
Empir Software Eng (2011) 16:396–423
DOI 10.1007/s10664-010-9148-2

An empirical study on the influence of pattern roles
on change-proneness

Daryl Posnett · Christian Bird · Prem Dévanbu

Published online: 30 December 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com
Editor: Massimiliano Di Penta

Abstract Identifying change-prone sections of code can help managers plan and allo-
cate maintenance effort. Design patterns have been used to study change-proneness
and are widely believed to support certain kinds of changes, while inhibiting others.
Recently, several studies have analyzed recorded changes to classes playing design
pattern roles and find that the patterns “folklore” offers a reasonable explanation
for the reality: certain pattern roles do seem to be less change-prone than others.
We push this analysis on two fronts: first, we deploy W. Pree’s metapatterns, which
group patterns purely by structure (rather than intent), and argue that metapatterns
are a simpler model to explain recent findings by Di Penta et al. (2008). Second, we
study the effect of the size of the classes playing the design pattern and metapattern
roles. We find that size explains more of the variance in change-proneness than
either design pattern or metapattern roles. We also find that both design pattern and
metapattern roles were strong determinants of size. We conclude, therefore, that size
appears to be a stronger determinant of change-proneness than either design pattern
or metapattern roles, and observed differences in change-proneness between roles
might be due to differences in the sizes of the classes playing those roles. The size of
a class can be found much more quickly, easily and accurately than its pattern-roles.
Thus, while identifying design pattern roles may be important for other reasons, as
far as identifying change-prone classes, sheer size might be a better indicator.

Keywords Design patterns · Empirical software engineering

D. Posnett (B) · C. Bird · P. Dévanbu
University of California Davis, Davis, California, USA
e-mail: dpposnett@ucdavis.edu

C. Bird
e-mail: cabird@ucdavis.edu

P. Dévanbu
e-mail: ptdevanbu@ucdavis.edu

Empir Software Eng (2011) 16:396–423 397

1 Introduction

Change-proneness is often thought of as a proxy for maintainability. Classes that
are more change-prone have been shown to require more maintenance effort
(Güneş Koru and Liu 2007). Since reducing maintenance effort is a key goal of
software engineering, it is important to understand the impact of software design
choices on change-proneness. Design patterns (Gamma et al. 1995) promise to help
make code easier to evolve. Specifically, patterns allow classes to be assembled into
a design unit, or motif, where each class plays a specific pattern role. Patterns are
thought to allow classes playing certain roles to evolve more easily than others. It it
believed that this flexibility is partly responsible for avoiding reimplementation and
client modification (Gamma et al. 1995). A recent study by Di Penta et al. tends to
confirm intuitions about the change-proneness of class playing classic Gamma et al.
design pattern roles (Di Penta et al. 2008).

A related question of interest is whether change-proneness is simply a conse-
quence of the inheritance and association/aggregation structure of a design pattern,
or if is related to other design pattern properties.

Object-oriented programming (OOP) has at its core the idea of programming to
an interface, i.e. declaring objects of a parent interface type rather than a particular
child class type. This practice decouples the clients of the parent interface and the
indirectly referenced class hierarchy. Pree presented metapatterns, which can be
viewed as a purely structural view of design patterns (Pree 1994). Metapatterns
arise from this this core OOP principle of object composition of the clients to the
parent interface, and the class composition of the parent interface into the children.
Most design pattern motifs can be viewed as one or more instances of metapatterns;
structurally similar design pattern motifs instantiate the same metapatterns. Gamma
et al. assert that “designers overuse inheritance as a reuse technique and, designs are
often made more reusable ... by depending more on object composition.” (Gamma
et al. 1995) Consequently, we observe that metapatterns model a subset of design
pattern properties that are believed to facilitate reuse and limit change-proneness.

The findings of Di Penta et al. suggest that observed differences in change-
proneness in classes playing design pattern roles could be explained more simply, just
by structure, viz., metapattern roles. We expect for example, a strategy role to change
less often than a concrete strategy role because changes to the former may ripple
through both the context hierarchies where overridden methods are defined and the
strategy class hierarchies where these overridden methods are called. This intuition
is not dependent on any property of design patterns that are not also captured by
metapatterns. The intent of the Strategy pattern does not affect reported intuition
regarding change proneness, rather, the reported intuition is simply a consequence
of the class and object relationships modeled by metapatterns.

Since metapatterns are defined by a subset of design pattern properties, they are
more easily detected. With the exception of Singleton, Memento, and Facade, every
Gamma et al. design pattern motif inherently contains a metapattern; thus, we will
find at least one metapattern for each such design pattern. Furthermore, since meta-
patterns almost always have fewer detection requirements than design patterns, we
typically find some additional metapatterns where no design pattern exists. Conse-
quently, detected metapattern instances are usually at least as numerous as the design
pattern instances that include metapatterns, up to any limitations in detection tools.

Earlier studies of change-proneness indicate that size influences change-
proneness (Bieman et al. 2001, 2003) of classes that participate in design patterns.

398 Empir Software Eng (2011) 16:396–423

The authors expected that classes involved in design patterns would be less change-
prone, however, they observed that such classes were still more change-prone after
accounting for size than those not participating in design patterns.

In a later study, Aversano et al. (2007) observed that classes participating in
patterns that “play a very important role for a(n) ... application” are more change-
prone and that classes not participating in patterns are often not key participants in
the application’s design. Consequently, their results support the work of Bieman but
do not shed any further light on the question of whether the various design pattern
roles actually offer the stability suggested by the literature.

In this paper we study classes playing pattern roles within the same pattern and
application to shed further light on the question of the relationship between design
patterns and class stability.

1.1 Outline

We present the following results:

1. We observe that differences in change-proneness of design-pattern roles reported
by Di Penta et al. (2008) can also be explained by the purely structural notion
of metapattern roles. We observe similar patterns of change-proneness among
design patterns that employ the same metapattern model as well as in the
independently measured metapatterns.

2. However, when controlling for the sizes of the classes playing these (pattern and
metapattern) roles, we find that the roles add very little explanatory power.

3. We also find that sizes of the classes are strongly associated with the metapattern
roles played by the classes; leading to the conclusion that while pattern and
metapattern roles do partially explain change-proneness, the dominant effect is
indirectly through size, i.e. classes playing certain metapattern roles are larger.

Our work is in the spirit of Basili and Elbaum (2006) and Perry et al. (2000)
who point out that replications and integrating multiple studies are critical to gain
confidence in empirical results. In addition, our findings suggest that some widely
held intuition about the change-proneness of classes playing various roles in patterns
can be explained by the simpler relationships of the underlying metapatterns.

We begin with a quick overview of metapatterns (Section 2), leading to a formu-
lation of the main research questions. We then present a detailed review of metap-
atterns (Section 3) and discuss related work (Section 4). We describe (Section 5) our
data extraction approach. We then present our results (Section 6), discuss threats,
and conclude. Throughout this paper, we refer to the patterns introduced in the
classic GOF (Gang of Four) Book (Gamma et al. 1995) as design patterns and the
purely structural patterns presented by Pree as metapatterns.

2 Overview

Metapatterns capture the pure structure of design patterns. As an illustration,
we describe the structural similarity between State and Strategy patterns. First,

Empir Software Eng (2011) 16:396–423 399

Fig. 1 The State pattern

consider the State design pattern (Fig. 1) with the context, state, and concretestate
roles.1 Calls from clients (not shown) to Context.Request() are forwarded to
the base-class method State.Handle() and then (e.g.) to the implementation
ConcreteStateA.Handle() via the state instance variable. The Strategy design
pattern has an analogous structure, consisting of context, strategy and concretestrat-
egy. Both State and Strategy have a stable part, and a changeable part. The context
role in these patterns is used by clients of the pattern, and could change in response
to changing client needs. The context role makes use of the state/strategy role, which
defines an interface, and thus is relatively fixed. This interface is implemented by
concretestate/concretestrategy roles, which provide varying implementations of the
state/strategy roles. The class playing the state/strategy role, by remaining stable,
effectively decouples the classes playing the other two roles. Pree noticed the
structural similarity of these two patterns, and named the shared structure the
1-1-Connection metapattern (Fig. 2).

The context role in the State/Stragey pattern is named the template meta-role in the
1-1-Connection metapattern; the interface (state or strategy role) is named the hook
meta-role; and the changeable roles (concretestate or concretestrategy) are called the
implementation meta-roles.

Pree defines 7 structural metapatterns and shows that most design patterns have,
at their core, an instance of one or more of these metapatterns (more details in
Section 3).

2.1 Research Questions

A close reading of earlier results by Di Penta et al. (2008) on the relative change-
proneness of classes playing different roles in a design pattern, suggests that the
findings could be grouped by the underlying metapattern roles. Other studies of
change-proneness in patterns suggest that size has a strong relationship to change-
proneness (Bieman et al. 2001, 2003).

Size is an appealing, baseline phenomenon: the larger a component, the more
likely some part of it changes. Moreover, we agree with Briand and Wust (2002)
who assert that “the size of an artifact is a necessary part of any model predicting a
property ... of this artifact.” If we are relating change-proneness to some property,
we want to know that this property is telling us more than just that the larger classes
are more change-prone. To this end it is often prudent to include size as a control
in any models that relate properties potentially influenced by size to a particular
outcome (El Emam et al. 2001). If our goal is to understand a phenomenon such as
how design pattern roles affect change proneness, then it is necessary to determine

1In this example, classes have been given the same name as the roles for clarity.

400 Empir Software Eng (2011) 16:396–423

Fig. 2 The basic metapattern structures

if the role attributes that we are measuring are an artifact of the design pattern role,
or simply a proxy for size. And so we ask: Do the observed differences in change-
proneness hold up, even when accounting for the sizes of the respective classes
playing the pattern or metapattern roles? We begin by studying the influence of size
on the change-proneness of classes playing traditional design pattern roles.

Research Question 1: To what extent does design pattern role explain the
variation in change-proneness of classes, when controlling for class size?

Our second research question considers the same issue, with respect to
metapatterns:

Research Question 2: To what extent does metapattern role explain the
variation in change-proneness of classes, when controlling for class size?

Next, we consider the relative explanatory power of pattern roles and metapattern
roles:

Research Question 3: When controlling for size, do metapattern roles explain
as much of the variation in change-proneness as design pattern roles?

Finally, we consider the impact of design pattern and metapattern roles on the
sizes of the classes playing those roles. If the roles explain a significant level of the
variance in size, then the differences in change-proneness of roles might simply be an
indirect, mediated effect of the relative size differences in the classes playing those
roles.

Research Question 4: Do (the purely) structural metapattern roles and
pattern roles explain the variation in the sizes of classes playing those roles?

