Mining Email Social Networks

Christian Bird, Alex Gourley,
Prem Devanbu, Michael Gertz
Dept. of Computer Science, Kemper Hall,
University of California, Davis,
Davis, California Republic.

cabird,devanbu@ucdavis.edu

ABSTRACT

Communication & Co-ordination activities are central to
large software projects, but are difficult to observe and study
in traditional (closed-source, commercial) settings because
of the prevalence of informal, direct communication modes.
OSS projects, on the other hand, use the internet as the
communication medium, and typically conduct discussions
in an open, public manner. As a result, the email archives
of OSS projects provide a useful trace of the communica-
tion and co-ordination activities of the participants. How-
ever, there are various challenges that must be addressed
before this data can be effectively mined. Once this is done,
we can construct social networks of email correspondents,
and begin to address some interesting questions. These in-
clude questions relating to participation in the email; the
social status of different types of OSS participants; the rela-
tionship of email activity and commit activity (in the CVS
repositories) and the relationship of social status with com-
mit activity. In this paper, we begin with a discussion of
our infrastructure and then discuss our approach to mining
the email archives; and finally we present some preliminary
results from our data analysis.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—FEmpirical, Open
Source

General Terms

Human Factors, Measurement

Keywords

Open Source, Social Networks

*We gratefully acknowledge support from NSF Humanities
and Social Sciences Division, Grant Number SES 0525263.

*

Anand Swaminathan
Graduate School of Management,
University of California, Davis,
Davis, California Republic.

aswaminathan@ucdavis.edu

1. INTRODUCTION

Large-scale software development projects invariably re-
quire a lot of communication and coordination (C&C) am-
ongst the project workers. We distinguish these activities
from engineering activities, where actual artifacts such as
source code or documents are modified. The difficulty and
intensity of the required coordination effort is quite high;
this is often cited as the reason why adding more developers
doesn’t necessarily speed-up development [4]. C&C activi-
ties influence (and are influenced by) the design, structure
and evolution of software systems. In traditional, commer-
cial software organization, C&C activities may occur infor-
mally, and would be difficult to study. Even if coordination
and communication are computer-mediated, the traces of
these activities are usually not made public by commercial
organizations. Open-source software (OSS) projects on the
other hand, inherently conduct all their activities in pub-
lic, and in fact, this public, open enactment is key to their
success [16, 11]. In particular, every open-source project
includes one or more public mailing lists wherein project
stakeholders can communicate and coordinate their activi-
ties. The entire trace of these mailing lists are archived and
available for study.

These archives, along with the versioned source code repos-
itories and other on-line artifacts constitute a unique and
valuable resource for the study of C&C activities in software
projects. There is at UC Davis an interdisciplinary effort to
mine this resource, and use the resulting data to study the
relationship with C&C activities in OSS projects, and the
actual development activities. In this paper, we describe
our experiences with this effort, and some early results. We
begin first with a description of the phenomena that we are
mining; then we describe our data extraction tools; finally,
we present an early look at the data.

2. CHATTERERS & CHANGERS

A mailing list in an OSS project is a public forum. Anyone
can post messages to the list. Posted messages are visible
to all the mailing list subscribers. Posters to mailing lists
include developers, bug-reporters, contributors (who sub-

Permission to make digital or hard copies of all or part of this work for mit patches, but don’t have commit privileges) and ordinary
personal or classroom use is granted without fee provided that copies areusers. Mailing lists can be quite active; for example, on the
not made or distributed for profit or commercial advantage and that copies Apache developer mailing list, there were about 4996 mes-
bear this notice and the full citation on the first page. To copy otherwise, t0 gages in the year 2004 and 2340 in 2005. For gec, these num-

republish, to post on servers or to redistribute to lists, requires prior specific | .. o1 19173 and 15082. Over the lifetime of the project
permission and/or a fee. : project,

MSR’'06,May 22-23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/000585.00.

we estimate that over 2000 distinct individuals have sent
messages to the Apache developer list. A subscriber may

respond to a message on the public forum, which then be-
comes visible to everyone. Roughly 73% of messages elicit
response messages. A response b to a message a is an in-
dication that the sender of b, (sp) found that the sender of
a, (sa) had something interesting to say; thus the response
from s, indicates that the original message a represented
information flowing from s, to s, It is also an indication of
status, i.e., sp indicates that s/he found s,’s email worth
reading, and worthy of response.

