addition, our
comprehensive study of the community structure of DSNs
showed that community structure exists and tends to
stabilize over time. This knowledge enables researchers that
use or examine DSNs to take advantage of these
communities. This can be used, for example, for explicitly
identifying "teams" in analysis of task resolution or for
broadcasting information to a relevant subset of the
community. Other potential research topics such as
studying the effects brought about by key events including
leadership changes within each community could be
further explored based on our study as well.

ACKNOWLEDGMENT

Our thanks to Channy Yun and Mozilla developers for
providing us useful insights to understand the Mozilla
community structure.

REFERENCES
[1] H. Kwak, Y. Choi, Y. H. Eom, H. Jeong, and S. Moon, "Mining

communities in networks: a solution for consistency and its
evaluation," in Proceedings of the 9th ACM Internet Measurement
Conference (IMC). New York, NY, USA: ACM, Nov. 2009, pp.
301-314.

[2] Y. R. Lin, H. Sundaram, Y. Chi, J. Tatemura, and B. L. Tseng,
"Blog community discovery and evolution based on mutual
awareness expansion," in WI '07: Proceedings of the
IEEE/WIC/ACM International Conference on Web Intelligence.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 48-56.

[3] M. E. J. Newman, "Modularity and community structure in
networks," Proceedings of the National Academy of Sciences, vol.
103, no. 23, pp. 8577-8582, Jun. 2006.

[4] A. Java, X. Song, T. Finin, and B. Tseng, "Why we twitter:
understanding microblogging usage and communities," in
Proceedings of the 9th WebKDD and 1st SNA-KDD 2007
workshop on Web mining and social network analysis, ser.

WebKDD/SNA-KDD '07. New York, NY, USA: ACM, 2007, pp.
56-65.

[5] Y. Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong, "Analysis of
topological characteristics of huge online social networking
services," in WWW '07: Proceedings of the 16th international
conference on World Wide Web. New York, NY, USA: ACM,
2007, pp. 835-844.

[6] H. Kwak, C. Lee, H. Park, and S. Moon, "What is twitter, a social
network or a news media?" in Proceedings of the 19th international
conference on World wide web, ser. WWW '10. New York, NY,
USA: ACM, 2010, pp. 591-600.

[7] A. Nazir, S. Raza, and C. N. Chuah, "Unveiling Facebook: a
measurement study of social network based applications," in IMC
'08: Proceedings of the 8th ACM SIGCOMM conference on Internet
measurement. New York, NY, USA: ACM, Oct. 2008, pp. 43-56.

[8] A. Clauset, M. E. J. Newman, and C. Moore, "Finding community
structure in very large networks," Aug. 2004.

[9] M. E. J. Newman and M. Girvan, "Finding and evaluating
community structure in networks," Physical Review E, vol. 69, no. 2,
pp. 026 113+, Feb. 2004.

[10] C. Bird, D. Pattison, R. D'Souza, V. Filkov, and P. Devanbu,
"Latent social structure in open source projects," in Proceedings of
the 16th ACM SIGSOFT International Symposium on Foundations
of software engineering, ser. SIGSOFT '08/FSE-16. New York,
NY, USA: ACM, 2008, pp. 24-35.

[11] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,
"Fast unfolding of communities in large networks," Journal of
Statistical Mechanics: Theory and Experiment, vol. 2008, no. 10, pp.
P10 008+, Jul. 2008.

[12] J. Travers and S. Milgram, "An experimental study of the small
world problem," Sociometry, vol. 32, no. 4, pp. 425-443, 1969.

[13] M. Marchiori and V. Latora, "Harmony in the small-world,"
Physica A: Statistical Mechanics and its Applications, vol. 285, pp.
539-546, 10/1, 2000.

[14] R. Guimerà, L. Danon, D. A. Guilera, F. Giralt, and A. Arenas,
"Self-similar community structure in a network of human
interactions," Physical Review E, vol. 68, no. 6, pp. 065 103+, Dec.
2003.

[15] K. Crowston and J. Howison, "The social structure of free and open
source software development," First Monday, vol. 10, no. 2, 2005.

[16] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan,
"Mining email social networks," in MSR '06: Proceedings of the
2006 international workshop on Mining software repositories.
New York, NY, USA: ACM Press, 2006, pp. 137-143.

[17] S.-Y. Chan, P. Hui, and K. Xu, "Community detection of Time-
Varying mobile social networks," in Complex Sciences, 2009, vol. 4,
ch. 115, pp. 1154-1159.

[18] L. A. Adamic, B. A. Huberman;, A. L. Barabási, R. Albert,
H. Jeong, and G. Bianconi;, "Power-Law distribution of the world
wide web," Science, vol. 287, no. 5461, pp. 2115a+, Mar. 2000.

[19] A. Begel, Y. P. Khoo, and T. Zimmermann, "Codebook: discovering
and exploiting relationships in software repositories," in ICSE '10:
Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering. New York, NY, USA: ACM, 2010, pp.
125-134.

[20] M. Girvan and M. E. J. Newman, "Community structure in social
and biological networks," Proceedings of the National Academy of
Sciences, vol. 99, no. 12, pp. 7821-7826, Jun. 2002.

[21] A. MacCormack, J. Rusnak, and C. Y. Baldwin, "Exploring the
structure of complex software designs: An empirical study of open
source and proprietary code," MANAGEMENT SCIENCE, vol. 52,
no. 7, pp. 1015-1030, Jul. 2006.

[22] J.Xu, Y. Gao, S. Christley, G. Madey. A Topological Analysis of
the Open Souce Software Development Community, 2005.

[23] A. L. Barabasi, E. Bonabeau. Scale-Free Networks. Scientific
American. Vol. 288, No. 5(2003), pp. 50-59

[24] A. Clauset, C. R. Shalizi, and M. E. J. Newman, "Power-Law
distributions in empirical data," SIAM Review, vol. 51, no. 4, pp.
661-703, 2009.

[25] D. Surian, D. Lo, and E.-P. Lim, "Mining collaboration patterns
from a large developer network." in WCRE'10, 2010