Empir Software Eng (2011) 16:396–423 401

3 Phylogeny: Metapatterns and Patterns

Metapatterns are rooted in two structural roles, template and hook. A template is a class
with a method t that calls a method h in the hook class (or interface). The template
provides a “template” to accomplish a goal and the hook provides a way in, or a
“hook,” into a flexible class hierarchy including the hook and its descendants. We
use the same terms, without ambiguity, to refer to the template and hook methods,
i.e. hook may refer to either a method or a class, depending on context. To make
use of the hook class hierarchy, the template method must invoke the hook method
through some variable or parameter f in the template class. This variable provides
the link between the algorithm and the collection of classes available in the hook class
hierarchy. The cardinality of f defines the cardinality of the instance relationship
between the template and hook classes. When f is a container the template may invoke
any number of hook instances and the relationship is 1 : N. Alternatively, if f is a
simple scalar instance of hook then template may invoke methods in only one hook
instance and the relationship is 1 : 1. A subject may have to update many observers
so this would indicate a 1 : N relationship. On the other hand, a document formatting
strategy may hold only a single document formatter reference even though it might
choose one of several concrete formatters; this single object reference defines a 1 : 1
relationship.

In every case, the hook method in the hook class can be overridden by methods
in one or more hook implementation (hereafter referred to as implementation) classes
derived from the hook class. In the example above, the concrete strategies that
implemented different document formatters would play the implementation roles.

The patterns are shown in Fig. 2 and are defined as follows:

1. If the hook to template relation is purely associative or aggregative, it is a 1:1 or 1:N
Connection metapattern.

2. If template inherits from hook, it is a 1:1 or 1:N Recursive Connection metapattern.
3. If template and hook are the same class, this is a unification metapattern.
4. If template and hook are the same class type, but template references or aggregates

one or more instances of its own type, it is a 1:1 or 1:N Recursive Unification
metapattern.

3.1 Connection Metapatterns

In the connection metapattern, the template method delegates a specific task to the
hook method. The hook method is an “articulation point” allowing the implementation
and template classes to change independently.

The first row of Table 1 lists the traditional design patterns that instantiate the
1-1-Connection metapattern. Because the hook serves as the base class for one or more
implementations, we can expect that the hook role is relatively less change prone
than the implementation or the template roles. This mirrors the intuition reported by
Di Penta et al. across many design pattern roles such as those of the adapter, command,
state, strategy, and observer patterns.

In general, given a pattern role, the corresponding meta-role is evident. For
example, the builder pattern, a 1-1-Connection metapattern: the builder pattern role
maps to a hook role, the director to the template role, and the concretebuilder to the
implementation role. We list the typical meta-roles for the cannonical GOF structures
in Table 2.

402 Empir Software Eng (2011) 16:396–423

Table 1 Classifying design
patterns into metapatterns

All the metapatterns are
presented for completeness

Meta pattern Design pattern

1 : 1 Connection Bridge, Builder,
Mediator
State, Strategy,
Visitor

1 : N Connection Abstract Factory,
Command, Flyweight,
Iterator, Observer,
Prototype, Adapter
Proxy, Visitor

1 : 1 Recursive Connection Decorator
1 : N Recursive Connection Composite, Interpreter,

Visitor
Unification Factory Method,

Template Method
1 : 1 Recursive Unification Chain of Responsibility
1 : N Recursive Unification None
No metapattern Facade, Memento,

Singleton

The 1-N-Connection metapattern is similar, to the 1-1-Connection metapattern except
that the template role may aggregate or reference multiple instances of the hook
role objects. With respect to class structure and change-proneness we expect that
1-N-Connection and 1-1-Connection are similar: hook should change less than implemen-
tation or template. Instances of 1-N-Connection are shown in row 2 of Table 1.

3.2 Recursive Metapatterns

In the recursive metapatterns, the template class inherits from the hook class. This
means that it calls into its own hierarchy, and typically must provide an implemen-
tation, as well as a “template”, for the hook class. Playing both implementation and
template roles complicates the template class: it acts as both a client of an algorithm,

Table 2 Design pattern to metapattern role mapping

Pattern template hook implementation

Abstract factory client factory concrete factory
(Element tree) client product concrete product
Adapter client target adapter
Command invoker command concrete command
Composite composite component leaf
Decorator decorator component concrete component
Factory method creator creator concrete creator
Observer subject observer concrete observer
Prototype client prototype concrete prototype
State/strategy context state concrete state
Template method abstract class abstract class concrete class
Visitor client visitor concrete visitor
(Product tree) object structure element concrete element

(Remaining roles in order: Adapter: adaptee, Command: client, receiver Decorator: concrete
decorator, Factory Method: product, Observer: concrete subject)

Empir Software Eng (2011) 16:396–423 403

and often as an implementation of parts of the algorithm. The template is more
strongly linked to the hook than in the non-recursive variant.

In the Decorator pattern, the component class plays the hook role providing the
interface for both concrete component and decorator. The decorator plays the template
role and often a default implementation role. the concrete component class also plays
the implementation. Because the decorator can be subclassed by a concrete decorator
that must correctly invoke methods on the component classes that they decorate, the
classes are more tightly bound than in many other patterns. The decorator class holds
a reference to a concrete component that is also a descendant of the component (hook)
and typically the decorator methods forward requests from one concretedecorator to
the next. Changes in the base component role, and changes in forwarding logic will
induce changes across the decorator subtree. Thus, we expect the decorator, playing
the template metapattern role, to be more change-prone than either its hook, or even
the hook subclasses.

We expect the 1-N-Recusive-Connection metapattern to show a similar pattern of
change-proneness to the 1-1-Recursive-Connection metapattern.

3.3 Unification Metapatterns

The Unification metapatterns combine template and hook both roles in a single class.
Most patterns of this form do not contain an explicit hook reference and the hook call
is made implicitly through the this reference. The recursive form of this pattern
combines template and hook methods into a single recursive method. Since no design
patterns employ the Recursive Unification metapattern structure (see Table 1), we
ignore it. The (non-recursive) Unification metapattern may be found in the Factory
Method and Template Method design patterns. There is no strict mapping between
these patterns and the Unification metapattern, however, and both can also be
implemented with the Connection metapattern.

4 Related Work

There has been significant research effort focused on the validation of design pattern
claims. The earliest results focused on comparing development efforts both with
and without design patterns. In a controlled paper and pencil experiment on the
effectiveness of design patterns, Prechelt and Unger found that while Decorator had a
positive effect on program maintenance as compared to a simpler non pattern based
design solution, Observer had a negative effect; the benefits of Abstract Factory were
small, and, contrary to expectation, the Visitor was neither beneficial nor detrimen-
tal (Prechelt et al. 2001). Vokác̆ replicated this experiment in a real programming
environment and found similar effects for Decorator and Abstract Factory, a very
strong negative effect for Visitor and a positive effect for Observer (Vokáč et al. 2004).

Ng et al. found that the difficulty of performing maintenance tasks is dependent
on whether the subjects are changing concrete participants, abstract participants, or
client code (Ng et al. 2007) and that even inexperienced coders were more able to
affect changes on a system re-factored to design patterns than on the original non-
design pattern based system (Ng et al. 2006).

Bieman et al. studied change-proneness in design pattern instances within five
systems comparing classes participating in design patterns to those that played no

404 Empir Software Eng (2011) 16:396–423

role within any design pattern (Bieman et al. 2001, 2003). They theorized that, since
design patterns support adaptability, classes instantiating design patterns should
be more stable, and adaptations will occur via specialization of existing classes in
preference to modification of existing classes. Contrary to their expectation, they
found that classes participating in design patterns actually change more than classes
not participating in design patterns. One interpretation of this result might be that
design patterns do not lead to greater adaptability and lower change proneness. This
interpretation does not, however, account for systematic differences between pattern
and non-pattern classes. We do not find the Bieman et al. result surprising; in fact,
we expect that design patterns would be deliberately used to make certain classes
(perhaps playing critical roles) easier to change. By design, as the system evolves,
these critical classes might well become the focal point for change. Consequently,
a finding that design pattern classes change more than non-pattern classes does not
imply that using patterns is bad: it is simply a reflection of the fact classes playing
certain roles in certain patterns, by design and intention, change more often in
response to normal software evolution. This leads naturally to the question of how
pattern roles influence change-proneess, as we discuss below.

Aversano et al. (2007) studied patterns in several open source programs com-
paring change-proneness and co-change of classes participating in design patterns
to an overall rate of change. They found that patterns change more frequently
when they play a crucial role in the application. They also found that patterns
make clients resistant to changes but that changes to the pattern interface reduce
this resiliency. They concluded that overall class change frequency and quantity
does not depend on pattern type but on the (design) role a pattern plays for the
application. Their findings support the work of Bieman et al. in that they not only
find pattern classes more change-prone, but that, in particular, classes in patterns
at the core of an application’s design are more change-prone, which, as with the
work by Bieman et al., runs counter to expected intuition that design patterns
promote stability. This apparent contradiction melts away when pattern roles are
considered.

One often ignored aspect of class role membership is that classes frequently play
multiple roles. Khomh et al. studied the impact on classes playing multiple roles
within a system. Their work focuses on cross motif roles and showed that while
multiple roles cannot be ignored, a non-significant number of classes play a single
role (Khomh et al. 2009). We can draw two key ideas from this work. First, since
a statistically significant number of classes play single roles within a system it is
reasonable to study the change proneness of patterns playing single roles; second,
since we cannot ignore multiple roles, we must include this aspect in our models
in some manner. A class playing multiple roles does not necessarily take on the
characteristics of just one role and it would be erroneous to treat it as such.

One approach to control for between pattern variation is to consider expected
intuition within patterns. Recently Di Penta et al. (2008) studied change-proneness of
specific roles within design patterns. They compared the change-proneness between
groups of classes playing different design pattern roles. For each design pattern, the
authors described their expected intuition regarding change-proneness of roles. In
the state pattern, for example, the state role is an interface, and should be more
stable. Likewise, for the Adapter, the target role both provides the interface that
all adapters must implement as well as the external interface to the pattern via
the client and hence should be relatively stable. We observe that their arguments
could be abstracted into metapattern roles, in terms of the connection metapatterns.

Empir Software Eng (2011) 16:396–423 405

The template role expects a stable hook interface through which it can call on the
implementation classes that extend the hook interface. We see additional similarity in
the intuition reported for the recursive connection based patterns. For both Decorator
and Composite, the component pattern role is expected to remain stable as it provides
the interface through which clients make use of the decorator pattern as well as
the interface that must be implemented by all concrete components and decorators.
A change to this class may have ripple effects both in the clients that use the pattern
and the classes that implement the pattern. Di Penta et al. reported, contrary to their
intuition, that the decorator and composite roles often change more than expected. The
composite role implements a mechanism to build collections of concrete components
and the decorator similarly contains the mechanism to add any number of concrete
decorator implementations around each component. Hence, these roles are more than
simple interfaces and we expect that their template role nature explains previously
reported observations. Since these classes implement the elements that comprise the
core algorithm of the pattern it is expected that the composite would be more change-
prone and the concrete components less so.