The level of activity of developers on the mailing list varies
dramatically. The most active developer on the mailing list
sent 4486 messages during the life of the project. The least
“chatty” developer sent just 10 messages. There were, of
course, non-developers who sent just one message. Mes-
sages reflect communication interactions between develop-
ers. Some developers have a great many interactions: one
developer’s emails had responses from 254 distinct individ-
uals. Likewise, another developer replied to messages from
281 distinct individuals. However, the vast majority of indi-
viduals particpating on the email list sent very few messages,
and received very few replies to their messages. This type of
“Pareto” distribution is common in social phenomena [14].

The community on the Apache developer mailing list is
concerned primarily with software, and so the question nat-
urally arises as how email activity relates with development
activity. This activity can be conveniently recovered from
the versioned source code repository (CVS in this case). As
has been reported in earlier research [8] on Linux, develop-
ment activity, as recorded in CVS, also shows a few devel-
opers doing the bulk of the work.

Our research goal is to study the relationship of the C&C
activities of developers, as revealed in the email archives,
to their software development activity. Specifically, we are
interested in how the activities and connections between de-
velopers on the mailing list relate to their development ac-
tivity in the source code. We are interested in the following
types of questions:

o What are the properties of the social network of devel-
opers?

e Are developers who send a lot of messages on the mail-
ing list also very active in source code changes?

e Do developers play a different role than non-developers
in the social network?

e Do the most active developers have the highest status
among developers ?

Unfortunately, answering these types of questions requires
facing some challenges in data extraction, primarily having
to do with resolving aliasing issues on the email archives and
cvs archives.

3. OF DOGS AND DEVELOPERS

“On the Internet, no one knows if you’re a Dog” —so goes
the famous New Yorker Cartoon. It is difficult (and some-
times impossible) to determine the identity of individuals
who correspond on mailing lists using aliases. The same in-
dividual can use different email aliases. For example the
developer Ian Holsman uses 7 different email aliases, in-
cluding ian.holsman@cnet.com, ianh@holsman.net, and ianh@-

apache.org'. Sometimes aliases have very little relation-
ships to developers (or dogs): the developer Ken Coar uses
the name Rodent of unusual size associated with email ad-
dress ken.coar@golux.com. Ignoring these aliases and treat-
ing these as distinct email personalities would confound later
steps of data analysis. Likewise, when cvs comments are
made, developers use a cvs account name. Fortunately,
since access and accounts to cvs are controlled centrally,
there is less of an aliasing problem with cvs account names.
However, in order to relate email activity and program-
ming/development activity, we must correlate email names
with cvs account names. Given the possibility of choosing
arbitrary aliases, one can make two important observations:
first, an individual determined to maintain an anonymous
alias can always do so? ; second, any automated algorithm
for resolving aliases will be inexact, and must be supple-
mented by subsequent manual analyses.

We now describe our hybrid automated/manual approach
to resolving aliases

3.1 Unmasking Aliases

Most emails include a header that identifies the sender, of
this form:

From: "Bill Stoddard" <reddrum@attglobal.net>

This header reveals immediately the problem—Bill Stod-
dard, who here uses the handle reddrum is actually also bille-
wstoddard.com. But how can we know that?

Overview: Our first step in resolving aliases is to auto-
matically crawl messages and extract all such headers to
produce a list of < name, email > identifiers (IDs). Once
this is done, we execute a clustering algorithm that measures
the similarity between every pair of IDs. This could occur if
either the names are similar, or if the emails are similar, or
if the names and the emails are similar (the precise details of
the algorithm are explained below). 1Ds that are sufficiently
similar are placed into the same cluster. Once clusters are
formed, they are manuall post-processed.

Apache Summary: In the case of the Apache developer
mailing list, we began with 2544 separate IDs. The cluster-
ing algorithm produced 1581 clusters. The largest of these
had 70 members, the next biggest 55, and so on; finally,
there were 163 doubles, and 1271 singletons. Naturally,
these clusters contained errors, and had to be manually post-
processed. Mindful of the need for manual post-processing,
we deliberately set the cluster similarity threshold quite low:
it is much easier during a manual step to split clusters than
to unify two disparate clusters from a very large set. Manual
processing of the 1581 clusters produced 2012 distinct indi-
viduals, some of whom have many aliases. One noteworthy
example is Rasmus Lerdorf, with 11 aliases:

rasmus@apache.org,
rasmus@bellglobal.com,
rasmus@lerdorf.ca,
rasmus@lerdorf.com,
rasmus@lerdorf.on.ca,
rasmus@linuxcare.com,

'Email addresses are used with permission from the mail-
inglist participants.

2The identity of the infamous “David who wishes to remain
anonymous”; who spammed several email lists, offering to
post personal adverts in Ukraine, was not easily found.

rasmus@madhaus.utcs.utoronto.ca,
rasmus@maill.bellglobal.com,
rasmus@php.net,
rasmus@raleigh.ibm.com,
rasmus@vex.net.

Five of these were discovered using the Name Similarity rule
(described below); the other six were put into this cluster
because of the Email similarity rule. Paul Richards was
another promiscuous email masquerader, with 10 aliases.
Subsequent random sampling of the clusters by one of the
authors (who didn’t do the manual filtering) revealed no
discernible errors (see caveat on this later).

Clustering Algorithm: This algorithm takes a flat list
of IDs and clusters them (recall that an ID is a <
name, email > tuple). The first step is create pairwise
similarity measures for every pair of IDs. Two IDs with
similarity measure exceeding an empirically set threshold
are placed into the same cluster. The similarity measure is
computed by proceeding as follows:

1. Normalize name: We remove all punctuation, suffixes
(“r”); turn all whitespace into a single space; remove
generic terms like “admin”, “support”, from the name;
we also split the name (using whitespace and commas
as cues) into first name and last name.

2. Name Similarity: We use a scoring algorithm based on
the Levenshtein edit distance [5, 13, 17] between the
full names, and the first and last names separately. We
consider names similar if the full names are similar, or
if both first and last names are similar. Thus, Andy
Smith is similar to Andrew Smith, but Deepa Patel is
dissimilar to Deepa Ratnaswamy. This is a very pro-
ductive rule for identifying clusters of similar emails.

3. Names-email Similarity: Two IDs are also scored
highly similar if the emails and names match. If
the email contains both first and last names (and the
lengths of the names are at least 2 characters) we con-
sider them matched. Also, if the email contains the
initial of one part of the name and entirety of the other
part, then it is considered a match. Thus Erin Bird
matches erinb and ebird.

4. Email Similarity: If the Levenshtein edit distance be-
tween two email address bases (not including the do-
main, after the ”@”) is small, two emails are considered
similar (as long as the two bases at least 3 characters
long)

5. Cumulative ID similarity: The similarity between two
IDs is the maximum of the 3 mentioned above. This
generous rule creates larger clusters; however, split-
ting too-large clusters is easier than unifying smaller
clusters (from a very large number of clusters).