In summary, while Di Penta et al. report distinct results for how the roles in
different design patterns are change-prone, their results in our analysis can be more
simply and consistently viewed in the light of metapattern roles. In other words, we
expect to see in the Di Penta et al. data that Classes playing hook roles change less
than those playing implementation or template roles. Moreover, the reported intuition,
although expressed in terms of design pattern roles, is specifically related to the
structure modeled by metapatterns.

Our research is partly animated by this finding; we investigate whether design
pattern roles that can be grouped into the same meta-pattern roles show similar
change-proneness. As Di Penta et al., and unlike previous work, we compare roles
within patterns. In addition, we control for size, multiple roles, and for between-
release effects. This approach allows us to focus more clearly on the affect role
membership has on class change proneness.

5 Data Gathering and Methodology

We gathered data from the same 3 projects used by Di Penta et al. (2008): JHotDraw
(5.1 − 5.4b2), Xerces (1.0.0 − 1.4.4), and Eclipse JDT (1.0 − 2.1.2). We used the
same approach to identify the pattern and metapattern instances that survived across
multiple changes.

To gauge the effect of design pattern/metapattern roles on change-proneness,
we identified pattern instances that remain stable, despite other changes, using the
approach of Di Penta et al. A pattern instance is stable if its major roles are bound to
the same class names in two consecutive releases. For metapatterns we require the
template and hook and their associated template and hook methods to remain stable
across two releases.

Given a class playing a stable pattern role between two releases R and R + 1,
we count the number of changes to that class in a series of snapshots between the
releases. We identify transactions: multiple commits within a narrow time window
made by the same developer are counted as an atomic commit, and thus a single
change.

Previous results counted each unique commit as a single change. We identified
change counts in a similar way, but used Fluri’s Change Distiller (Fluri et al. 2007),

406 Empir Software Eng (2011) 16:396–423

a more fine-grained change analysis tool. Commits that contain no actual source
code change, e.g. adding blank lines or rearranging methods in a class, are not
counted.

5.1 Design Pattern Detection

We use the DeMIMA approach of Di Penta et al. to identify occurrences of design
patterns (Guéhéneuc and Antoniol 2007). DeMIMA is built on the Ptidej toolset
which constructs static and dynamic models of Java source code.

Each pattern is defined as a set of logical constraints; an explanation based
constraint solver (Jussien and Barichard 2000) is used to identify pattern occurrences.
We used pattern participation data generated by the Ptidej solver provided by
Guéhéneuc et al. to identify design patterns in JHotDraw, Xerces, and Eclipse
JDT.

5.2 Metapattern Detection

We identify metapatterns in two ways. First, we link design patterns with their asso-
ciated metapatterns, thus extracting metapattern instances from the the DeMIMA
pattern data. We call these metapatterns embedded metapattern s. Thus, each design
pattern role is associated with its metapattern roles (Table 2). The number of
metapattern roles in each design pattern varies and metapatterns may also span
multiple design patterns. We consider only intra pattern metapatterns and do not
classify any role as a meta-role unless we can identify all metapattern roles within the
design pattern. These canonical metapatterns are derived from the example pattern
motif structures presented in the GOF book (Gamma et al. 1995) and are presented
in recent work on design pattern detection (Hayashi et al. 2008). As an example, the
observer pattern has a canonical metapattern role where the (Subject, Observer, and
Concrete Observer) roles correspond to (template, hook, and Implementation) meta-roles
respectively. The (Subject, Concrete Subject) often correspond to (hook, implementation)
meta-roles with respect to some template (often referred to as the client) that lies
outside of the observer pattern. From this perspective the Concrete Subject role plays
no meta-role within the Observer design pattern even though it often plays some
meta-role within some metapattern that is partially external to the Observer design
pattern. Since we cannot identify all meta-roles of this partial metapattern within
the observer pattern, we cannot label it as a stable metapattern, and hence, we do
not include it in our analysis. Thus we focus on the metapatterns that model design
pattern behavior within the design patterns detected by DeMIMA. This limitation
only applies to our analysis of embedded metapatterns inferred from the DeMIMA
data. It does not apply to the analysis of DeMIMA design patterns which include
all roles detected by DeMIMA, nor does it apply to metapatterns extracted directly
from code, as discussed below.

Our second approach to identifying metapatterns relies on our metapattern detec-
tion tool Thex, an abstract interpretation technique using the ASM library (Bruneton
et al. 2002) that directly identifies Template/Hook relations in Java class files (Posnett
et al. 2010). This approach does not make assumptions about which metapatterns
are associated with design patterns; nor does it distinguish between intra and
inter pattern metapatterns. If a set of classes meets the requirements for a stable
metapattern relationship, they are included in the results. This analysis is not possible

Empir Software Eng (2011) 16:396–423 407

with the dimema metapattens because DeMIMA does not identify all of the classes
that would comprise the inter-pattern metapatterns.

5.3 Tool Description

Here we present some details of how we define metapatterns in Java such that they
can be detected by Tool. We begin with Tourwé’s Tourwé and Mens (2003) formal
definition of Template/Hook relationships, and metapatterns. Thex identifies methods
as a Hook via inheritance and over-riding.

Given a class M and a class or interface H such that either M is a subclass of H or
M implements H, a method h ∈ H is a potential hook if there exists a method m ∈ M
such that m and h share a common signature and h is protected or public. In other
words there must exist at least one implementation m of a hook h in order to classify
h as a hook method.

Then, we find template methods t in class or interface T such that t invokes h
through some variable v of type H. We take the definition of v from Tourwé and
allow it to be either a field, a parameter, or a local variable. Tool then performs
an intra-procedural data flow analysis using abstract interpretation to trace the type
of sources used for method invocations. If the type of the source trace is a subtype
of H then we consider the triplet (T, H, M) a basic metapattern with no specific
metapattern type. Tool uses some minimal heuristics to identify certain types of
composition references in arrays and Java Collections. Heuristics are also used to
identify hook variable getters. If the call from t to h is made through some method
f ∈ T such that f simply returns the value of a local field y of type H, then we
identify y as the hook variable. Once hook and template instances are identified, we
use inheritance relationships as described above to identify metapatterns.

5.4 Pattern Counts

The number of pattern and metapattern motifs of each type are identified in Table 3.
For each of these patterns we count only motifs that are stable over at least two
releases. Whenever the same classes (identified by the same name) play the same
key roles, as identified in Table 4 by Di Penta et al., in multiple releases, we count
the motif only once.

For embedded metapattern instances, we consider two instances identical if the
design pattern instances that they are derived from are identical across two releases
as identified above. Thus the embedded metapattern instances are really a grouping
of design pattern instances based on the expected underlying metapattern. The Thex

metapatterns are not associated with any design patterns so we use the template and
hook roles as a basis for identification. Two Tool metapattern instances that have the
same classes in template and hook roles across two releases are counted only once in
the table.

The Visitor, Prototype, Decorator, and Composite patterns are found quite infre-
quently in several projects; they are excluded from later analysis when there are too
few for analysis. The large number of Abstract Factory and Factory Method instances
are most likely due to the simplistic nature of the patterns themselves. Although we
derive the embedded metapatterns from the DeMIMA design pattern results, we do
not see the same high numbers mirrored in the associated metapattern motif count.
This is because we filter metapattern instances based on the template and hook roles
as described above.

408 Empir Software Eng (2011) 16:396–423

Table 3 Role and pattern cardinality counts

Pattern JHotDraw Xerces ExclipseJDT

Pattern counts # # #
Role cardinality 1 2 N 1 2 N 1 2 N

Design patterns
Adapter 118 215 187 36 135 230 224 35 419 1516 1893 316
Abstract factory 1259 128 171 148 2657 163 323 317 0 NA NA NA
Command 50 183 106 49 88 234 167 95 285 1414 865 943
Composite 72 317 57 2 13 92 5 0 92 825 96 0
Decorator 22 220 22 3 0 NA NA NA 253 1101 395 45
Factory method 444 204 205 12 596 56 26 2 3285 1570 1232 121
Observer 69 86 143 33 64 292 49 36 208 332 299 100
Prototype 2 44 0 0 0 NA NA NA 5 111 0 3
State/strategy 46 276 37 7 95 634 114 21 317 2279 986 83
Template method 63 184 241 50 90 270 357 55 470 1354 2433 396
Visitor 1 21 8 0 6 59 46 14 43 503 327 298

Ptidej metapatterns
Connection 236 272 519 75 307 848 553 103 1250 2004 3472 649
Recursive connection 104 510 152 2 13 123 6 0 373 2103 686 44
Unification 64 500 87 0 100 733 132 0 500 4220 804 0

Thex metapatterns
Connection 339 380 319 6 289 486 203 13 3324 3484 2286 153
Recursive connection 34 316 51 0 47 291 49 1 140 1025 340 14
Unification 30 270 21 0 25 230 15 0 188 2578 226 0

Counts for classes playing 1, 2, N (>2) roles within the specified design pattern. NA indicates that
there were no patterns of that type in the project

5.5 Methodology

We use these data in multiple regression models to examine the relationships
between pattern and metapattern role, size, and change-proneness. This common
modeling technique has been used, (e.g.) to study the effect of coordination on bug
resolution times (Cataldo et al. 2006) and the effect of distributed development on
defects (Bird et al. 2009).

In our context, we use pattern roles played by classes, project release, and the
size of classes in lines of code (LOC) as explantory, or independent variables and
the number of distinct commits to a class as the response, or dependent variable.
We use Understand for Java by SciTools to compute LOC, which is taken to be the

Table 4 Key roles for
identification of duplicate
pattern motifs across releases

Pattern Key roles

Abstract factory Abstract factory, abstract product
Adapter Target, adapter, adaptee
Command Invokder, command, client
Composite Composite, component
Decorator Component, decorator
Observer Subject, observer
Prototype Prototype
State/strategy State/strategy, context
Template method Abstract class
Visitor Visitor, element

Empir Software Eng (2011) 16:396–423 409

number of source lines that contain actual source code (Sci-Tools 2010). For every
design pattern, we build several linear models using roles as explanatory variables.
There is one tuple per revision per class for each project within a system. Models are
built on a subset of these tuples based on pattern participation. For the majority of
models our response variable is the number of commits made to the class prior to the
release. For the models where size is the response variable, it is measured in LOC
and log transformed as described in the next section where we discuss explanatory
and response variables in greater detail.

Our interpretation is based on two key attributes of these models. First, the
estimate of the coeff icient for a particular role indicates the difference in change-
proneness relative to the weighted mean change proneness of all classes in the same
pattern. Both the sign and the magnitude indicate the relative effect. This effect
is not meaningful if not statistically significant. We consider these role coefficients
both with and without size control. We always include release as a control and its
interpretation is not significant in this study, we discuss it briefly in the next section
and again in threats to validity. Second, the R2 value represents the explanatory
power of the model, indicating the proportion of variance in the response variable
that can be explained by variance in the explanatory variables.

Since we are interested in the difference in change-proneness between roles in the
same pattern, we include only classes that play at least one role in one instance of
the specified pattern. As Khomh et al. (2009), we observed many cases where a class
played multiple roles. For example, a class may be a component in one instance of the
composite pattern and a leaf in another. To compare the change-proneness of a class
playing a particular role to the mean change of classes within the pattern, we have
to code role membership as a mutually exclusive dummy variable. Although a non-
mutually exclusive coding is possible, it complicates interpretation of the coefficients.
One choice would be to encode all possible combinations of roles. Unfortunately,
this encoding leads to many highly correlated and insignificant predictor variables,
even, when we build models for only a single pattern. The explosion of insignificant
and correlated role combinations over multiple patterns precludes building a useful
model over the entire system. Since a significant number of classes play only one role,
we elect to use a binary predictor for these roles; we also include a binary predictor
for classes playing two distinct roles, and a predictor for classes with n distinct roles
(for n > 2). We are not concerned with a class that plays multiple instances of the
same role. We consider a class that plays only the hook role in 10 different instances,
for example, as playing a single role.

Since the role memberships are unbalanced, i.e., there are typically more imple-
mentation classes than hook classes, we use a weighted effects coding that facilitates
a straightforward interpretation of the coefficients (Cohen et al. 1983). Each role
membership coefficient indicates the relative effect of role membership on the
dependent variable, compared to the weighted mean of the dependent variable
across all classes participating in a pattern. For example, in the case where change-
proneness is the dependent variable, a positive coefficient indicates that, on average,
the class playing the role in question changes more often and a negative coefficient
indicates that the it changes, on average, less often.

The role predictors (component, etc.) take on a value of 1 if the class plays that
role and 0 otherwise except as follows. For each model, one role is selected as the
base role for the coding scheme and is coded as −nk/nbase where nbase is the count
of classes playing the base role and nk is the count of classes playing role k. For
example, to code the roles for the connection metapattern suppose we use a simple

410 Empir Software Eng (2011) 16:396–423

Table 5 Weighted effects coding example

Class template hook implementation hook code implementation code

C1 1 0 0 −2/4 −1/4
C2 0 1 0 1 0
C3 0 0 1 0 1
C4 1 0 0 −2/4 −1/4
C5 0 1 0 1 0
C6 1 0 0 −2/4 −1/4
C7 1 0 0 −2/4 −1/4

Template is base, encoded as −nk/nbase, and fractions are left unreduced for clarity

coding where 1 indicates that the class plays a role and 0 indicates that it does not.
This coding is shown in the second through fourth columns of the Table 5. We might
choose template to be the base role and recode as shown in the two rightmost columns.
It is necessary that the base coded role is left out of the model in order to avoid
perfect collinearity. Since the model now includes only predictor variables for the
hook and implementation classes, the model does not yield a coefficient for the template
classes. To obtain this coefficient, each model is then repeated with a different base
variable. This method produces the same coefficients for the non-base predictors
and is the preferred method for obtaining coefficients for all coded predictors
(Cohen et al. 1983).

Table 3 shows for each project and each pattern how many classes play a single
role, two distinct roles, or more than two distinct roles within the same pattern.
A class may play, for example, a concrete strategy role in one instance while also
playing the client role for a second state/strategy pattern. As Di Penta et al., we
do not include cross pattern participation in this study as we are looking at relative
change-proneness of classes playing roles within patterns. That is, we do not exclude
classes playing roles across multiple patterns, however, we do not control for their
multiple pattern membership either. We do consider within pattern role multiplicity,
i.e. classes which play multiple roles within the same pattern, as it is not reasonable
to arbitrarily assign role membership to a class when it plays multiple roles within
the same pattern. For example, if a class plays a hook role in three patterns and a
implementation role in 8 more, we cannot choose either role arbitrarily to represent
the role participation for the class.

It has been shown that size often follows a log-normal distribution (Zhang and Tan
2007). We observe this distribution in all three projects and so we log transform LOC
to increase central tendency, reduce heteroskedasticity, and improve the model fit.
In addition, due to skewness, we also log transform the number of changes (Cohen
et al. 1983).

There are potentially many reasons that a class may change including defect cor-
rections, foreseen design changes, unforeseen design changes, etc. In addition, there
is no reason to expect that the relative frequency of these changes is consistent across
all releases We might, for example, expect significant between release variation as
a project moves from a development phase into a maintenance phase. In order to
include all releases in the models while controlling for between release variation
we treat release as a time fixed effect so that we are only looking at within-release,
within-pattern variation of change-proneness (Brooks 2008). The between release
variance is captured by the coefficient of the release control variable. We do not

Empir Software Eng (2011) 16:396–423 411

T
ab

le
6

JH
ot

D
ra

w
in

m
od

el
la

be
ls

:v
=

re
le

as
e,

r
=

ro
le

,s
=

si
ze

P
at

te
rn

M
v

M
v

r
M

v
rs

M
v

s
M

v
r→

s

T
H

M
rm

2
N

R
2

T
H

M
rm

2
N

R
2

R
2

T
H

M
rm

2
N

R
2

D
es

ig
n

pa
tt

er
ns

A
da

pt
er

0.
46

·
⇓

·
·

⇑
0.

48
·

·
·

↓
⇑

0.
57

0.
57

⇑
⇓

↓
⇑

⇑
0.

36
A

bs
tr

ac
tf

ac
to

ry
0.

54
⇓

⇑
·

⇑
0.

56
·

⇑
·

·
0.

62
0.

62
⇓

·
·

⇑
0.

33
(P

ro
du

ct
tr

ee
)

⇓
⇓

·
·

⇓
⇓

C
om

m
an

d
0.

50
·

⇓
⇓

··
·

⇑
0.

55
·

·
⇓

··
·

⇑
0.

60
0.

58
·

⇓
⇓

⇓⇑
·

⇑
0.

25
C

om
po

si
te

0.
34

·
⇓

⇓
⇑

⇑
0.

43
·

·
⇓

⇑
⇑

0.
50

0.
47

·
⇓

⇑
⇑

⇑
0.

40
D

ec
or

at
or

0.
48

↑
·

·
·

·
·

0.
48

·
↑

·
·

·
·

0.
57

0.
57

⇑
⇓

⇓
⇑

↑
⇑

0.
23

F
ac

to
ry

m
et

ho
d

0.
48

·
·

⇓
↓

⇑
⇑

0.
52

·
·

⇓
·

⇑
⇑

0.
59

0.
57

⇓
↑

·
⇓

⇑
⇑

0.
13

O
bs

er
ve

r
0.

48
·

⇓
·

⇑
↓

⇑
0.

53
·

·
·

⇑
⇓

·
0.

58
0.

56
·

⇓
·

·
⇑

⇑
0.

39
P

ro
to

ty
pe

N
S

·
·

·
·

·
·

N
S

·
·

·
·

·
·

N
S

N
S

·
·

·
·

·
·

N
S

St
at

e/
st

ra
te

gy
0.

40
·

⇓
·

↑
⇑

0.
44

·
·

·
·

·
0.

51
0.

51
⇑

⇓
·

⇑
⇑

0.
41

T
em

pl
at

e
m

et
ho

d
0.

45
⇓

⇓
↓

⇑
⇑

0.
48

⇓
·

·
·

⇑
0.

57
0.

56
·

⇓
⇓

⇑
⇑

0.
29

V
is

it
or

N
S

·
·

·
·

·
·

N
S

·
·

·
·

·
·

N
S

N
S

·
·

·
·

·
·

N
S

E
m

be
dd

ed
m

et
ap

at
te

rn
s

C
on

ne
ct

io
n

0.
37

·
⇓

↓
·

⇑
0.

38
↑

⇑
·

⇓
·

0.
46

0.
45

·
⇓

⇓
⇑

⇑
0.

36
R

ec
co

nn
ec

ti
on

0.
35

·
↓

⇓
⇑

·
0.

37
·

⇑
⇓

·
·

0.
47

0.
45

·
⇓

⇑
⇑

⇑
0.

34
U

ni
fi

ca
ti

on
0.

37
⇓

·
↑

0.
38

↑
·

⇑
0.

46
0.

45
⇓

·
↓

0.
34

T
h
e
x

m
et

ap
at

te
rn

s
C

on
ne

ct
io

n
0.

37
·

⇓
·

·
⇑

0.
38

·
⇑

·
⇓

·
0.

49
0.

47
⇑

⇓
⇑

⇑
⇑

0.
42

R
ec

co
nn

ec
ti

on
0.

29
·

·
⇓

⇑
·

0.
33

·
⇑

⇓
·

·
0.

46
0.

44
⇑

⇓
·

⇑
·

0.
29

U
ni

fi
ca

ti
on

0.
37

⇑
·

⇑
0.

43
↑

·
·

0.
50

0.
50

⇑
·

⇑
0.

17

C
ha

ng
e

pr
on

en
es

s
is

re
sp

on
se

fo
r

al
le

xc
ep

t
M

v
r→

s
w

he
re

si
ze

is
re

sp
on

se
.R

ea
d

pa
tt

er
ns

ac
ro

ss
th

e
ro

w
s

an
d

ro
le

s
an

d
m

od
el

s
do

w
n

th
e

co
lu

m
ns

.(
se

e
in

di
vi

du
al

m
od

el
de

sc
ri

pt
io

ns
in

te
xt

)
R

ol
e

la
be

ls
(T

/H
/M

/2
/N

/r
m

)
in

di
ca

te
th

e
m

et
ap

at
te

rn
ro

le
re

pr
es

en
te

d
by

th
e

co
lu

m
n.

F
or

de
si

gn
pa

tt
er

ns
se

e
T

ab
le

2
fo

r
th

e
sp

ec
if

ic
de

si
gn

pa
tt

er
n

ro
le

w
hi

ch
m

ap
s

to
th

e
m

et
ap

at
te

rn
la

be
l.

2
=

2
ro

le
s,

N
=

m
or

e
th

an
2

ro
le

s,
rm

=
re

m
ai

ni
ng

ro
le

s.
R

ol
e

in
di

ca
to

rs
(⇑

,
⇑,

↑)
in

di
ca

te
po

si
ti

ve
si

gn
if

ic
an

ce
at

(0
.0

1,
0.

05
,
0.

10
)

le
ve

ls
re

sp
ec

ti
ve

ly
,(

⇓,
⇓,

↓)
in

di
ca

te
ne

ga
ti

ve
si

gn
if

ic
an

ce
at

(0
.0

1,
0.

05
,
0.