The Cumulative ID similarity is computed for all pairs of
IDs; IDs with similarity exceeding a threshold are placed
into clusters. The clusters are then manually post-processed
as described above. The final results produced were hand-
inspected by another member of the team, and appears to
be free of evident errors. Of course, given the possibility of
choosing arbitrary aliases, such manual inspection is fallible.
In future work, we will undertake a more formal, sampling-
based techniques technique for determining bounds on the

error rates in our results. We propose to email a randomly
chosen subset of individuals on the list, and ask them if the
set of aliases we have found for them is accurate. Assuming
that mis-classification errors are uniformly distributed in our
clusters, we should be able to calculate confidence intervals
on the actual error rate in our clusters.

CVS alias resolution: We use a similar approach to re-
solving cvs account names to email aliases. Similarity met-
rics are calculated on all pairs of mailing list aliases and
CVS names. The final matched list is hand-inspected, also
as described above; the same caveats apply, and in future
work, we will use the same random sampling approach to
statistically bound the errors in our results.

3.2 Data Extraction

We gathered data by parsing the email activity on the
Apache HTTP Server Developer mailing list over a period
starting in 1999 to the current date. Earlier email data
was not included because we do not have version-control
information before then; we only used the email data for
the period during which the source code change data was
also available. For every email, we extracted from the email
header the message identifier, the sender, the sent time, and
the identifier of the message (if any) to which this message
was a reply. When a reply-to header was found, the sender
s of the reply was someone who found the initial message of
interest; and so the sender s was marked as a recipient of
the original message. In this way, we were able to extract
communication links between pairs of individuals.

We were able to parse 101,637 messages out of 102,611
messages in the mailing list. A small proportion of mes-
sages could not be parsed, because of malformed headers.
Approximately 1.3% of the messages were in this category.
Malformed headers can fail to provide a message identifier,
and can also fail to provide a reply-to identifier. This could
be due to misbehaving email clients. We are working on
ways to rectify this problem. Quoted text content (as done
in [1]) is one approach, whereby one message is identified as
a reply if it quotes text from another. Meanwhile, we believe
that our results are reasonably robust, and would not be af-
fected much when these (currently unparseable) messages
are included in the analysis.

4. DESCRIPTION: SMALL WORLD

The distributions of the data that are shown in Figure 1
describe the behavior of the participants of the email list.
Each is a histogram showing the number of people exhibiting
a particular kind of behavior. The character of the distribu-
tions is consistent with previously observed social phenom-
ena, and show the typical long-tailed characteristic in the
log-log domain plot.

Number of Participants

100 316

I I
o
100 316
I I
o
o

31

31
o
Number of Participants

Number of Participants

100 316

31

°
°

Number of Participants
o

1 31 10 31 100 316 1000 3162 1 3.1 10 31 100 316 1000 3162

Number of Messages Messages Read

Out Degree In Degree

Figure 1: Note that all diagrams are log-log scale. Reading left to right: first, the distribution of people vs.
number of messages they sent; next, vs. the number of reply messages they received. Note that a few people
account for the bulk of the sending & reply activity. The next two indicate the structure of the social network.
First, the out-degree in the social network; finally, vs. the in-degree in the social network. Out degree is
an indication of status, as it indicates the number of different people who replied to the ego’s messages.
In-degree indicates the number of different people whose messages ego responded to. All distributions show
power-law character. The degree distributions show small-world character of the email social network.

The first shows a histogram of message-sending behaviour.
The vast majority of people send only one message, and
there are some who send a great many. The second is the
histogram of message replying behavior. The next two are
based on the social network, where an individual s, has a
link to an individual s, if s, replied to a message from sq.
Higher out-degree for s, is an indication of higher status,
since more individuals have found messages from s, of in-
terest. Individuals whose messages attracted no replies were
excluded from this graph. Out-degree also shows a scale-
free, or power-law distribution, characteristic of small-world
social networks [2, 9, 10, 15]. In-degree measures the num-
ber of different people to whom an individual has replied-to,
and is an indication of the level of engagement of an individ-
ual in the mailing list and the breadth of his/her interests.
This distribution also shows a small-world character.