10
)

le
ve

ls
re

sp
ec

ti
ve

ly
,a

nd
(·)

in
di

ca
te

s
no

t
si

gn
if

ic
an

t.
(R

em
ai

ni
ng

ro
le

s
(r

m
)

in
or

de
r:

A
da

pt
er

:a
da

pt
ee

,C
om

m
an

d:
cl

ie
nt

,r
ec

ei
ve

r
D

ec
or

at
or

:c
on

cr
et

e
de

co
ra

to
r,

F
ac

to
ry

M
et

ho
d:

pr
od

uc
t,

O
bs

er
ve

r:
co

nc
re

te
su

bj
ec

t)
U

ni
fi

ca
ti

on
pa

tt
er

ns
in

di
ca

te
te

m
pl

at
e/

ho
ok

ro
le

in
te

m
pl

at
e

co
lu

m
n.

P
at

te
rn

s
w

it
h

tw
o

ro
w

s
ha

ve
m

or
e

th
an

on
e

se
t

of
m

et
ap

at
te

rn
ro

le
s

an
d

nu
m

er
ic

re
su

lt
s

ar
e

th
e

sa
m

e
fo

r
bo

th
ro

w
s

412 Empir Software Eng (2011) 16:396–423

T
ab

le
7

X
er

ce
s-

J
in

m
od

el
la

be
ls

:v
=

re
le

as
e,

r
=

ro
le

,s
=

si
ze

P
at

te
rn

M
v

M
v

r
M

v
rs

M
v

s
M

v
r→

s

T
H

M
rm

2
N

R
2

T
H

M
rm

2
N

R
2

R
2

T
H

M
rm

2
N

R
2

D
es

ig
n

pa
tt

er
ns

A
da

pt
er

0.
11

⇑
⇓

·
·

·
0.

15
·

·
·

·
·

0.
32

0.
32

⇑
⇓

↑
⇑

·
0.

30
A

bs
tr

ac
tf

ac
to

ry
0.

11
⇓

·
⇓

⇑
0.

25
·

·
⇓

⇑
0.

31
0.

30
⇓

·
⇓

⇑
0.

43
(P

ro
du

ct
tr

ee
)

⇓
·

·
·

⇓
⇓

C
om

m
an

d
0.

11
·

⇓
⇓

↓·
·

⇑
0.

25
·

↓
⇓

·↓
·

⇑
0.

32
0.

28
·

⇓
⇓

⇓⇑
⇑

⇑
0.

35
C

om
po

si
te

0.
20

⇑
·

·
·

·
0.

29
↑

·
⇓

·
·

0.
50

0.
47

D
ec

or
at

or
N

A
N

A
N

A
N

A
N

A
F

ac
to

ry
m

et
ho

d
N

A
N

A
N

A
N

A
N

A
O

bs
er

ve
r

0.
40

·
⇓

⇓
·

·
⇑

0.
47

·
·

·
↓

·
⇑

0.
53

0.
51

⇓
⇓

·
·

⇑
⇑

0.
43

P
ro

to
ty

pe
N

A
N

A
N

A
N

A
N

A
St

at
e/

st
ra

te
gy

0.
17

⇑
⇓

⇓
⇑

⇑
0.

34
·

·
⇓

⇑
⇑

0.
43

0.
41

⇑
⇓

⇓
⇑

⇑
0.

30
T

em
pl

at
e

m
et

ho
d

0.
15

⇑
⇓

⇓
⇑

↑
0.

23
·

·
⇓

⇑
·

0.
37

0.
36

⇑
⇓

⇓
⇑

·
0.

19
V

is
it

or
N

S
·

·
·

·
·

·
N

S
·

·
·

·
·

·
N

S
N

S
·

·
·

·
·

·
N

S
E

m
be

dd
ed

m
et

ap
at

te
rn

s
C

on
ne

ct
io

n
0.

22
·

⇓
⇓

⇑
⇑

0.
28

·
·

↓
·

⇑
0.

35
0.

35
⇓

⇓
⇓

⇑
⇑

0.
23

R
ec

co
nn

ec
ti

on
·

·
·

·
·

0.
29

0.
29

⇑
⇓

·
⇑

·
0.

20
U

ni
fi

ca
ti

on
0.

24
⇓

·
·

0.
26

·
·

⇑
0.

39
0.

39
⇓

·
⇓

0.
12

T
h
e
x

m
et

ap
at

te
rn

s
C

on
ne

ct
io

n
0.

28
·

⇓
·

⇑
⇑

0.
35

⇓
·

·
·

⇑
0.

39
0.

37
⇑

⇓
·

⇑
⇑

0.
49

R
ec

co
nn

ec
ti

on
0.

31
⇓

⇓
·

⇑
↑

0.
41

⇓
·

·
⇑

·
0.

46
0.

42
⇑

⇓
↑

⇑
·

0.
38

U
ni

fi
ca

ti
on

0.
38

·
·

⇑
0.

46
⇓

·
⇑

0.
56

0.
54

⇑
·

⇑
0.

20

C
ha

ng
e

pr
on

en
es

s
is

re
sp

on
se

fo
r

al
le

xc
ep

t
M

v
r→

s
w

he
re

si
ze

is
re

sp
on

se
.R

ea
d

pa
tt

er
ns

ac
ro

ss
th

e
ro

w
s

an
d

ro
le

s
an

d
m

od
el

s
do

w
n

th
e

co
lu

m
ns

.(
se

e
in

di
vi

du
al

m
od

el
de

sc
ri

pt
io

ns
in

te
xt

)
M

od
el

in
di

ca
to

rs
(N

S,
N

A
)

in
di

ca
te

th
at

th
e

m
od

el
w

as
ei

th
er

no
ts

ig
ni

fi
ca

nt
,o

r
no

ta
pp

lic
ab

le
if

th
er

e
w

er
e

no
pa

tt
er

ns
of

th
e

in
di

ca
te

d
ty

pe
.R

ol
e

la
be

ls
(T

/H
/M

/2
/N

/r
m

)
in

di
ca

te
th

e
m

et
ap

at
te

rn
ro

le
re

pr
es

en
te

d
by

th
e

co
lu

m
n.

F
or

de
si

gn
pa

tt
er

ns
se

e
T

ab
le

2
fo

r
th

e
sp

ec
if

ic
de

si
gn

pa
tt

er
n

ro
le

w
hi

ch
m

ap
s

to
th

e
m

et
ap

at
te

rn
la

be
l.

2
=

2
ro

le
s,

N
=

m
or

e
th

an
2

ro
le

s,
rm

=
re

m
ai

ni
ng

ro
le

s.
R

ol
e

in
di

ca
to

rs
(⇑

,⇑
,↑

)
in

di
ca

te
po

si
ti

ve
si

gn
if

ic
an

ce
at

(0
.0

1,
0.

05
,
0.

10
)

le
ve

ls
re

sp
ec

ti
ve

ly
,(

⇓,
⇓,

↓)
in

di
ca

te
ne

ga
ti

ve
si

gn
if

ic
an

ce
at

(0
.0

1,
0.

05
,
0.

10
)

le
ve

ls
re

sp
ec

ti
ve

ly
,a

nd
(·)

in
di

ca
te

s
no

t
si

gn
if

ic
an

t.
(R

em
ai

ni
ng

ro
le

s
(r

m
)

in
or

de
r:

A
da

pt
er

:a
da

pt
ee

,C
om

m
an

d:
cl

ie
nt

,r
ec

ei
ve

r
D

ec
or

at
or

:c
on

cr
et

e
de

co
ra

to
r,

F
ac

to
ry

M
et

ho
d:

pr
od

uc
t,

O
bs

er
ve

r:
co

nc
re

te
su

bj
ec

t)
U

ni
fi

ca
ti

on
pa

tt
er

ns
in

di
ca

te
te

m
pl

at
e/

ho
ok

ro
le

in
te

m
pl

at
e

co
lu

m
n.

P
at

te
rn

s
w

it
h

tw
o

ro
w

s
ha

ve
m

or
e

th
an

on
e

se
to

fm
et

ap
at

te
rn

ro
le

s
an

d
nu

m
er

ic
re

su
lt

s
ar

e
th

e
sa

m
e

fo
r

bo
th

ro
w

s

Empir Software Eng (2011) 16:396–423 413

T
ab

le
8

E
cl

ip
se

JD
T

in
m

od
el

la
be

ls
:v

=
re

le
as

e,
r

=
ro

le
,s

=
si

ze

P
at

te
rn

M
v

M
v

r
M

v
rs

M
v

s
M

v
r→

s

T
H

M
rm

2
N

R
2

T
H

M
rm

2
N

R
2

R
2

T
H

M
rm

2
N

R
2

D
es

ig
n

pa
tt

er
ns

A
da

pt
er

0.
04

·
⇓

·
⇑

·
0.

08
⇓

⇑
⇓

·
⇑

0.
33

0.
33

⇑
⇓

⇑
⇑

⇓
0.

32
A

bs
tr

ac
tf

ac
to

ry
N

A
·

·
·

·
·

·
N

A
·

·
·

·
·

·
N

A
N

A
·

·
·

·
·

·
N

A
C

om
m

an
d

0.
03

·
⇓

⇓
⇓⇑

·
⇑

0.
15

↓
·

⇓
··

·
⇑

0.
34

0.
33

⇑
⇓

⇓
⇓⇑

·
⇑

0.
31

C
om

po
si

te
0.

07
⇑

·
⇓

⇑
·

0.
10

·
⇑

·
·

·
0.

44
0.

44
⇑

⇓
⇓

⇑
·

0.
14

D
ec

or
at

or
⇑

↓
⇓

⇓
⇑

⇑
0.

05
·

·
·

·
·

⇑
0.

33
0.

33
⇑

⇓
⇓

⇓
⇑

⇑
0.

09
F

ac
to

ry
m

et
ho

d
0.

02
⇓

⇑
⇓

⇓
⇑

⇑
0.

10
·

⇑
⇓

·
↑

⇑
0.

36
0.

35
⇓

⇑
·

⇓
⇑

⇑
0.

19
O

bs
er

ve
r

0.
04

⇓
⇓

⇑
⇓

·
⇑

0.
16

·
·

·
⇓

⇓
⇑

0.
41

0.
40

⇓
⇓

⇑
·

⇑
⇑

0.
44

P
ro

to
ty

pe
N

S
·

·
·

·
·

·
N

S
·

·
·

·
·

·
N

S
N

S
·

·
·

·
·

·
N

S
St

at
e/

st
ra

te
gy

0.
03

⇑
⇓

⇓
⇑

⇑
0.

14
⇓

⇑
⇓

⇑
⇑

0.
35

0.
34

⇑
⇓

⇓
⇑

⇑
0.

27
T

em
pl

at
e

m
et

ho
d

0.
04

⇑
⇓

⇓
⇑

·
0.