Next, we examine (Figure 2) the relationship between the
number of messages sent by an individual, and the number
of distinct respondents who replied to that individual. For
this graph, we only considered individuals who had actu-
ally received at least one response to their message. It can
be seen that there is a strong relationship; in fact, we note
a very high Spearman’s rank correlation, around 0.97. It
should be noted that these are not the same phenomena;
the number messages one sends need not necessarily corre-
late with the number of different people that consider that
message worth responding to. This may be due to commu-
nity norms, i.e., people only post relevant messages, and
the community by and large responds to messages. It may
also be due to a survival effect, whereby only people who
receive replies from several people keep sending messages.
We are currently using time-series regression analysis to ex-
amine the latter theory, that only people who receive replies
to their messages continue to be active on the mailing list.

Finally we present (in Figure 3) a pruned email social net-
work; the full network is too large to render in a useful fash-
ion on non-interactive media. Each directional link in Fig-
ure 3 indicates a message count of at least 150. For example,
the arrow from Alezei Kosut to Ben Laurie indicates that
the latter replied to at least 150 messages from the former;

© —
®
o
s |
3 ® 7
)
fo)
a
5
S o |
; -
— — 0 O 0000
[T T T T T T T
1 31 10 31 100 316 1000 3162

Messages Sent

Figure 2: How out-degree (number of distinct re-
spondents) grows with number of messages sent by
ego, n=1063

this indicates that Laurie found a lot of Kosut’s messages of
interest. The reverse arrow indicates that this relationship
was mutual. Unidirectional arrows, for example from Slemko
to the Rodent, merely indicate that the former replied to less
than 150 messages from the latter. Self links indicate that
individuals sometimes replied to their own messages, some-
times after comments from others, sometimes to clarify their
original message.

The high connectedness of certain individuals (Gaudet,
Laurie, Bloom, Jagielski, Rowe) can be seen even in this
pruned network; these individuals are in fact the most pro-
ductive developers. Preliminary statistical data further sup-
porting this is presented in the next section.

We conclude this section with some observations:

Figure 3: Pruned Social Network of Apache Email-
ers (Each link indicates at least 150 messages sent,
or replied-to).

o The number of messages sent by individuals, and the
number of messages sent in reply to individuals, both
follow a Pareto distribution;

e The social network of individuals on the email network,
where an indwidual a has a link to an individual b if b
replied to a message from a, shows a long-tailed degree
distribution on both in- and out-degrees, characteristic
of small-world networks.

e There is a strong relationship between the number of
messages sent by an individual, and the number of dis-
tinct individuals who respond to that individual (also
the out-degree in the social network). We are studying
this phenomenon using time-series analysis.

Next we turn to examine the relationship between email
activity and development activity.

5. C&C ACTIVITY AND DEVELOPMENT
ACTIVITY

In this section we discuss this question: How does email
activity relate to software development activity. In order
to study this question, we use data gathered from the cvs
archives on how many changes (distinct commits) were made

by each individual. In fact only 73 individuals have actually
made commits to the versioned repository during the period
beginning with 1999, (before which this repository was not
used) until the present. There are two types of files, source
and documents. We counted each separately, in order to
study the relationship of source code and document activity
with email activity.

5.1 Activity Correlation

There are large number of correspondents on the mail-
ing list who do not have commit privileges, never make any
changes to the project files. These individuals tend to be
less active on the email list. In order to study the relation-
ship between the effort spend on C&C activities, and de-
velopment activities, we excluded individuals who have not
made any changes to source code or documents from this
study. By focusing on just those individuals who have made
changes, we hope to get a clearer picture of the relationship
of email activity with development activity.

Based on the data for just the 73 committers, we observe
a Spearman’s rank correlation of about 0.80 between the
number of messages sent by an individual, and number of
source changes they make. This clearly indicates that the
more software development work an individual does, the
more C&C activity the individual must undertake. There
is a somewhat lower correlation, around 0.57, with number
of document changes. We hypothesize that this is because
source code activities require much more co-ordination effort
than documentation effort, but further study, using time-
series data is needed to determine this.