07
·

⇑
⇓

·
⇑

0.
33

0.
33

⇑
⇓

·
⇑

⇓
0.

21
V

is
it

or
0.

03
⇓

⇓
·

⇑
⇑

0.
10

·
·

·
·

↑
0.

34
0.

33
⇓

⇓
·

⇑
⇑

0.
20

(E
le

m
en

tt
re

e)
⇓

⇓
·

⇓
↑

⇑
⇓

⇓
⇓

E
m

be
dd

ed
m

et
ap

at
te

rn
s

C
on

ne
ct

io
n

0.
05

⇑
⇓

⇓
⇑

⇑
0.

08
⇓

⇑
·

⇓
⇑

0.
32

0.
32

⇑
⇓

⇓
⇑

↓
0.

21
R

ec
co

nn
ec

ti
on

0.
05

↑
⇓

⇓
⇑

⇑
0.

09
·

·
⇓

⇑
⇑

0.
37

0.
37

⇑
⇓

⇓
⇑

⇑
0.

11
U

ni
fi

ca
ti

on
0.

05
⇓

·
⇓

0.
09

·
·

⇑
0.

32
0.

32
⇓

·
⇓

0.
23

T
h
e
x

m
et

ap
at

te
rn

s
C

on
ne

ct
io

n
0.

05
⇑

⇓
⇓

⇑
⇑

0.
16

⇓
⇑

⇓
⇑

⇑
0.

32
0.

30
⇑

⇓
⇓

⇑
⇑

0.
45

R
ec

co
nn

ec
ti

on
0.

05
·

⇓
⇓

⇑
⇑

0.
12

↓
·

⇓
⇑

⇑
0.

28
0.

27
⇑

⇓
⇓

⇑
⇑

0.
18

U
ni

fi
ca

ti
on

0.
05

⇑
·

⇑
0.

07
⇓

·
⇑

0.
30

0.
30

⇑
·

⇑
0.

08

C
ha

ng
e

pr
on

en
es

s
is

re
sp

on
se

fo
r

al
le

xc
ep

t
M

v
r→

s
w

he
re

si
ze

is
re

sp
on

se
.R

ea
d

pa
tt

er
ns

ac
ro

ss
th

e
ro

w
s

an
d

ro
le

s
an

d
m

od
el

s
do

w
n

th
e

co
lu

m
ns

.(
se

e
in

di
vi

du
al

m
od

el
de

sc
ri

pt
io

ns
in

te
xt

)
M

od
el

in
di

ca
to

rs
(N

S,
N

A
)

in
di

ca
te

th
at

th
e

m
od

el
w

as
ei

th
er

no
ts

ig
ni

fi
ca

nt
,o

r
no

ta
pp

lic
ab

le
if

th
er

e
w

er
e

no
pa

tt
er

ns
of

th
e

in
di

ca
te

d
ty

pe
.R

ol
e

la
be

ls
(T

/H
/M

/2
/N

/r
m

)
in

di
ca

te
th

e
m

et
ap

at
te

rn
ro

le
re

pr
es

en
te

d
by

th
e

co
lu

m
n.

F
or

de
si

gn
pa

tt
er

ns
se

e
T

ab
le

2
fo

r
th

e
sp

ec
if

ic
de

si
gn

pa
tt

er
n

ro
le

w
hi

ch
m

ap
s

to
th

e
m

et
ap

at
te

rn
la

be
l.

2
=

2
ro

le
s,

N
=

m
or

e
th

an
2

ro
le

s,
rm

=
re

m
ai

ni
ng

ro
le

s.
R

ol
e

in
di

ca
to

rs
(⇑

,⇑
,↑

)
in

di
ca

te
po

si
ti

ve
si

gn
if

ic
an

ce
at

(0
.0

1,
0.

05
,
0.

10
)

le
ve

ls
re

sp
ec

ti
ve

ly
,(

⇓,
⇓,

↓)
in

di
ca

te
ne

ga
ti

ve
si

gn
if

ic
an

ce
at

(0
.0

1,
0.

05
,
0.

10
)

le
ve

ls
re

sp
ec

ti
ve

ly
,a

nd
(·)

in
di

ca
te

s
no

t
si

gn
if

ic
an

t.
(R

em
ai

ni
ng

ro
le

s
(r

m
)

in
or

de
r:

A
da

pt
er

:a
da

pt
ee

,C
om

m
an

d:
cl

ie
nt

,r
ec

ei
ve

r
D

ec
or

at
or

:c
on

cr
et

e
de

co
ra

to
r,

F
ac

to
ry

M
et

ho
d:

pr
od

uc
t,

O
bs

er
ve

r:
co

nc
re

te
su

bj
ec

t)
U

ni
fi

ca
ti

on
pa

tt
er

ns
in

di
ca

te
te

m
pl

at
e/

ho
ok

ro
le

in
te

m
pl

at
e

co
lu

m
n.

P
at

te
rn

s
w

it
h

tw
o

ro
w

s
ha

ve
m

or
e

th
an

on
e

se
to

fm
et

ap
at

te
rn

ro
le

s
an

d
nu

m
er

ic
re

su
lt

s
ar

e
th

e
sa

m
e

fo
r

bo
th

ro
w

s

414 Empir Software Eng (2011) 16:396–423

include any other within-release, within-pattern control variables, such as change
type, in this study (See Section 8).

To check that multicollinearity isn’t a problem, we compute the variance inflation
factor (VIF) of each dependent variable in all of the models. Although there is no
particular value of VIF that is considered excessive, we use the commonly used
conservative value of 5 (Cohen et al. 1983). We did not find any VIF values that
exceeded 5 in any of the models and conclude that multicollinearity is not an issue.

We check for outliers through visual examination of the residuals vs. leverage
plot for each model looking for both separation and large values of Cook’s distance.
Because of the large number of models, we automatically eliminate points with
Cook’s distance greater than the critical value of the F distribution with α = 0.5, and
k + 1, n − k − 1 degrees of freedom, where k is the number of independent variables
in the model and n is the number of data points (Cohen et al. 1983).

Because we want to compare nested models (i.e., a model which uses the same
response variable, a subset of predictor variables, and the same set of data points)
to demonstrate the explanatory power of additional variables, we must ensure that
automatic variable elimination results in the same data points for each model. Since
Cook’s distance is dependent on the choice of predictors, it varies across models. We
find that by using the model Mrv , which uses roles and release as predictors, as a
basis, models with additional predictors do not eliminate any additional data points.

We compute models for three categories of data in each of the three projects
JHotDraw, Xerces, and Eclipse JDT. We first examine design patterns as identified
by DeMIMA. We also examine metapatterns as extracted from the DeMIMA design
patterns following the description presented in Section 3. This set of metapatterns
serves to group the design patterns by their expected underlying metapatterns.
Finally, we analyze metapatterns identified by Thex presented earlier. The Thex

metapatterns look at all found metapatterns independent of design patterns. By
looking at the first set we can see if our expectations about metapatterns behavior
hold when applied to known design patterns while the second set allows us to see if
these same behaviors hold when we relax the detection requirements to only those
required by metapatterns.

There are over 100 combinations of projects, categories of patterns, and particular
patterns, making a detailed account of each model tedious and impractical (see
summary in Tables 6, 7 and 8). In lieu of this we provide a detailed summary of
role behavior and an overall summary of model behavior across each project.

6 Results

Here we present the results ordered from RQ1 to RQ4. First, we discuss the degree
to which pattern roles explain variance in change-proneness, when considering the
impact of size. Second, we discuss the influence of metapattern roles on change-
proneness, when controlling for size. Third, we discuss whether pattern roles provide
additional power, as compared to metapattern roles, in explaining change-proneness
(when controlling for size). Finally, we present data indicating that design pattern
and metapattern roles are associated with size to a significant extent.

For the following discussion we will be referencing Tables 6–8. There is one
table for each project. The rows in the table present the change-proneness results
for different design patterns. The columns present different models. There are four
groups of columns, starting with Mv . The major columns correspond to models that

Empir Software Eng (2011) 16:396–423 415

control for different effects (version Mv , version+roles Mrv , version+roles+size Mvrs

etc.) and are described in detail below. Under the major columns, the first three
sub-columns show the direction and significance for the template, hook, and imple-
mentation roles respectively. The next column shows the significance and direction of
the remaining pattern roles that are not related to metapattern roles. The column
labeled 2 represents the effects code for a class that is playing 2 distinct roles and
the column labeled N indicates the effect when a class plays more than 2 distinct
roles. Finally, the column labeled R2 gives the variance explained by that particular
model.

Each row and major column represents a specific model and within each major
column (e.g. , Mvrs), each sub-column represents a variable. The cell corresponding
to row and column gives the significance of the variable. Due to the large number of
models and the need to present the results somewhat succinctly we use symbols to
indicate both the strength and direction of each coded predictor. We visually code the
direction and significance of the p-values representing the role coefficient t-tests as
explained in the caption of the figures. For each model we adjusted model p-values
for multiple hypothesis testing using the Benjamini–Hochberg method (Benjamini
and Hochberg 1995). Models that were not statistically significant (p > 0.05) are
indicated with NS. Entries that contain NA had an insufficient number of classes
in one or more roles, or an insufficient number of pattern occurrences, such that
the model could not be fit. For each model we consider only the subset of classes
that play at least one role in the indicated pattern. We perform multiple hypothesis
correction on the coefficient t-tests for role predictors but also report the p-values to
three levels as indicated in the legend.

6.1 Models Mv

We first briefly discuss the baseline model for across-release change-proneness,
which is shown in the leftmost column headed Mv . This model, which uses only
the release identifier as a factor, captures the between-release change-proneness
variation. We later use the release predictor variable to control for the between-
release variation in other models. For JHotDraw, release alone accounts for sig-
nificant change-proneness across all patterns. For Xerces, the effect of release is
more moderate and for Eclipse JDT, significantly lower. In essence, this simple
model captures the degree to which releases are different with respect to change-
proneness. For the purposes of this work, however, release is a control and we are not
interpreting the coefficients other than to observe that its effect on change proneness
is project dependent.

6.2 Models Mvr

The models in the second major column labeled Mvr are most similar to results
by Di Penta et al.. These models show the relationship between roles and change-
proneness when not controlling for size. From this we can see that almost without ex-
ception, whenever classes playing the hook role are significant, they are, as expected
by reported intuition, less change-prone. For JHotDraw some roles are significant,
for Xerces about one half are significant and for Eclipse JDT most of the roles are
significant.

Looking at the results for Eclipse JDT, the roles reflect previously reported
intuition for many of the patterns. For example, the the state/strategy pattern results

416 Empir Software Eng (2011) 16:396–423

indicate that the state changes less often while the context changes more often than
the mean change proneness for all classes participating in any occurrence of the
state/strategy pattern. For the adapter pattern we see that the target role is less change-
prone, however, our results do not indicate that the client and adapter roles change
less often.

The difference from earlier results might be due to some difference in modeling.
Di Penta et al. use a two sample test, that didn’t consider differences between releases
(Di Penta et al. 2008). Another possibility is our choice of role coding. We are not
comparing the roles directly with each other, rather, we are comparing each role with
the mean change-proneness of all classes participating in the pattern. Nonetheless,
the results in this table largely agree with earlier work, and with intuition. They
indicate that, when we do not control for size, classes playing the hook role tend to
change less often. For classes playing two distinct roles the results vary, but classes
playing three or more distinct roles (in the same design pattern) are more change-
prone across almost all patterns in all projects.

6.3 RQ1 and RQ2

In their study of the effect of design pattern role on change-proneness, Di Penta et al.
(2008) did not examine the effect of size. We examine the effect of design pattern role
on change-proneness when controlling for size by adding lines of code (LOC) as an
additional predictor to the model. The results for these models are reported in the
column labeled Mvrs. We do not report detailed coefficients for size as a predictor,
but its effect can be easily summarized. Size is statistically significant and positively
related to change proneness in every pattern in every project.

The models in the next column Mvs are also important to the following discussion.
We note first that the R2 values for the models including size are larger in every
case than the models using only roles as predictors. Adding even a random variable
to a model can increase the R2 value, so we use adjusted R2 values that show an
increase only if the additional terms improve the model more than would be expected
by chance (Toutenburg 2002). Comparing Mvr and Mvrs directly, however, may be
misleading as many predictors lose significance when including size as a predictor.
Since size remains significant in every model whether we include roles or not, we can
reasonably compare the R2 values for Mvs, and Mvrs. Turning our attention to Mvs

we can see that the reported R2 values are only slightly smaller than the R2 values
for the Mvrs models. Adding roles to Mvs only increases the explanatory power of the
model by a few percent. ANOVA tables of each model and model pair shows that
either size or release is the dominant predictor in every model and every pattern,
and, that adding roles improves each model only minimally. We note that release
is only dominant for some models in JHotDraw and that when release is dominant,
size is always the second most significant predictor. This suggests that the simpler
models, which do not include roles, are the more parsimonious models. We must
also consider, however, the effect of the statistically significant roles.

When size is included as a control, many roles lose their significance. This effect
is especially true with Xerces where very few roles remain significant. Focusing on
Eclipse JDT, which contains the largest number of significant roles after controlling
for size, we can observe an interesting phenomenon: Although some roles are still
significant, their direction is often reversed. This reversal is particularly true with
implementation roles. Most classes playing implementation roles are less change-prone
when we omit size control but are more change-prone after controlling for size.

Empir Software Eng (2011) 16:396–423 417

Interfaces that should be stable change more often relative to their size than the
classes that implement them.

The effect of participating in two distinct roles varies with project and pattern.
When classes participate in three or more distinct roles the effect of that participation
is fairly consistently positive. We might expect that classes playing many roles are
going to be larger, but, even after controlling for size, classes that play more than
two distinct roles in a particular pattern, e.g. a concrete strategy role in one instance
may also be the context for another instance, are more change-prone. As Khomh
points out, classes playing two distinct roles in the same pattern instance must be
participating in a degenerate pattern (Khomh et al. 2009). It is not the case, however,
that a class playing two distinct roles in the same pattern but different instances, as in
the previous example, must be degenerate. A class playing more than two roles in the
same pattern receives change pressure from multiple pattern instances so is likely to
change more often. We note, however, that the multiple role predictors are included
in the tiny improvement that roles contribute to the overall explanatory power of the
model.

With respect to RQ1, which asks if roles are significant predictors of change-
proneness when controlling for size, the answer is twofold. First, the explanatory
power of roles is so small when controlling for size that too few roles remain statis-
tically significant to support the expected intuition for the effect of roles on change-
proneness. Second, when roles are significant, their effect often runs counter to
reported intuition. That is, hook classes are often more change prone after controlling
for size. When controlling for class size, the role that a class plays in a pattern has
little effect on change-proneness unless the class plays three or more distinct roles.
Thus, with respect to RQ1 and RQ2:

Conclusion for RQ1 and RQ2 Size appears to be the strongest factor in explaining
change-proneness. Beyond this, pattern and metapattern roles add very little additional
explanatory power..

6.4 RQ3

Research question 3 is similar to RQ2 except that it pertains to the value of meta-
patterns in evaluating change-proneness. When controlling for size, do metapattern
roles explain as much of the differences in change-proneness as well as pattern roles?
In light of the answer to the first two research questions, the answer to the third
becomes almost moot. However, we did contrast the effect of design pattern roles on
change-proneness and metapattern roles when controlling for class size.

In this case, we quantify the effect of pattern role as the the difference in R2

between the model including only class size, Mvs, and the model with class size and
pattern role, Mvrs. In general, design pattern roles do not consistently have a greater
effect on the percentage variance in change proneness to classes than metapattern
roles. Although the percentage varies slightly it is consistently less than 2% across all
patterns in all projects. So although we cannot conclude that metapattern roles offer
any quantitative advantage over design pattern roles in evaluating pattern properties,
we can observe some qualitative properties.

First, whenever roles are significant after controlling for size we observe a similar
trend in their associated design patterns. However, we observe that this trend is not
particularly interesting, in short, hook classes change more often whereas template and

418 Empir Software Eng (2011) 16:396–423

implementation classes change less often. Second, metapatterns derived from detected
design patterns do not explain appreciably more or less than those detected by Thex.

We also observe that there exist fewer opportunities to play more than two roles
with metapatterns as we have at most three roles. As a consequence, greater than
two roles are only significant across metapatterns in Eclipse JDT.

Conclusion for RQ3 When explaining change-proneness, while controlling for size,
there is very limited additional explanatory power provided by pattern or metapattern
roles. Furthermore, there is very little dif ference in the additional power provided by
metapattern roles, as compared to the explanatory power of pattern roles. Metapattern
roles do, however, follow a similar pattern of change-proneness and size as their design
pattern cousins.

6.5 RQ4

We now turn to RQ4, viz., the relationship of pattern and metapattern roles with
size. Note that we use just the roles and release factor as predictors in the model: size
is now the response variable. As before, weighted effects codes for the roles indicate
the relative effect on size when a class plays the corresponding role and the chosen
symbol indicates the direction and significance of the effect. The overall R2 indicates
how much of the variance is explained by the roles.

The most striking observation regarding size is the strong agreement (both direc-
tion and significance) of the role coefficients with the corresponding role coefficients
in Mvr. With only a few exceptions, whenever a role is significant in both models
the direction of significance coincides. In most models, for example, hook classes are
predicted to be less change-prone, and similarly, in most models, hook classes are
predicted to be smaller.

The previous models have shown that size is the dominant feature in change-
proneness; these models complete the picture by demonstrating that the change-
proneness relationships between roles are largely a function of the size of the roles.
This model also explains, in part, why roles lose significance in the Mvrs models.
Roles are, in fact, strongly correlated with size. That is, they are in part explaining
the same phenomena; thus when we include size in the model, many roles become
insignificant. From these results we might conclude that roles affect size in at least
two ways: 1) directly, albeit minimally, and 2) indirectly through size.

Therefore, roles, in fact, do partially influence change-proneness. However, the
amount of indirect change is related to the product of the variances through the me-
diation variable size. A significant portion of the size change-proneness relationship
will not be accounted for by roles through this indirect path.

We summarize many of the intuitions about design patterns previously reported
by observing that they are common across metapattern roles. Hence, based on the
intuitions reported by Di Penta et al. and our summary from Section 3 we would
expect that classes that play the hook role will be smaller, and consequently less
change-prone, than classes that play the implementation, and (sometimes) template
roles.

Conclusion for RQ4 Pattern and metapattern roles have a signif icant relationship
with size

Empir Software Eng (2011) 16:396–423 419

Summary Our summary from the results presented above is that design pattern
roles (and meta-pattern roles) explain very little about change-proneness of classes,
beyond what is explained by size.

7 Threats to Validity

Perry et al. (2000) identify three forms of validity that must be addressed in research
studies. We now examine threats to each form of validity in our study and the
methods used to mitigate these threats where possible.

The main threats to construct validity come from identification of patterns and our
method of quantifying change-proneness and size. Perfect, automatic identification
of design pattern instances in software remains unsolved. However, vast strides have
been made, and we use data produced by a state-of-the-art detector (Guéhéneuc and
Antoniol 2007).

Guéhéneuc and Antoniol report recall and precision: however recall is reported
as 100% and precision ranging from 34% to 80%. This wide range of precision limits
the accuracy of even state of the art approaches to pattern detection. Although
the reported perfect recall implies that all patterns are measured, the low precision
for some patterns insures that any measurement will include many non-pattern
classes. This tool has been used in prior studies examining properties of design
patterns (Di Penta et al. 2008). Metapatterns are defined in purely structural terms
and are much easier to detect using static analysis techniques.

We evaluated our tool, Thex, on several code-bases manually examining many
identified instances of design patterns and metapatterns to verify their accuracy
[citation omitted for anonymity]. We measure size using lines of code (LOC),
which is an accepted standard of code size (Rosenberg 1997). We measure change-
proneness of a class by counting the number of distinct commits to that class between
releases. However, we also performed this analysis by using number of semantic
changes as described in Fluri et al. (2007) with similar results.

Internal validity is the ability of a study to establish a causal link between
independent and dependent variables regardless of what the variables are believed
to represent. Our study is focused on examining a link between pattern role and
change proneness. In our analysis, we limit our examination to changes made to
stable pattern instances (instances that exist in at least two consecutive releases) and
only count changes that occur after the instance comes into existence. The use of this
criteria mitigates threats to internal validity, but does not completely remove them
as we are not counting pattern roles that exist for only a single release. We control
for release dependent effects on change-proneness by including release as a factor.
This has an aggregation effect over each project and assumes an essentially static
relationship between the change proneness of classes playing pattern roles.

In terms of model validity we assume that there exist release specific effects
that affect all classes within a release in the same manner. This assumption limits
our analysis to a change in intercept for role membership effects. The treatment of
release as a time fixed effect captures the time dependent variance in a single control
variable and is comparable to previous approaches that seek to capture differences
in role or pattern behavior as a scalar measured over the life of the pattern or
project.

Lastly, external validity refers to how these results generalize. Our study includes
multiple projects and we find similar results among all projects studied. However, the

420 Empir Software Eng (2011) 16:396–423

sample size is only three projects, all of which, are written in the Java programming
language. While this gives evidence of the ability of our results to generalize, further
study on more projects and different languages will increase our confidence in these
findings as answers to the research questions on a broad level.