The total number of messages is only one aspect of a
community’s structure; the volume of messages sent by an
individual (even if they receive replies) doesn’t necessarily
indicate the individual’s position in the social network. So-
ciologists have invented several measures of an individual’s
position in a network, when viewed globally. We also study
the relationship of some of these measures to the activity
level of an individual.

5.2 Social Network Measures

We focus on 3 measures, in-degree out-degree and between-
ness, which are indicators of the importance of an individual
in a network. Out-degree and in-degree were discussed ear-
lier; for this part, we normalize out-degree and in-degree by
the total size of the network. For a node v in a graph g,
betweenness BW is defined as follows:

BWw) = Yy 9

i, it it g 7

where gi,; is the number of shortest paths (geodesics)® in
g, between 7 and j, that go through v; and g;; is the total
number of shortest paths from ¢ to j.

High betweenness indicates that the person is a kind of
broker, or gatekeeper in the social network; s/he plays a role
in a great many interactions. Such people can have high
status, and can also be bottlenecks. Actors who are high
in betweenness centrality have the potential to control or
disrupt communication or trust relationships between var-
ious end points. So we ask the question, Are developers
more likely to play the role of gatekeepers or brokers in the

3Note that there may be more than one shortest path be-
tween two nodes if multiple paths are of the same length.

changes | srcChanges | docChanges | outdegree | indegree | betweenness mean min max
changes 1 0.789 0.932 0.520 0.474 0.553 912 0 16289
srcChanges 0.789 1 0.514 0.712 0.679 0.757 420 0 5741
docChanges 0.932 0.514 1 0.308 0.263 0.327 492 0 13420
outdegree 0.520 0.712 0.308 1 0.971 0.955 0.0080 0 0.0396
indegree 0.474 0.679 0.263 0.971 1 0.917 0.0067 0 0.0260
betweenness 0.553 0.757 0.327 0.955 0.917 1 0.0011 0 0.0965

Figure 4: Cross-correlation table, (using Spearman’s rank correlation) showing relationship between the total
number of changes, the changes to source, changes to documents, relative in-degree, relative out-degree,
betweenness. Average, min and max are also shown. n=73

complete email social network? To answer this question, we
computed the betweenness scores of developers (n = 73)
and non-developers (n=1123) in the full email social net-
work. The mean betweenness of developers is 0.0114, and
the mean betweenness of non-developer is 0.000140. A sim-
ple T-test indicates a t-value of 5.07, which is highly signif-
icant. The other measures, out-degree and in-degree were
also calculated. They also indicate that developers have a
significantly higher status, as indicated in the table below.

Developer Non- T-value | Significance

-Developer
Betweenness 0.0114 0.000140 5.07 p < 0.001
Out-degree 0.00666 | 0.000451 8.14 p < 0.001
In-degree 0.00794 | 0.000367 7.54 p < 0.001

So we can conclude that developers are higher in status
than non-developers. Next, we consider just the population
of developers, and study the indicators of status within this
population.

5.3 Relative Status of Developers

Considering just the population of developers who have
made changes to the source and documents (n = 78) we
turn the reader’s attention to Figure 4, which shows a table
with the relevant descriptive statistics and correlation val-
ues. The top 3 rows (left 3 columns) are measures of activity:
total changes, source code changes, and document changes.
The bottom 3 rows (columns 4,5, and 6) are indicators of
social status.

Considering just the 3 change variables, it can be seen that
source changes are not as highly correlated with document
changes, indicating that not all developers are engaged in
both to the same degree. Thus, developer nd made 13420
document changes, and 2869 source changes, while developer
dougm made 1322 source changes and 74 document changes.
There are several others who were skewed in this way.