8 Conclusion

Our analysis of earlier papers on change-proneness of design pattern roles suggested
that the differences in change-proneness of pattern roles might be explained by the
simpler, purely structural metapattern roles. In fact, when we controlled for sizes,
both pattern and metapattern roles showed only minor differences. Next, we also
noted a significant association between both pattern and metapattern roles and size.
We argue therefore, that the previously reported association of pattern roles with
change-proneness, might in fact, be due to the size variations in the classes playing
the roles.

We believe that metapatterns can be useful in studying design pattern behaviors
in software systems. We have shown that some beliefs about the intuition of design
patterns can be captured by metapatterns. Metapatterns can yield interpretable
results due to their abstract nature and smaller set of role behaviors.

E.B. Swanson identified three categories of maintenance: corrective, adaptive,
and perfective (Swanson 1976). In this study, we do not distinguish between these
different maintenance activities, hence, interpretation of our results may be de-
pendent on the underlying distribution of change type. While the strength of this
dependence is worthy of consideration, this is left as future work.

Measuring the size of a class is simple, fast, and accurate; finding its pattern
roles, (or even its meta-pattern roles) is substantially more difficult and error-prone.
Therefore, pragmatically, if one is seeking to get an indication of which classes
might be change-prone, our study suggests that it might best to ignore pattern roles
altogether, and just use size as an indicator.

However, pattern roles might be known early in the design process, and thus would
be an early and useful indicator of the eventual future sizes of classes playing those
roles. This expected future size, in turn, is a useful indicator of change-proneness.

Acknowledgements Our thanks to Yann-Gaël Guéhéneuc for allowing the use of the Ptidej toolset
and pattern detection data, Beat Fluri for his change distiller tool, and to Sci-Tech corporation for
providing academic use of Understand for Java.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

References

Aversano L, Canfora G, Cerulo L, Grosso CD, Di Penta M (2007) An empirical study on the
evolution of design patterns. In: ESEC-FSE ’07: proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT symposium on the
foundations of software engineering. ACM, New York, pp 385–394. ISBN 978-1-59593-811-4.
doi:10.1145/1287624.1287680

Basili V, Elbaum S (2006) Empirically driven SE research: state of the art and required maturity.
In: ICSE ’06: proceedings of the 28th international conference on software engineering. ACM,
New York, pp 32–32. ISBN 1-59593-375-1. doi:10.1145/1134285.1134291

http://doi.acm.org/10.1145/1287624.1287680
http://doi.acm.org/10.1145/1134285.1134291

Empir Software Eng (2011) 16:396–423 421

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J R Stat Soc B (Methodological) 57(1):289–300

Bieman J, Jain D, Yang H (2001) Design patterns, design structure, and program changes:
an industrial case study. In: Proceedings international conference on software maintenance,
pp 580–589

Bieman J, Straw G, Wang H, Munger P, Alexander R (2003) Design patterns and change proneness:
an examination of five evolving systems. In: Software metrics symposium, 2003. Proceedings.
Ninth international, pp 40–49

Bird C, Nagappan N, Devanbu P, Gall H, Murphy B (2009) Does distributed development affect
software quality? An empirical case study of windows vista. In: Proc. of the international confer-
ence on software engineering

Briand L, Wust J (2002) Empirical studies of quality models in object-oriented systems. Adv Comput
56:98–167

Brooks C (2008) Introductory econometrics for finance. Cambridge University Press
Bruneton E, Lenglet R, Coupaye T (2002) ASM: a code manipulation tool to implement adapt-

able systems. Adaptable and extensible component systems. Grenoble, France. http://asm.
objectweb.org/current/asm.eng.pdf

Cataldo M, Wagstrom PA, Herbsleb JD, Carley KM (2006) Identification of coordination require-
ments: implications for the design of collaboration and awareness tools. In: CSCW ’06: proceed-
ings of the 2006 20th anniversary conference on computer supported cooperative work. ACM,
New York, pp 353–362. ISBN 1-59593-249-6. doi:10.1145/1180875.1180929

Cohen J, Cohen P, West S, Aiken L (1983) Applied multiple regression/correlation analysis for the
behavioral sciences. Erlbaum, NJ

Di Penta M, Cerulo L, Guéhéneuc Y-G, Antoniol G (2008) An empirical study of the relationships
between design pattern roles and class change proneness. In: 24th IEEE international conference
on software maintenance (ICSM 2008). IEEE, China, pp 217–226

El Emam K, Benlarbi S, Goel N, Rai S (2001) The confounding effect of class size on the
validity of object-oriented metrics. IEEE Trans Softw Eng 27(7):630–650. ISSN 0098-5589.
doi:10.1109/32.935855

Fluri B, Würsch M, Pinzger M, Gall H (2007) Change distilling: tree differencing for fine-grained
source code change extraction. IEEE Trans Softw Eng 725–743. doi:10.1109/TSE.2007.70731

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-
oriented software. Addison-Wesley Reading, MA

Guéhéneuc Y, Antoniol G (2007) Demima: a multi-layered framework for design pattern iden-
tification. IEEE Trans Softw Eng 34(5):667–684

Güneş Koru A, Liu H (2007) Identifying and characterizing change-prone classes in two
large-scale open-source products. J Syst Softw 80(1):63–73. ISSN 0164-1212. doi:10.1016/j.jss.
2006.05.017

Hayashi S, Katada J, Sakamoto R, Kobayashi T, Saeki M (2008) Design pattern detection by using
meta patterns. IEICE Trans Inf Syst 91(4):933–944

Jussien N, Barichard V (2000) The PaLM system: explanation-based constraint programming.
In: Proceedings of TRICS: techniques for implementing constraint programming systems, a post-
conference workshop of CP 2000, pp 118–133

Khomh F, Guéhéneuc Y, Antoniol G (2009) Playing roles in design patterns: an empirical descriptive
and analytic study

Lindeman R, Merenda P, Gold R (1980) Introduction to bivariate and multivariate analysis.
New York

Ng T, Cheung S, Chan W, Yu Y (2006) Work experience versus refactoring to design patterns: a con-
trolled experiment. In: Proceedings of the 13th ACM SIGSOFT 14th international symposium
on foundations of software engineering, pp 12–22

Ng T, Cheung S, Chan W, Yu Y (2007) Do maintainers utilize deployed design patterns
effectively? In: 29th international conference on software engineering (ICSE 2007), pp 168–177.
doi:10.1109/ICSE.2007.33

Perry D, Porter A, Votta L (2000) Empirical studies of software engineering: a roadmap. In: Pro-
ceedings of the conference on the future of software engineering. ACM, New York, pp 345–355

Posnett D, Bird C, Devanbu P (2010) THEX: Mining metapatterns from java. In: Mining software
repositories (MSR), 2010 7th IEEE working conference on. IEEE, pp 122–125

Prechelt L, Unger B, Tichy W, Brossler P, Votta L (2001) A controlled experiment in maintenance:
comparing design patternsto simpler solutions. IEEE Trans Softw Eng 27(12):1134–1144

Pree W (1994) Meta patterns-a means for capturing the essentials of reusable object-oriented design.
Lect Notes Comput Sci 821:150–162

http://asm.objectweb.org/current/asm.eng.pdf
http://asm.objectweb.org/current/asm.eng.pdf
http://doi.acm.org/10.1145/1180875.1180929
http://dx.doi.org/10.1109/32.935855
http://doi.ieeecomputersociety.org/10.1109/TSE.2007.70731
http://dx.doi.org/10.1016/j.jss.2006.05.017
http://dx.doi.org/10.1016/j.jss.2006.05.017
http://dx.doi.org/10.1109/ICSE.2007.33

422 Empir Software Eng (2011) 16:396–423

Rosenberg J (1997) Some misconceptions about lines of code. In: Proceeding of the fourth interna-
tional software metrics symposium, pp 137–142. doi:10.1109/METRIC.1997.637174

Sci-Tools (2010) Understand for Java 1.4
Swanson E (1976) The dimensions of maintenance. In: Proceedings of the 2nd international confer-

ence on software engineering. IEEE Computer Society Press, pp 492–497
Tourwé T, Mens T (2003) Automated support for framework-based software. In: Proceedings in-

ternational conference on software maintenance (ICSM 2003). IEEE Computer Society Press,
pp 148–157

Toutenburg H (2002) Statistical analysis of designed experiments, 2nd edn. Springer
Vokáč M, Tichy W, Sjøberg D, Arisholm E, Aldrin M (2004) A controlled experiment comparing

the maintainability of programs designed with and without design patterns—a replication in a
real programming environment. Empir Software Eng 9(3):149–195

Zhang H, Tan HBK (2007) An empirical study of class sizes for large java systems. In APSEC ’07:
proceedings of the 14th Asia-Pacific software engineering conference. IEEE Computer Society,
Washington, pp 230–237. ISBN 0-7695-3057-5. doi:10.1109/APSEC.2007.20

Daryl Posnett received the BS and MA degrees in mathematics from Eastern Michigan University.
He is currently a PhD candidate at the University of California Davis. His research interests are in
empirical software engineering focusing on statistical modeling and software quality analysis.

Christian Bird is a postdoctoral researcher at Microsoft Research in the Empirical Software
Engineering group. He is primarily interested in the relationship between software design and social
dynamics in large development projects, and the effects on productivity and software quality and

http://dx.doi.org/10.1109/METRIC.1997.637174
http://dx.doi.org/10.1109/APSEC.2007.20

Empir Software Eng (2011) 16:396–423 423

has pioneered a number of software mining techniques in an effort to empirically answer questions
in that area. He has studied software development teams at Microsoft, IBM, and in the Open
Source realm, examining the effects of distributed development, ownership policies, and the ways
in which teams complete software tasks. He is the recipient of the ACM SIGSOFT distinguished
paper award, and the “Best Graduate Student Researcher” at U.C. Davis where he received his
Ph.D. under Prem Devanbu. He has published in the top academic software engineering venues, has
a Research Highlight in CACM, and was a National Merit Scholar at BYU, where he received his
B.S. in computer science.

Prem Dévanbu received his B.Tech from the Indian Institute of Technology in Chennai, India,
before you were born, and his PhD from Rutgers in 1994. After spending nearly 20 years at Bell
Labs and its various offshoots, he escaped New Jersey to join the CS faculty at UC Davis in late
1997. His research interests now are squarely in empirical software engineering.

	An empirical study on the inf luence of pattern roles on change-proneness
	Abstract
	Introduction
	Outline

	Overview
	Research Questions

	Phylogeny: Metapatterns and Patterns
	Connection Metapatterns
	Recursive Metapatterns
	Unification Metapatterns

	Related Work
	Data Gathering and Methodology
	Design Pattern Detection
	Metapattern Detection
	Tool Description
	Pattern Counts
	Methodology

	Results
	Models Mv
	Models Mvr
	RQ1 and RQ2
	RQ3
	RQ4

	Threats to Validity
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