Turning now to the relative indicators of status, we can
see that source changes shows the strongest rank correlation
with the social network status indicators of normalized out-
and in-degrees, and betweenness. In fact the correlation for
betweenness is quite high, at 0.757. It should be noted that
these are non-parametric correlation measures, and are thus
more robustly indicative of a relationship. This indicates
that even within the higher-status group of developers, the
most active developers play the strongest role of communi-
cators, brokers, and gatekeepers. It’s also noteworthy that
the correlation with document changes is much weaker, in-
dicating that higher activity in source code is a stronger

determinant of social status than activity in documents.

A later study of the developer mailing list and source code
repository data for the Postgres® project showed that the
social status measures had similar levels of correlation with
source code changes [3]. The Postgres data, however, showed
much higher correlations between document changes and so-
cial network measures than the Apache data. We plan to
examine this statistic in future work.

We end this section with several preliminary conclusions:

e The level of activity on the mailing list is strongly cor-
related with source code change activity, and to a lesser
extent with document change activity.

e Social network measures such as in-degree, out-degree
(normalized by the number of developers) and be-
tweenness indicate that developers who actually com-
mit changes, play much more significant roles in the
email community than non-developers.

e [Fven within the select group of developers, there is
a strong correlation between the abovementioned mea-
sures of social network importance and level of source
code change activity.

6. RELATED WORK

There has been considerable study of social behavior in
on-line communities; we only survey work here in the OSS
development context.

Social networks among developers have been studied from
other perspectives. Xu et al [19] consider two developers so-
cially related if they participate in the same project. Our
view is to consider developers related if there is evidence
of email communication; this is arguably a more direct evi-
dence of a social link. Wagstrom, Herbsleb and Carley [18]
gathered empirical social network data from several sources,
including blogs, email lists and networking web sites, and
built models of their social behavior on the network; these
were then used to construct a simulation model of how users
joined and left projects. Our goal is empirical rather than
to run a simulation; we explicitly wish to study the rela-
tionship of email behavior and commit behavior in a single
project.

Crowston & Howison [7] use co-occurrence of developrs on
bug reports as indicators of a social link. They empirically
demonstrate that the social networks of smaller projects are
more central than those of larger projects, presumably larger

“http://www.postgresql.org

projects decentralize, to simplify C&C activities. This paper
is more centered on the study of individual developers and
how their email activity and social status changes with their
commit activity.

Commit behaviour in versioned repositories has been used
as indicator of social linkage. Lopez-Fernandez et al [12]
consider two developers to be linked if they commited to
the same module, and two modules to be linked if they were
committed to by the same developer. The resulting social
networks are similar in structure to ours. The work of De
Souza et al [6] is similar, except that they study files in-
stead of modules. This work also visualizes the changes in
social position of developers within the social network over
time, and that of modules in the module dependency net-
work. Developers become more “central” in the social net-
work over time. Turning to modules, they found that code
ownership in some parts of the system was more stable than
others. Finally, we note that these papers study collabora-
tion networks, whereas our focus is more on communication
networks; the relationship between the two is a subject of
our current research.

7. CONCLUSION

We describe here our work on mining the email social
network on the Apache HT'TP server project. We had to face
head-on the challenge of resolving multiple email aliases that
were used by the same individuals; failing to do this would
have seriously affected our ability to study the social network
of developers. We have hand-inspected our alias resolution
for errors; however, we acknowledge that our alias-resolution
step is in need of further validation. Our goal is to do this by
mailing a sample of participants get an idea of the accuracy
of our alias resolution. Furthermore, a small number (less
than 1.3%) of email headers could not be parsed; we are
also working on resolving this. However, we believe, that
a) there are likely to be only a few errors in the aliasing
and b) that the preliminary results reported here are quite
robust and unlikely to change significantly even as our data
extraction improves.

Our analysis indicates that the email social network is a
typical electronic community; a few members account for the
bulk of the messages sent, and the bulk of the replies. The
in-degree and the out-degree distribution of the social net-
work exhibit typical long-tailed, small-world characteristics.
We also note that there is a strong relationship between the
number of messages sent, and the number of different people
who respond to them; this merits further study.

Our preliminary data also indicates a strong relationship
between the level of email activity and the level of activ-
ity in the source code, and a less strong relationship with
document change activity. Our data also gives strong indi-
cations that developers play a much more significant social
role among all the participants in the mailing list. Further-
more, the data also supports preliminary finding that the
level of activity in the source code is a strong indicator of
the social status of a developer (among other developers);
the document activity is not as strong an indicator.

Our near-term goal is to study these effects in a time-series
basis, to investigate if there are causal relationships between
development activity and social status. We are also very
interested in studying the relationship between the archi-
tecture of the system, and social network of the developers
(which is also known as Conway’s Law).

8. REFERENCES

[1] R. Agrawal, S. Rajagopalan, R. Srikant, and Y. Xu.
Mining newsgroups using networks arising from social
behavior. In WWW ’03: Proceedings of the 12th
international conference on World Wide Web, 2003.

[2] A.-L. Barabési and R. Albert. Emergence of scaling in
random networks. Science, 286:509-512, 1999.

[3] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and

M. Gertz. Mining email social networks in postgres. In

MSR ’06: Proceedings of the International Workshop on

Mining Software Repositories, 2006.

F. Brooks. The Mythical Man-Month: Essays on Software

Engineering, 20th Anniversary Edition. Addison-Wesley,

1995.

[5] S. Chapman. Sam’s string metrics page.
www.dcs.shef.ac.uk/ sam/stringmetrics.html.

[6] J. F. P. D. Cleidson de Souza. Seeking the source: Software

source code as a social and technical artifact, 2005.

http://opensource.mit.edu/papers/desouza.pdf.

K. Crowston and J. Howison. The social structure of free

and open source software development.

opensource.mit.edu/papers/crowstonhowison.pdf,

November 2004.

(8] B. J. Dempsey, D. Weiss, P. Jones, and J. Greenberg. Who
is an open source software developer? Communications of
the ACM, 45(2):67-72, February 2002.

[9] L. C. Freeman. Centrality in social networks I. Conceptual
clarification. Social Networks, 1:215-239, 1979.

[10] M. Granovetter. The strength of weak ties. American
Journal of Sociology, 78:1360—1380, 1973.

[11] K. Kuwabara. Linux: A bazaar at the edge of chaos. First
Monday, 5(3), March 2000.

[12] L. Lopez, J. M. Gonzalez-Barahona, and G. Robles.
Applying social network analysis to the information in cvs
repositories. In Proceedings of the International Workshop
on Mining Software Repositories, 2004.

[13] G. Navarro. A guided tour to approximate string matching.
ACM Comput. Surveys, 33(1):31-88, 2001.

[14] M. E. J. Newman. The structure and function of complex
networks. SIAM Review, 45:167-256, 2003.

[15] J. Nieminen. On centrality in a graph. Scandinavian
Journal of Psychology, 15:322-336, 1974.

[16] E. S. Raymond. The Cathedral and the Bazaar: Musings
on Linuz and Open Source by an Accidental Revolutionary.
O’Reilly and Associates, Sebastopol, California, 1999.

[17] E. Ukkonen. Algorithms for approximate string matching.
Information & Control, 64(1-3), 1985.

[18] P. A. Wagstrom, J. D. Herbsleb, and K. Carley. A social
network approach to free/open source software simulation.
In Proceedings First International Conference on Open
Source Systems, pages 16—23, 2005.

[19] J. Xu, Y. Gao, S. Christley, and G. Madey. A topological
analysis of the open source software development
community. In HICSS ’05: Proceedings of the Proceedings
of the 38th Annual Hawaii International Conference on
System Sciences (HICSS’05) - Track 7, 2005.

[4

(7

